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1. Introduction 

Several lines of evidence suggest that corticosteroid-binding globulin (CBG), long known as 

a cortisol-transport glycoprotein, may have broader roles in targeted-tissue hormone 

delivery and the neurobehavioural responses to stress. These include studies of individual 

kindreds with rare severe CBG gene (SERPINA6) mutations, a study of chronic fatigue 

patients, a community study of individuals with a relatively high prevalence of two function 

altering CBG gene mutations in Calabria, Italy, a study of the genetic epidemiology of 

chronic pain, and, finally, two separate animal CBG gene knockout models. 

2. Corticosteroid-binding globulin: Structure and function 

CBG circulates as a 383 amino acid (50-55kDa) glycoprotein in blood, and was discovered in 
the late 1950s1-6 as a transport glycoprotein for cortisol in human plasma7,8. The liver is the 
main source of circulating CBG, although gene expression is also present in the placenta and 
kidney, and CBG is differentially expressed according to developmental stage in foetal 
life9,10. CBG is highly glycosylated with six consensus sites for N-glycosylation and 
sialyation11. Each molecule contains a single high-affinity (Ka = 1.7x 108) cortisol binding 
site12,13, for which glycosylation at Asn238 appears to be critical, probably due to the effect of 
this glycosylation site on tertiary structure14. Deglycosylation of the mature protein does not 
alter cortisol binding affinity. CBG is a Clade A member of the serine protease inhibitor 
(serpin) superfamily, however it lacks intrinsic serine protease inhibitory activity15,16. The 
CBG (SERPINA6) gene is located in a group of other serine protease inhibitor genes, thought 
to be phylogenetically related, on chromosome 14q31 - q32.117.  

Approximately 80% of circulating cortisol under basal conditions is bound to CBG. About 5-
8% of the cortisol is in a free or an unfractionated state, which is generally thought to be the 
biologically active form, and the remainder is loosely bound to high capacity albumin18. 
CBG, as part of its biological function, undergoes a so called ‘stressed to relaxed’ (SR) 
conformational change following the cleavage of its surface-exposed loop called the reactive 
centre loop or RCL18. However, the mode of cleavage in CBG differs from other members of 
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the serpin superfamily19. The RCL of CBG is cleaved by human leukocyte elastase (HLE) at 
sites of inflammation10,20 rather than by inhibiting proteinases18. The HLE cleavage of CBG 
results in a ten-fold decrease in its binding affinity21, thus releasing cortisol10. In states of 
stress such as sepsis22, burns23 and myocardial infarction24, the free cortisol percentage 
increases to up to 20%, due to the saturation of available CBG by increased cortisol and 
reduced CBG levels (a result of increased CBG cleavage/catabolism and inhibited 
synthesis)25,26. Inflammatory cytokines such as IL-6, glucocorticoids, insulin, 
hyperthyroidism, nephrotic syndrome, and cirrhosis can also reduce CBG concentrations. 
On the other hand, oestrogen and pregnancy can increase CBG concentrations10,27. It is 
interesting to note, in this context, that increased production of HLE by neutrophils has been 
reported in chronic fatigue syndrome20,28.  

3. Corticosteroid-binding globulin: More than just a transport glycoprotein 

CBG has traditionally been considered to be a transport vehicle for the water insoluble 
cortisol29, with perhaps some role in moderating release of free cortisol in times of cortisol 
excess or deficiency30. This is in keeping with the ‘free hormone hypothesis’ proposed by 
Mendel31, which states that the biological activity of a hormone depends on the free rather 
than its protein-bound concentrations. The free steroid hormone can cross the plasma 
membrane of the target cell due to its small size and lipid solubility32.  

However, there is evidence that suggests that CBG-bound cortisol could play a functional 
role different to unbound cortisol. While a specific CBG cell receptor has not yet been 
cloned, cell membrane binding sites for CBG, which share many features of a receptor, have 
been known for some time33,34. This has led some to speculate that CBG may act as a 
hormone and there may be a direct contribution of bound cortisol in glucocorticoid 
bioavailability via this yet unidentified CBG receptor34. Accumulation of cyclic AMP35 
occurs as a result of this CBG:cell receptor interaction. Recently, it has been shown that the 
NeuAc residues on the N-glycans restrict the binding of CBG to the cell receptor. Removing 
these NeuAc residues resulted in marked increase in cyclic AMP levels35. Dilution of CBG 
results in release of cortisol and thus suggests, at the very least, an indirect contribution of 
bound cortisol in glucocorticoid bioavailability36.  

A closely related steroid binding glycoprotein in the human body is sex hormone binding 
globulin (SHBG), which binds testosterone and oestradiol. A role for SHBG beyond 
transport has been shown. Sex steroid tissue delivery involves endocytic uptake of SHBG–
sex steroid complexes via the LDL receptor–related protein member megalin37. Megalin 
knockout mice exhibit sexual infantilism37. While possible a megalin-like mechanism for 
endocytic uptake of CBG-cortisol complexes has not been demonstrated.  

4. Chronic fatigue/pain syndromes, the concept of ‘allostasis’ and the role of 
hypothalamo-pituitary-adrenal axis 

Chronic fatigue/pain syndromes are common. Epidemiological studies have estimated the 
point prevalence of chronic widespread pain (CWP) in the community to be up to 11%38, 
and about 9% of the total population will experience significant chronic fatigue at any one 
time39. It should be noted, however, that up to two-thirds of these patients complaining of 
chronic fatigue will not meet the criteria for chronic fatigue syndrome (CFS)40,41. A 
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considerable overlap exists, however, in terms of both clinical and biochemical 
characteristics, and perhaps the pathogenesis of chronic fatigue and chronic pain42.  

CFS is a clinical diagnosis, the hallmark of which is disabling fatigue for over six months 

with prolonged (>24hrs) post-exertional exacerbation along with other symptoms which 

include impaired short-term memory and concentration, sore throat, tender lymph nodes, 

myalgia, arthralgia, headaches and unrefreshing sleep43. Since the term ‘chronic fatigue 

syndrome’ was proposed in 1988 to replace the prior ‘chronic Epstein Barr virus syndrome’ 

(based on the realization that not all chronic fatigue cases were post-infective in nature)44, 

newer aetiological models based on neuroendocrine45, psychiatric46, evolutionary47, 

immunological48 and non–infective inflammatory49 mechanisms have been described. A 

well-accepted explanation for the development of CFS or even the relative contribution of 

the different possible mechanisms, however, remains elusive. CFS, a debilitating disease 

sharing many features with fibromyalgia50, CWP and similar idiopathic chronic fatigue 

syndromes, significantly impairs a patient’s quality of life51,52, social53 and emotional well 

being54,55, besides putting considerable economic strain on the community56. It is, therefore, 

imperative that a better understanding of the causation of CFS and related disorders is 

achieved to enable development of effective therapeutic options, which are currently 

lacking57.  

A hereditary component to CFS has also been suggested58-60. Recently, an analysis of the 

Utah population database (UPDB) looking at the genetic relationships of CFS patients was 

published61. 811 patients diagnosed with CFS by the US CDC or the Fukuda criteria43  

underwent genealogical analysis. A significant excess in CFS relative risk among first (2.70, 

95% CI: 1.56-4.66), second (2.34, 95% CI: 1.31-4.19), and third degree relatives (1.93, 95% CI: 

1.21-3.07) was observed.  

The human stress system includes the two effector arms, the hypothalamic-pituitary-adrenal 
axis (HPA axis) and the sympathetic nervous system, with their chief hormonal products, 

cortisol and noradrenaline/adrenaline, respectively. The stress system responds in a highly 
coordinated and stress-specific manner to stressors, which may be defined as threats to 

homeostasis or the stable internal milieu of the organism. Stressors such as infection, 
inflammation, trauma, and psychic disturbance such as fear or anxiety act via inflammatory 

cytokines or internal CNS influences to produce a range of physiological responses designed 
to protect the body from stress, such as elevated blood pressure, redirection of blood flow, 

mobilization of metabolic substrates and CNS arousal. The stress system has basal tone and 
it has been proposed that altered chronic stress system activity, which may be produced by 

excessive stress at key developmental stages such as intrauterine, childhood and 
adolescence, may be detrimental to health. For example, excessive stress system activity may 

lead to metabolic deterioration such as hypertension, diabetes, central adiposity, 
osteoporosis and mental illness, which together comprise a high proportion of modern 

chronic illnesses. Chronically altered stress system activity may be described as a state of 
allostasis representing stability but with risk of long term tissue damage62.  

On the other hand, reduced stress system activity, another form of allostasis, may be 
expected to produce a state of hypo-arousal and lack of anti-nociceptive activity centrally, 
leading to the many chronic pain and fatigue based disorders (CFS, fibromyalgia, irritable 
bowel syndrome, migraine and many others). A number of studies have shown relative 
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hypocortisolism in pain/fatigue disorders63-65. In patients with CFS, studies have 
demonstrated low levels of cortisol in plasma63,64 (in morning63 as well as in the evening66), 
urine63,67-70 and saliva70-73. Corticotropin-releasing hormone (CRH) and adrenocorticotropic 
hormone (ACTH) challenge tests, which test adequacy of the HPA axis also show similar 
results in CFS patients63 although not consistently45. Hypocortisolism has also been shown 
in patients with fibromyalgia74-76 and chronic pain syndromes77,78. Chronic fatigue syndrome 
has a strikingly high female preponderance (up to 75%) and it has been shown that the 
glucocorticoid sensitivity of pro-inflammatory cytokine production after psychological 
stress is different among the sexes79.  

5. CBG gene mutation: Kindred studies 

Four major function altering mutations of the CBG gene have been described in humans. 
These include CBG Leuven, CBG Lyon, CBG null and a CBG non-cortisol binding variant. 
Old and new genetic nomenclature for these mutations is shown in Table 1. CBG Leuven 
(c.344T>A, p.Leu115His) reduces CBG:cortisol binding three-fold15,80. CBG Lyon has been 
described in three kindreds and reduces cortisol binding affinity 4-fold (c.1165G>A, 
p.Asp389Asn)15,81. CBG null (c.32G>A, p.Trp11X) prevents CBG synthesis and homozygotes 
are completely CBG deficient82. Both CBG Lyon and null are associated with fatigue and 
chronic pain and were described together in single kindred where the phenotype was 
similar82. The description of a kindred with a non-cortisol binding variant of CBG included 
an index case with fatigue83. 

Mutations and 
polymorphisms

Coding DNA 
(old 

nomenclature) 

Coding DNA 
(new 

nomenclature) 

Protein  
(old 

nomenclature) 

Protein  
(new 

nomenclature) 

Leuven T433A c.344T>A Leu93His p.Leu115His 

Lyon G1254A c.1165G>A Asp367Asn p.Asp389Asn 

Null G121A c.32G>A Trp-12X p.Trp11X 

Non-cortisol 
binding 

- c.776G>T p.Gly237Val p.Gly259Val 

p.Ala246Ser 
polymorphism 

c.825G>T c.736G>T Ala-Ser224 p.Ala246Ser 

Table 1. Old and new nomenclature for known mutations and polymorphisms in CBG  

6. CBG null 

We have described a 39 member Italian-Australian kindred with a novel null (complete loss-
of-function) CBG mutation, an exon 2 mutation causing premature termination codon 
corresponding to residue-12 (c121GA)82 (Fig. 1). The 48 year-old female proband was 
found to have low total plasma cortisol levels but normal 24-hour urinary free cortisol. She 
had an elevated plasma cortisol fraction and undetectable CBG levels. CBG gene sequencing 
of the family revealed two null homozygotes, 19 null heterozygotes, three Lyon 
heterozygotes and two compound (Null/Lyon) heterozygotes. CBG levels were also 
undetectable in the other two CBG null homozygotes. There was a 50% CBG reduction in 
the null heterozygotes and an even greater reduction in the compound heterozygotes. Five 
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members of the family, including the female proband, met the United States’ Centre for 
Disease Control (CDC) criteria43 for chronic fatigue syndrome. In addition, 12 out of the 14 
members with heterozygote mutation and two out of three with homozygous mutation 
were found to have idiopathic chronic fatigue. Pain syndromes were observed in six subjects 
with null mutation – four were null heterozygotes while two were homozygotes. One of 
these pain affected null subjects also fulfilled the criteria for CFS. Prior to finding this family 
with CBG null deficiency it had been thought that complete CBG deficiency was 
incompatible with life9,84.  

 

Fig. 1. Schematic diagram of the CBG gene and the location of CBG mutations. Darker 
shaded portions indicate regions of the exons that are untranslated. The mutations include 
CBG null (G121A; Trp-12X), transcortin Leuven (T433A; Leu93His), CBG Lyon (G1254A; 
Asp367Asn) and Ser/Ala224 polymorphism (G825T) and CBG non -binding polymorphism 
(Gly237Val).  

7. CBG Lyon 

The CBG variant produced due to a missense mutation, an aspartic acid to aspargine 

substitution at residue 367 (Asp367  Asn) was first described in a 43 year old woman of 

northwest African origin in Lyon, France, and is known as the CBG Lyon mutation81. Her 

main symptoms included chronic asthenia, depressive mood and hypotension. She was 

found to have very low total plasma cortisol but normal ACTH and urine free cortisol levels. 

A low free cortisol concentration suggested an abnormality in CBG binding and was later 

confirmed. Her four children were all found to heterozygous for this mutation.  

Since then, CBG Lyon has been described in two other kindreds82,85. The mutation has been 
reported in a 40 year-old white Brazilian woman presenting with chronic fatigue and 
hypotension. The family members screened, including her parents and her children, were 
found to be heterozygous for the mutation but did not complain of chronic fatigue85. We 
have also reported CBG Lyon mutation in the family members of a proband with CBG null 
mutation82. Three family members were CBG Lyon heterozygotes, while two had co-
inheritance of CBG Lyon and CBG null (compound heterozygotes). The family members 
with co-inheritance had clearly low CBG levels. All available family members with CBG 
Lyon mutation, both heterozygotes and compound heterozygotes reported significant 
fatigue82.  
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8. CBG non-binding Gly 237 Val 

This CBG gene polymorphism, involving a c.776g>t transversion in exon 3 of the SERPINA6 
gene resulting in a p.Gly237Val substitution, was described recently in a 26 year-old 
Pakistani–British woman presenting with fatigue and hypotension. This CBG variant lacks 
any steroid binding activity. Two siblings were found homozygous for this mutation and 
two more family members (including the proband’s mother) were found to be 
heterozygous. The homozygous members had reduced CBG levels (about 50% for the 
proband) by RIA measurements but undetectable CBG when measured with cortisol-
binding capacity assays. However, aside from the proband, none of the family members, 
including two siblings found homozygous for the mutation, reported symptoms of chronic 
pain or fatigue. The only biochemical finding that differentiated the proband from the other 
homozygous members was the increased cortisol pulsatility83.  

9. Genetic epidemiology studies 

Given the evidence from the kindred studies, we hypothesized that CBG polymorphisms 
could act as a genetic risk factor for patients with CFS. Two hundred and forty eight patients 
with CFS and an equal number of control subjects had full CBG gene sequencing. An exon 3 
polymorphism (c.825G-->T, Ala-Ser224) was more commonly observed in CFS patients than 
expected by chance at the trend level (P<0.07), suggesting that homozygosity for the serine 
allele of the CBG gene may predispose to CFS86.  

We also conducted a population-based study in Calabria, Italy, the region our Italian-
Australian null/Lyon kindred originated from, to look at the prevalence of CBG mutations 
in the local community. The results showed a high prevalence of CBG null and Lyon 
mutations (3.6%). Chronic widespread pain, but not chronic fatigue, was found to be 
common in subjects with CBG mutation87.  

Genetic influences have been postulated to account for 50% of the variance as well as the 
reduced pain thresholds seen in chronic pain syndromes88,89. The prospective population–
based cohort study EPIFUND (Epidemiology of functional disorders), examined if genetic 
variation within the HPA axis genes was associated with susceptibility to musculoskeletal 
pain. The CBG gene (SERPINA6) and six other HPA axis genes CRH, CRH receptor 1 
(CRHR1), CRH binding protein (CRHBP), the ACTH precursor pro-opiomelanocortin 
(POMC) and its receptor (MC2R), the glucocorticoid receptor (NR3C1) were examined. 
Seventy-five single nucleotide polymorphisms (SNPs) were detected in 164 CWP patients 
and 172 pain-free controls. Amongst the seven HPA axis genes, the most notable genetic 
variation was in the SERPINA6 gene. Two SNPs in SERPINA6 (rs 941601 and rs 8022616), 
located within a single haplotype block, were significantly associated with CWP. Moreover, 
in patients reporting pain, four SNPs of SERPINA6 were associated with the maximum 
number of pain sites88. This finding assumes significance given that there was no association 
with SNPs in CRH, CRHR1, CRHBP, POMC or NR3C1 and CWP was observed and only a 
single SNP in MC2R, rs11661134, was associated with increased odds of having CWP.  

CBG gene knockout mice models 

The effect of a gene deletion can also be studied in the laboratory setting by producing 
‘knockout gene’ mouse models, achieved by a homologous recombination between DNA 
sequences in the existing chromosome and the newly introduced DNA into pluripotent 
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embryo-derived stem cells90. In the study reported by Richard et al, the CBG gene knockout 
mouse was created by ‘floxing’ - contraction for flanking the lox p sites - exon 2 of the 
SERPINA6 gene91. The learned helplessness paradigm92, an animal model of depression, was 
used to evaluate behavioural changes following intense stress. HPA axis dysregulation has 
previously been linked to helpless behavior93,94. The CBG deficient mice (Cbg -/-) showed 
increased immobility in the forced-swimming test and markedly enhanced learned 
helplessness after prolonged uncontrollable stress (footshock) as well as markedly reduced 
total circulating corticosterone in both rested and stressed states. Responses to milder 
stressors was not altered. In another CBG knockout mice study95, Cbg -/- mice had a 
reduction in CBG levels and a correspondingly ten-fold increase in levels of free cortisol. 
Despite this, there was no evidence of enhanced glucocorticoid activity, suggesting the role 
of CBG in mediating corticosteroid functions. More importantly, Cbg -/- mice exhibited a 
possible fatigue syndrome, characterised by reduced activity levels compared with the 
control group. The elevated cortisol and reduced activity levels were not seen in the study of 
Richard et al91. Taken together, however, these findings suggest an important hitherto 
unanticipated role for CBG in the neurobehavioural aspects of stress system function.  

10. Conclusion 

There is an unequivocal role for CBG as a transport molecule for cortisol, and altered levels 
of CBG are generally met with unaltered levels of free cortisol, confirming it is free cortisol 
which is actively regulated in blood.  

However, recent studies have linked rare CBG gene mutations, which alter CBG levels or 
binding affinity, to pain/fatigue syndromes. This association is not universal suggesting 
that other genetic or environmental factors influence the phenotype. Genetic epidemiology 
studies point to the CBG gene and its variants as having a role in the risk of developing a 
chronic pain phenotype. Animal studies have also shown that CBG genetic deletions can 
produce altered neurobehavioural responses to stress. This mounting evidence suggests a 
role for CBG in tissue delivery or other elements of stress system function, although the 
precise mechanisms await elucidation.  
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