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1. Introduction 

In the past few years, high throughput technologies, such as gene expression microarrays 
and genotyping techniques, have provided efficient ways to measure gene expression levels 
and genotype variation on a genome-wide scale [Schena et al., 1995; Howell et al., 1999]. 
Various approaches have been proposed to analyse gene expression data and genotype 
variation data, in order to discover the complex network of biochemical processes of 
complex diseases such as chronic fatigue syndrome (CFS) [Presson et al., 2008]. In the 
analysis of gene expression data, for example, the identification of differentially expressed 
genes between two groups has been of great interest, and various statistical tests have been 
conducted [Ghazalpour et al., 2008; Brem et al., 2002; Kang et al., 2008]. In analysing 
genotype variation data, logistic regression has been commonly used to model the 
relationship between binary clinical outcomes and discrete predictors, such as genotypes 
[Henshall & Goddard, 1999; Coffey et al., 2004].  

Despite the availability of different levels of genome-wide data, most studies have been 
based on a separate analysis of single-level data to unravel complex biological 
mechanisms of CFS. Complex diseases such as CFS can be explained at different levels of 
biological mechanisms, including DNA, gene expression and phenotype levels. While 
there is a separate mechanism at each level, the mechanisms at different levels are closely 
related to each other in initiating and influencing CFS. Furthermore, CFS is expected to 
have complex etiology, which involves the action of many genes in addition to dynamic 
gene-environment interactions [Lin et al., 2009]. Therefore, separate analyses of single-
level data have a limitation in identifying and characterizing genes that are associated 
with the susceptibility of CFS. The integration of the different types of data (for example, 
gene expression, genotype variation and clinical outcomes) can provide more 
comprehensive information related to CFS, hence elucidate complex networks of gene 
interactions underlying CFS. 

In this chapter, we provide an overview of the integrated statistical model (ISM) in order to 
characterize CFS, which involves integrating genotype variation data and gene expression 
data. The ISM elucidates the causal relationship between genetic variation, gene expression 
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level and disease. The ISM consists of two steps. The first step is to determine the causal 
relationship. Based on the causal relationship determined at the first step, the second step 
identifies significant gene expression traits of which the effects on disease status or the 
responses to disease status are modified by the specific genotype variation. By applying the 
ISM procedure to a CFS dataset, we identified a list of potential causal genes for CFS, and 
found an evidence for a difference in genetic mechanisms of the etiology between CFS 
patient and control groups.  

Our ISM analyses considering the different levels of data simultaneously, allowed us to 

elucidate disease susceptibility and differentially expressed genes of genetically different 

individuals. Some results even showed that integrating genotype and expression data may 

help the search for new directions for the treatment of CFS that are not being detected by 

using only one type of data. The integrated analysis provided more information than the 

two separate analyses of gene expression data and genotype variation data for 

characterizing CFS that has several possible causes.  

2. An overview of Integrated Statistical Model (ISM) 

2.1 From genotype to phenotype 

In the era of the genome project, the belief came with was that we would answer the 

questions on how the genes function and how they are related to diseases. The genome 

project successfully sequenced DNA of various species, including the human. Not only 

sequencing the genomes, many studies have also identified the gene functions by modifying 

individual genes in several animals and plants. However, many questions remain 

unanswered. We still do not know the functions of numerous genes, whether thay are 

annotated or un-annotated. Especially predicting what genes are associated with disease-

related phenotypic variants is of particular interest and still in vague. The problem is 

complicated, because  

i. most phenotypes of medical interest are complex diseases, i.e., more than one gene or 

environmental effect contributes to the phenotype occurrence, 

ii. the underlying molecular mechanism regulating cellular functions is complicated, 

and 

iii. little genotypic data (or information) of disease-related phenotypes is available. 

High throughput technologies advance for acquiring genome-wide genotyping data of 

many individuals with and without disease phenotypes. It is of a particular interest to 

segregate genotypic difference between disease-affected individuals and controls. The 

variation of genotypes comes from additive and epistatic effects of alleles across multiple 

genes, resulting in many individuals with phenotypes. Some combinations of genotypic 

variants result in enhanced traits, whereas other combinations are deleterious to fitness in 

specific environments. Phenotypic alterations are usually in matters of amount, rather 

than in the presence or absence of a trait. The field of statistical genetics has developed 

various methods and tools to map such quantitative traits to regions of chromosomes. 

These chromosomal regions are known as quantitative trait loci (hereafter QTLs) and are 

described in terms of the percentage of the variation of a trait that can be attributed to 

each region. 
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2.1.1 Quantitative Trait Locus (QTL) 

Quantitative traits refer to the characteristics or phenotypes that are quantitative, i.e., vary in 

degree or continuously, such as height, while dichotomous or discrete traits have two or 

several characteristic values. A QTL is a specific region of DNA that is associated with these 

quantitative phenotypic traits. The number of QTLs that explain the variation in the 

phenotypic trait tells us more about the genetic structure of a specific trait. For example, the 

research related to QTLs could provide further information about the genes that control 

human height. 

2.1.2 xQTL: Various types of QTL mapping 

Microarray technology has elucidated the genetics of gene expression in human 

populations. It has been less successful to identify genes in underlying diseases by using 

molecular profiling tools. Since too many genes have been identified to be associated with 

disease traits, determining and verifying which genes are the true disease-causing genes 

have been difficult. 

Recently, microarray techniques have been combined with genotyping technology to 

facilitate the identification of key drivers of complex diseases. Figure 1 represents this 

approach, treating relative transcript abundances as quantitative traits when segregating 

populations. In this method, chromosomal regions that control the level of expression of a 

particular gene are mapped as expression quantitative trait loci (eQTL). 

This eQTL scheme can be easily extended to other data types, for example, proteome, 

metabolome and phenome. Figure 2 illustrates this extension: protein expression (pQTL), 

relative metabolites abundances (mQTL) and phenotype abundances (phQTL).  

 

Fig. 1. eQTL pipeline. From disease and normal individuals, genotypes and mRNA 
expressions are observed.  
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Fig. 2. A schematic representation of extended xQTL analyses. 

2.2 Integrative analysis 

Fu et al. provided the first system-wide evidence for phenotypic buffering in Arabidopsis [Fu 
et al., 2009]. Their approach consisted of three steps. Step 1 performed QTL mapping for 
transcript, protein, metabolite and phenotypic trait data. Then, Step 2 computed significance 
thresholds for detection of QTL hotspots per level, and finally, Step 3 detected hotspots that 
appeared across multiple levels. In particular, at Step 2 permutation analysis was used to 
compute significance thresholds for detecting QTL hotspots. For each of the 250 
permutations, all > 40,000 traits were analyzed in order to map QTLs and the most 
significant marker for each QTL was stored. The number of significnat QTLs were counted 
over all traits for each marker, and the significant thresholds for hotspot detection per level 
were derived. For system-wide or multiple level QTL hotspots, Step 3 used the observed 
QTL hotspots and permutation analysis to compute significance thresholds for detecting 
QTL hotspots that appeared at multiple levels. Using the results obtained from per-level 
analysis, the markers per level were ranked from the one with the highest number of traits 
mapping to it, to the one with the lowest. Then, a rank-product test was performed to find 
markers that ranked significantly high at multiple levels [Breitling et al., 2004]. For each 
permutated sample, the p-value was computed for the rank-product test at each of the 144 
markers, and a threshold was derived for hotspot detection by the procedure controlling 5% 
of the false discovery rate (FDR) [Benjamini & Hochberg, 1995]. 

Using this approach, 162 recombinant inbred lines (RIL) of Arabidopsis thaliana were profiled 
for variation in transcript, protein and metabolite abundance, and were mapped to QTL for 
40,580 of these molecular traits. Only six QTL hotspots were found which underlied 
variation in 16% of the transcript traits, 25% of the protein traits, 55% of the metabolite traits 
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and 77% of the phenotypic traits for which QTL could be mapped. QTL for 16%, 25%, 55% 
of all transcript, protein and metabolite traits with a QTL, respectively, mapped to the same 
six QTL hot spots, compared to 77% of phenotypic traits. Consequently, screening for 
mutants at the molecular level would increase the probability of identifying new causal loci 
that could not be identified from morphological screens [Boerjan & Vuylsteke, 2009]. 

Using microarrays or massively parallel sequencing it is possible to measure both genetic 
variation and gene expression at genomic level. Hence, eQTL methods allow for studying 
the association of all regions in a genome with the expression of all genes. In this sense it is 
worth re-visiting eQTL in deeper look. 

If the genotype at a certain locus is associated with the phenotype of a certain gene, this DNA 
region might contain a regulator of the target gene expression. It could be any functional 
nucleotide sequences such as protein-coding regions, microRNAs and cis-regulatory DNA 
motifs. The same individuals of a selected population have to be genotyped and phenotyped 
first. Based on the genotyped data (e.g. SNP), selecting markers that are polymorphic in the 
study population is in need. Then, at the heart of every eQTL study is the correlation of 
genotype patterns with expression levels in a genetically diverse population. The simplest 
mapping strategy is to split the population based on the genotypes at a specific marker and 
check if the expression levels of a given gene are significantly different between the two 
groups [Ghazalpour et al., 2008; Brem et al., 2002; Kang et al., 2008].  

There have been many approaches to elucidate the variants affecting phenotypes, for 
example, Lan et al. explored correlation of expression profiles across a genetic dimension, 
namely genotypes segregating in a panel of 60 F2 mice derived from a cross used to explore 
diabetes in obese mice. By combining the correlation results with linkage mapping 
information, they identified regulatory networks, made functinoal predictions for 
uncharacterized genes, and charaterized novel elements of knwon pathways [Lan et al., 
2006]. However, their approach did not provide any information about causality 
relationships among expression profile, genotype and disease.  

The mixture over markers (MOM) model proposed by Kendziorski et al. combinds a 
transcript-based (TB) approach, refering to the repeated application of any single-phenotype 
mapping method to each mRNA transciprt, and a marker-based (MB) approach, refering to 
the repeated application, at each marker, of any method for identifying differnetially 
expressed transciprts [Kendziorski et al., 2006]. They applied two MB approches: an 
empirical Bayes approach and an approach based on the Student’s t-test. The MOM model is 
motivated from the fact that separate tests are conducted for each trascript-marker pair, and 
each measures evidence that the transcipt maps to that marker relative to evidence that it 
maps nowhere. Since a trancript can map to any of various marker locations, the evidence 
that a transcript maps to a particular marker should not be judged relative only to the 
possibility that it maps nowhere, but rather relative to the possibility that it maps nowhere 
or to some other markers. This model was proved useful in improving the specificity of 
eQTL identifications, but used only genotype variation and gene expressino data rather than 
disease status or trait data. 

A gene-set approach based on weighted gene co-expression network analysis (WGCNA) by 
Presson et al. constructs a co-expression network, identifies trait-related modules within the 
network, uses a trait-related genetic marker to prioritize genes within the module, applies 
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an integrated gene screening strategy to identify candidate genes and carries out causality 
testing to verify and/or prioritize results [Presson et al., 2008]. Their work includes steps to 
identify trait-module association and trait-related genetic marker association, but does not 
provide the model-based statistical tests. 

The step-wise approach proposed by Schadt et al. includes i) identifying pair-wise 
relationships among genotype variation, gene expression, and a complex trait, respectively 
investigated by identifying QTLs for the complex trait, ii) selecting gene expression traits 
correlated with the complex trait, iii) detecting eQTL, which overlap the identified QTL, for 
the selected expression traits; and iv) the likelihood based causality model selection (LCMS) 
test to identify the causal relationships of the genes detected with overlapping loci [Schadt et 
al., 2005].  

3. Two-step integrative analysis  

Schadt et al.‘s approah has two major limitations. First, although the filtering step is effective 
in reducing the search-space, it might result in more false negatives than exhaustive search 
approahes in detecting causal relationships of the genes, espeically when a true causal 
relationship exists based on the interaction effects among genotype, gene expression and a 
trait of interest, but any pairwise association is weak. Second, the model does not 
comprehensively handle the interaction effects, which might cause different disease 
susceptibility. Therefore Lee et al. proposed a two-step integrative approach handling with 
exhaustive search and interaction effects based on LCMS test [Lee et al., 2009]. In this section 
we provide a detailed review of the Lee et al.‘s two-step procedure integrating genotype 
data, gene expression and clinical data, and thus elucidating mechanisms underlying 
disease susceptibility and progression [Lee et al, 2009]. 

3.1 Introduction  

In figure 3, the two-step procedure is presented to illustrate the integration method based on 
causal relationship among the three different levels of data. In the first step, the most 
appropriate causality models are selected to understand the causal relationship among 
genetic variation, gene expression level, and disease for each gene expression-genetic 
variation combination. In the second step, significance testing is carried out based on a  

 

Fig. 3. Two-step procedure illustration of Lee et al.‘s. In the first step, for each gene 
expression-genetic variation combination, the most appropriate causality models are 
selected. Then in the second step, significance test is carried out based on a statistical model 
for each combination according to the model selected in previous step. 
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statistical model for each combination, such as logistic regression and a two-way analysis of 
variance (ANOVA), according to the causality model selected from the first step. Through 
these tests, gene expression traits whose effects on disease status or responses to disease 
status are modified by the genotype variation effects. 

3.2 The first step: Causality model selection 

The possible causal relationships among genetic variation, gene expression level and disease 

trait, can be summarized as three models. Figure 4 represents three simple models. Causal  

model assumes the simplest causal relationship with respect to mRNA expression, in which 

QTL acts on disease through transcript. Reactive model is the model with respect to mRNA 

expression, in which mRNA expression is modulated by disease. In independent model, 

QTL at a specific locus acts on these traits independently. 

Lee et al. assumed that each pair of genetic locus and expressed gene has one of these three 
simple causal relationships to examine potential relationships among the genotype 
variation, gene expression level and disease status. In order to find the most possible causal 
relation, both Lee et al. and Schadt et al. adapted the likelihood based causality model 

 

Fig. 4. Three possible causal relationships among genotype variation, mRNA level and 
complex disease proposed by Schadt et al. QTL, mRNA and disease represent any genotype 
variation like SNP, mRNA expression level of a gene, and complex disease or phenotype of 
interest, respectively. 
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selection (LCMS) test, which uses conditional correlation measures for determining the 

relationships best supported by the data. Unlike multistep procedure of Schadt et al.’s 

method, Lee et al. constructed likelihoods associated with each of the causality model and 

maximized with respect to the model parameters. Then, the best model was selected for 

each SNP-transcript combination, by choosing the model with the smallest Akaike 

Information Criterion (AIC) value which can be used to compare different models [Akaike, 

1974). 

Lee et al. and Schadt et al. both assumed standard Markov properties for the simple graphs 

(Fig. 4), the joint probability distributions for the three models are as follows: 

• Causal Model: P岫S, R, D岻 = P岫S岻P岫R|S岻P岫D|R岻, 
• Reactive Model: P岫S, R, D岻 = P岫S岻P岫D|S岻P岫R|D岻, 
• Independent Model: P岫S, R, D岻 = P岫S岻P岫R|S岻P岫D|R, S岻, 
where S represents a genotype variation, R gene expression, and D disease status. P(S) is 

the genotype probability distribution for marker S and is further assumed to be co-

dominant. P(R|S) and P(R|D) are the conditional probabilities of R given genotypes S 

and disease status D, respectively. Lee et al. further assumed that the random variable R 

follows conditional normal distribution, and the random variable D has a binomial 

distribution. Therefore, in probability P(D|R), the random variable D has a binominal 

distribution with a success probability that can be modeled by a logistic regression model. 

P(D|S) is the probability distribution of D conditional on locus S, in which the random 

variable D also has a binomial distribution. Based on these assumptions, the likelihood of 

a correspondence to each of the joint probability distributions can be constructed. For 

each model, the model parameters can be estimated via a standard maximum likelihood 

method. The best model supported by the data is then chosen based on the AIC, which is 

commonly used to compare models with different numbers of parameters [Schadt et al., 

2005; Lee et al. 2009] 

3.3 The second step: Statistical test 

Step 2 performs statistical tests to determine the significance of the genetic regulatory 

relationships described in the causality model selected at step 1. The response and 

independent variables in the statistical models depend on the causality model selected at 

step 1. These statistical tests can deal with the interaction effects among the three different 

levels of data and to elucidate differences in disease susceptibility and gene expression 

pattern across genetically different individuals. The two-step procedure can result in a set of 

candidate causal and reactive genes, whose expressions affect disease status and respond to 

disease status under the influence of genotype variation, respectively. 

3.3.1 The causal model 

In order to investigate gene expression traits whose effects on disease status are modified by 

genotype variation, the interaction effect of genotype variation and gene expression level on 

the disease status can be examined using logistic regression below: 

 log it岫π岻 = S + R + S × R,  (1)   
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where π represents the probability of getting the disease; S represents the effect of genotype 
variation such as SNPs; R represents the effect of gene expression levels; and S × R 
represents the interaction effect between genotype variation and gene expression level. 

3.3.2 The reactive model 

For investigating gene expression traits whose responses to disease status are affected by 

genotype variations, one can fit the following two-way ANOVA model with the interaction 

between genotype variation and disease groups: 

 R = S + D + S × D,   (2) 

where S represents the effect of genotype variation; D represents the effect of disease 

groups; and S × D represents the interaction effect between genotype variation and disease 

groups. 

3.3.3 The independent model 

When the independent model is selected at step 1, the effect of genotype variation on each of 

gene expression and disease can be investigated separately. First, the logistic regression is 

employed to detect genotypic markers linked to disease loci: 

 log it岫π岻 = S.  (3) 

Next, it is possible to identify genotypic markers that regulate gene expression levels, based 

on the one-way ANOVA model where the dependent variable is R and the independent 

variable is S. 

In step 2, significant associations among genotype variation, gene expression and disease 

status are declared via statistical tests for all possible pairs of gene expression-genotype 

variation. Due to the large number of tests, the multiple-testing problem needs to be 

addressed. In order to adjust this multiplicity, Lee et al. used a step-up procedure controlling 

false discovery rate (FDR) [Benjamini & Hochberg, 1995]. 

4. Application 

Lee et al. applied their two-step procedure to chronic fatigue syndrome (CFS) data to 

elucidate a list of potential causal genes of CFS. In this section, we provide the application of 

two-step procedure of Lee et al.’s 

4.1 Chronic Fatigue Syndrome (CFS) dataset 

Chronic fatigue syndrome (CFS) is a debilitating illness lacking consistent anatomic lesions 
and eluding conventional laboratory diagnosis. CFS has no confirmatory physical signs or 
laboratory abnormalities, and its etiology and pathophysiology are unknown. This disease 
characterized by chronic fatigue, lasting at least 6 months, which is accompanied by 
symptoms such as impairment in short-term memory or concentration, sore throat, tender 
lymph nodes, and muscle pain. The Centers for Disease Control and Prevention (CDC) 
Chronic Fatigue Syndrome Research Group produced the dataset including gene expression 
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of 177 subjects, proteomic of 60 subjects, single nucleotide polymorphism (SNP) of 50 
subjects, and clinical data of 227 subjects. All the data set is available on the following web 
site (http://www.camda.duke.edu/camda06/datasets/index.html). 

According to severity of symptoms, the patients were originally classified into five groups 

of CFS. Lee et al.’s study, however, only consider three groups of total 101 subjects: 46 

subjects meeting the CFS research case definition (CFS), 19 subjects meeting the CFS 

research case definition and having ‘a major depressive disorder with melancholic features’ 

(CFS-MDD/m), and 36 subjects who show no fatigue (NF). 

This CFS dataset has been analysed by many research groups for identifying molecular 

markers and elucidating pathophysiology of CFS, for finding two differentially expressed 

genes related with fatigue and depression, respectively, for discriminating classes of 

unexplained chronic fatigue based on differential gene expressions, and for examining the 

relationship between CFS and allostatic load based on the clinical dataset. In the CFS 

dataset, the expression levels of 20,160 genes were assessed from peripheral blood 

mononuclear cells, via custom-printed single-channel oligonucleotide chips. Quantile 

normalization was conducted on the gene expression data which were pre-processed by the 

original CDC research group. For genotype data, the whole blood DNA was extracted and 

specific areas of the genes of interest were amplified by PCR.  

For illustration, we summarized the analyses results from the multi-step procedure of 

Schadt et al. and the two-step approach of Lee et al. The detailed description of the results is 

provided in Lee et al. [Lee et al., 2009]. 

4.2 Results 

4.2.1 Multi-step procedure by Schadt et al. 

The multi-step procedure proposed by Schadt et al. was applied to the same datasets for the 

purpose of comparison. First, a gene expression analysis was carried out to detect 

differentially expressed genes across clinical outcomes. Only a few genes were identified as 

differentially expressed (Table 1A) by three commonly used approaches such as the t-test, 

significance analysis of microarray (SAM) [Tusher et al., 2001] and the Bayesian regression 

approach [Baldi & Long, 2001]. Second, genotype variation data and clinical outcomes were 

analyzed via logistic regression to detect the susceptibility genes of disease. Out of all 41 

markers tested, nine markers were detected with significant genotype effect on initiation of 

CFS at a 5% significance level, while only four markers were detected with 5% FDR 

[Benjamini & Hochberg, 1995] (Table 1B). Interestingly, different sets of susceptible genes 

were identified as having statistically significant association with CFS and CFS-MDD/m. 

From the CFS vs. NF comparison, the seven markers in the NR3C1 gene were identified as 

significant markers linked to CFS. On the other hand, the CFS-MDD/m vs. NF comparison 

revealed the two significant markers in the COMT gene. Finally, for each of the differentially 

expressed genes across clinical outcomes, eQTL were searched at each of the markers that 

were identified at the second step, via one-way ANOVA of genotype variation and gene 

expression data. No significant association between gene expression level and genotype 

variation was found for any genotype–gene expression combination at a 5% significant 

level.  
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Dataset t-test SAM test Bayesian model   

A. Number of genes with significant change in expression levels over different disease 
status, which were detected via t-test, SAM test and Bayesian model. 
CFS vs. NG 1 2 0
CFS-MDD/m 
vs. NF 

1 1 0   

   

Gene SNPa Chromosome Position(Mb)b 
CFS vs. 
NF 

CFS-MDD/m 
vs. NFc 

B Significant genotype variation linked to disease loci, which were detected via logistic 
regression 
NR3C1e rs2918419 5 142.641 0.0104 0.3950 
 rs1866388 5 142.702 0.0010f 0.0472 
 rs860458 5 142.739 0.0104 0.3950 
 rs852977 5 146.642 0.0035f 0.1878 
 rs6196 5 146.660 0.0208 0.6423 
 rs6188 5 146.667 0.0027f 0.0396 
 rs258750 5 146.674 0.0035f 0.1009 
COMTg rs933271 22 18.311 0.0649 0.0025 
 rs5993882 22 18.317 0.4306 0.0114 

Table 1. parallel analyses for respective association of gene expression and genotype 
variation with disease status (by courtesy of the authors) [Lee et al., 2009] 

As multiple filtering steps is Schadt et al.’s procedure, the separate analyses were conducted 
respectively on two datasets, CFS vs. NF groups and CFS-MDD/m vs. NF groups. Bold numbers 
indicate p-values < 0.05. 
a NCBI dbSNP Build number is 125 using Human Genome Build 35.1 
b Position of SNP on chromosome.1 
c p-value from logistic regression with CFS vs. NF data. 

d p-value from logistic regression with CFS-MDD/m vs. NF data. 

e Glucocorticoid receptor located at 5q34. 

f Significant at the 5% false discovery rate (FDR). 

g Catechol-O-methyltransferase located at 22q11.1. 

In other words, no significant results were detected for both datasets from the Schadt et al.'s 

multi-step method. 

4.2.2 Two-step integrative analysis 

Lee et al. analyzed each combination of 20,160 genes and 41 SNPs with their two-step 
integrative analysis on two datasets, CFS vs. NF groups and CFS-MDD/m vs. NF groups. 
For each gene–SNP combination, the best causal relationship was detected via the causality 
model selection at step 1. In comparing CFS with NF groups, the reactive model was 
selected for ∼70% of 20,160 genes on average, for all nine markers within two known CFS-
related genes, such as NR3C1 and COMT (Table 2). However, in comparing CFS-MDD/m 
with NF groups, the causal model was selected for nearly 70% genes for three markers in the 
NR3C1 gene. This different tendency in the model selection results between CFS and CFS-
MDD/m would imply different genetic mechanisms of CFS and CFS-MDD/m. 
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At step 2, each gene–SNP combination data was analyzed based on one of the three 

statistical models, corresponding to the detected causal relationship. For all seven SNPs 

within NR3C1, significant causal relationships with gene expression levels were detected for 

either or both datasets (Table 2). Three SNPs (rs258750, rs6188 and rs852977) showed 

significant relationships with expression levels of a large number of genes, and can be 

candidates for genetic modulators of CFS- related regulatory pathways. 

Gene SNP CFS vs. NF CFS-MDD/m vs. NF 

Causala Reactiveb Independentc Causala Reactiveb Independentc 

NR3C1d Rs2918419 0 (639) 7 (16,215) 0 (3306) 8 
(13,955)

3 
(5912) 

0 (293) 

 Rs1866388 0 (165) 0 (16,872) 0 (3123) 15 
(4136) 

71 
(15,976) 

0 (48) 

 Rs860458 0 (639) 7 (16,215) 0 (3306) 8 
(13,955)

3 
(5912) 

0 (293) 

 Rs852977 0 (230) 0 (17,001) 0 (2929) 120 
(9760) 

73 
(10,139) 

0 (261) 

 Rs6196 0 (604) 2 (15,037) 0 (4519) 0 
(16,278)

0 
(2013) 

0 (1869) 

 Rs6188 0 (171) 7 (16,970) 1 (3019) 52 
(2939) 

217 
(17,074) 

0 (147) 

 Rs258750 0 (242) 0 (16,279) 105 (3639) 0 (2769) 14 
(12,590) 

0 (4801) 

COMTe Rs933271 0 (1943) 0 (15,156) 0 (3061) 0 (169) 0 (16,872) 0 (3119) 

 Rs5993882 0 (1022) 0 (14,380) 0 (4758) 0 (547) 0 (17,333) 0 (2280) 

Table 2. Two-step integration based on causality model selection. (by courtesy of the 
authors) [Lee et al., 2009] 

The integrative analyses were conducted respectively on two datasets, CFS vs. NF groups and CFS-

MDD/m vs. NF groups. Note that the results are presented only for nine SNPs within two known CFS-

related genes (NR3C1 and COMT). For each combination of 20,160 genes and 41 SNPs, the best causal 

relationship was detected via causal model selection at step 1. Numbers in parenthesis indicate the 

numbers of genes having each causal relationship with each SNP and disease status. At step 2, each 

gene-SNP combination data was analyzed based on one of the three statistical models, corresponding to 

the detected causal relationship. Outside parenthesis, we present the numbers of significant genes 

identified by the corresponding statistical models. Three SNPs, each of which involves significant causal 

relationships with expression levels of more than 100 genes, are marked in bold. 
a Logistic regression was conducted to identify genes whose expressions have interaction effect with 

genotype variation on disease status. 
b Two-way ANOVA was conducted to identify genes whose expressions are affected by interaction 

between genotype variation and disease status. 
c Independent test was conducted to identify genes whose expressions differ according to SNP 

genotypes. 

d Gluccorticoid receptor located at 5q34. 

e Catechol-O-methltransferase located at 22q11.1. 
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Next, pathway enrichment analyses were performed for these three SNPs, and the results 

are given in the next section. In comparing CFS with NF groups, for the rs258750 marker, 

105 genes were identified with differential expression across genotypes with 5% FDR from 

the independent test. This result is supported by the evidence of the neuroendocrine 

regulation of immunity, because the gene expression data were obtained from a 

mononuclear cell, and the role of glucocorticoid receptor (NR3C1) gene is to regulate the 

level of glucocorticoid. 

In the integrated analysis for comparing CFS-MDD/m with NF groups, for the rs6188 

marker in the NR3C1 gene, 52 genes showed significant interaction effects with the rs6188 

marker on disease status CFS-MDD/m from the logistic regression model. Also, the two-

way ANOVA models yielded 217 candidate reactive genes, on which there are significant 

interaction effects between disease status and genotypes. Note that these candidate genes, 

especially reactive genes, could not be detected by Schadt et al.'s method. The Lee et al.'s 

two-step integration method revealed the causal association among gene expression level, 

genotype and disease status in depth. Candidate causal/reactive genes were detected also 

for rs852977 in the NR3C1 gene. However, the candidate gene set for the rs852977 is very 

similar to that for the rs6188, with slight differences in causality structure. This similarity 

would be due to a strong linkage between the two SNPs. 

4.2.3 Pathway enrichment analysis 

In comparing CFS with NF groups, Lee et al. further conducted a pathway enrichment analysis 
for 105 genes that were identified to have a significant relationship with the rs258750 marker 
from the independent test at step 2. The pathway classification showed that nine different 
pathways were associated with the rs258750 marker at the 5% significance level (Table 3). Out 
of nine pathways, four were enriched with genes involved in regulation of transcription, 
translation or mRNA processing, and three are related with immune system. 

For comparing CFS-MDD/m with NF groups, pathway enrichment analyses were 
conducted on the genes that were identified to have a significant relationship with the 
rs6188 and/or rs852977 markers at step 2. Because of the linkage between the two SNPs, the 
results were similar (Tables 4 and 5), and the results was given only for the rs6188. While 
seven different pathways were detected at the 5% significance level for the 52 candidate 
causal genes, eleven different pathways were detected for the 217 candidate reactive genes 
(Table 4). In addition, two other pathways, whose p-values were slightly larger than the 5% 
significance level, are listed. 

In pathway enrichment analyses of the candidate causal genes, the steroid biosynthesis 
pathway appears to have a direct causal effect on the disease status, CFS-MDD/m, through 
an integrative action of the rs6188 marker within the NR3C1 gene. The two significantly 
enriched biological pathways (i.e., ‘IL-2 Receptor Beta Chain in T cell Activation’, and ‘HIV-
1 Nef: negative effector of FAS and TNF’) are all related to the immune system. On the other 
hand, the pathway enrichment analysis of the candidate reactive genes showed that several 
pathways related to lipid metabolism or biosynthesis, such as eicosanoid and fatty acid, 
appear to be important for responding to CFS-MDD/m. Furthermore, other pathways 
associated with neuron physiology and neurotransmitters appear to respond to CFS-
MDD/m. 
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Pathwaya Modelb Sourcec Nodesd Gene ID e Gene name 

Galactose 
metabolism 

Indepe-
ndent 

KEGG 2/22 B4GALT2
MGAM 

UDP-Gal:betaGlcNAc beta 
1,4-galactosyltransferase, 
polypeptide2 
Maltase-glucoamylase 

Basic 
mechanisms of 
SUMOylation 

Indepe-
ndent 

BioCarta 1/4 SUMO3 SMT3 suppressor of mif two 3 
homolog 3 

Internal 
ribosome entry 
pathway 

Indepe-
ndent 

BioCarta 1/8 EIF4E Eukaryotic translation 
initiation factor 4E 

Neutrophil and 
its surface 
molecules 

Indepe-
ndent 

BioCarta 1/8 ITGB2 Integrin, beta 2 

Alternative 
complement 
pathwy 

Indepe-
ndent 

BioCarta 1/9 CFB Complement factor B 

Mechanisms of 
protein import 
into the nucleus 

Indepe-
ndent 

BioCarta 1/9 NUP62 Nucleoporin 62kDa 

Polyadenylation 
of mRNA 

Indepe-
ndent 

BioCarta 1/9 PABP2 Poly(A) binding protein II 

B Lymphocyte 
cell surface 
molecules 

Indepe-
ndent 

BioCarta 1/9 ITGB2 Integrin, beta 2 

Adhesion 
molecules on 
lymphocyte 

Indepe-
ndent 

BioCarta 1/9 ITGB2 Integrin, beta 2 

Table 3. Significant regulated pathways for SNP rs258750 (by courtesy of the authors) [Lee et 
al., 2009] 

Pathway enrichment analysis was conducted using 105 candidate independent genes, which 
were identified for rs258750. Significant biological pathways were detected via Fisher’s exact 
test at a 5% significance level. Pathways are listed in order of significance e.g., most 
significant pathway presents at the top. 
a Name of biological pathway selected by Fisher’s exact test. 
b Causality models selected ay step1. 
c Source of pathway 

d The number of candidate causal/reactive genes associated with pathway/the number of 
all genes associated with pathway. 
e Gene ID of candidate genes associated with pathway 
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Pathwaya Modelb Sourcec Nodesd Gene ID e Gene name 

Electron transport 

chain 

Causal GenMapp 2/105 COX11 

COX6A1 

Cytochrome c oxidase 

subunit11 

Cytochrome c oxidase 

subunit Via polypeptide 1  

Steroid 

biosynthesis 

Causal GenMapp 1/9 F13B Coagulation factor XIII,B 

polypeptide 

Blood clotting 

cascade 

Causal GenMapp 1/19 F13B Coagulation factor XIII,B 

polypeptide 

FAS signaling 

pathway(CD95) 

Causal BioCarta 1/30 CFLAR CASP8 and FADD-like 

apoptosis regulator 

Induction of 

apoptosis through 

DR3 and DR4/5 

Death Receptor 

Causal BioCarta 1/32 CFLAR CASP8 and FADD-like 

apoptosis regulator 

IL-2 receptor beta 

chain in T cell 

activation 

Causal BioCarta 1/35 CFLAR CASP8 and FADD-like 

apoptosis regulator 

HIV-1 Nef:negative 

effector of FAS and 

TNF  

Causal BioCarta 1/57 CFLAR CASP8 and FADD-like 

apoptosis regulator 

Agrin in 

postsynaptic 

differentiation 

Reactive BioCarta 3/39 UTRN 

DVL1 

ARHGEF6

Utrophin 

Dishevelled,dsh 

homolog1 

Rac/Cdc42 guanine 

nucleotide exchange 

factor(GEF)6 

Cell cycle Reactive GenMapp 4/87 CDC14A 

E2F2 

CDC20 

CDC14 cell division cycle 

20homolog 

E2F transcription factor2 

CDC20 cell division cycle 

20homolog 

Eicosanoid 

metabolism 

Reactive BioCarta 2/20 PTGES 

EPHX1 

Prostaglandin E synthase 

Epoxide hydrolase 

Biosyntheisis of 

cysteine  

Reactive BioCarta 1/2 CBS Cystathionine-beta-

synthase 

Biosyntheisis of 

threonine and 

methionine  

Reactive BioCarta 1/2 CBS Cystathionine-beta-

synthase 
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Pathwaya Modelb Sourcec Nodesd Gene ID e Gene name 

Inactivation of 
Gsk3 by  
AKT causes 
accumulation  
of β-catenin  
in alveolar 
macrophages 

Reactive BioCarta 2/25 MYD88
DVL1 

Myeloid differentiation 
primary response gene 
(88) 
Disheveled, 
dsh homolog 1 

Fatty acid 
metabolism 

Reactive KEGG 3/57 HADHB Hydroxyacyl-Coenzyme 
A dehydrogenase/3-
ketoacyl-Coenzyme 
A thiolase/enoyl-
Coenzyme A hydraatase, 
beta subunit 

Bile acid 
biosynthesis 

Reactive KEGG 2/26 ADH6 Alcohol dehydrogenase 6 
(class V)  

Catabolic  
pathways for 
methionine,isoleuci
ne,threonine 
And valine 

Reactive BioCarta 1/4 CBS Cystathionie-beta-
synthase 

Basic mechanisms 
of SUMOylation

Reactive BioCarta 1/4 SMT3H1 SMT3 suppressor of  
mif two 3 homolog 3 

ALK in cardiac 
myocytes 

Reactive BioCarta 2/34 DLV1
CHRD

Chordin

Taurine and 
hypotaurine 
metabolismf 

Reactive KEGG 1/5 GAD1 Glutamate 
decarboxylase 1 

Biosynthesis of 
neurotransmittersf 

Reactive BioCarta 1/6 GAD1 Glutamate 
decarboxylase 1 

Table 4. Significant regulated pathways for SNP rs6188 (by courtesy of the authors) [Lee et 
al., 2009] 

Pathway enrichment analysis was conducted using 52 candidate causal genes and 217 candidate 
reactive genes, which were identified for rs6188. Significant biological pathways were detected via 
Fisher’s exact test at a 5% significance level. Pathways are listed in order of significance within each of 
causality models, e.g., most significant pathway presents at the top. 
a Name of biological pathway selected by Fisher’s exact test. 
b Causality models selected ay step1. 
c Source of pathway 

d The number of candidate causal/reactive genes associated with pathway/the number of all genes 
associated with pathway. 
e Gene ID of candidate genes associated with pathway. 
f Pathways with p-value that is slightly larger than 0.05. 
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Pathwaya Modelb Sourcec Nodesd Gene ID e Gene name

Agrin in 
postsynaptic 
differentiation 

Causal BioCarta 2/39 DMD
DVL1 

Dystrophin
Dishevelled,  
dsh homolog 1 

Steroid 
biosynthesis 

Causal Gen
MAPP 

1/9 F13B Coagulation factor XIII, B 
polypeptide 

Nucleotide 
GPCRs 

Causal Gen
MAPP 

1/10 P2RY4 Pyrimidinergic receptor P2Y, 
G-protein coupled 4 

RNA 
polymerase III 
transcription 

Causal BioCarta 1/8 GTF3C1 General transcription factor 
IIIC, polypeptide 1,  
alpha 220kDa 

Blood clotting 
cascade 

Causal Gen
MAPP 

1/19 F13B Coagulation factor XIII,  
B polypeptide 

Bile acid 
biosynthesis 

Causal KEGG 1/26 ADH6 Alcohol dehydrogenase 6 

Tyrosine 
metabolism 

Causal KEGG 1/37 ADH6 Alcohol dehydrogenase 6I 

Inactivation of 
Gsk3 by AKT 
causes 
accumulation of 
b-catenin in 
alverolar 
macrophages 

Reactive BioCarta 1/25 MYD88
DVL1 

Myeloid differentiation 
primary response gene (88) 
Dishevelled, dsh homolog 1 

ALK in cardiac 
myocytes 

Reactive BioCarta 1/34 DVL1
CHRD 

Dishevelled, dsh homolog 1 
Chordin 

Biosynthesis of 
neurotransmitter

Reactive BioCarta 1/6 GAD1 Glutamate decarboxylase 1 

Taurine and 
hypotaurine 
metabolism 

Reactive KEGG 1/5 GAD1 Glutamate decarboxylase 1 

Electron 
transport chain 

Reactive Gen
MAPP 

2/105 COX11
COX6A1 

Cytochrome c oxidase 
subunit 11 
Cytochrome c oxidase 
subunit Vla polypeptide 1 

Table 5. Significant regulated pathways for SNP rs852977 (by courtesy of the authors) [Lee et 
al., 2009] 

Pathway enrichment analysis was conducted using 120 candidate causal genes, which were identified 

for rs852977. Significant biological pathways were detected via Fisher’s exact test at a 5% significance 

level. Pathways are listed in order of significance within each of causality model, e.g., most significant 

pathway presents at the top. 
a Name of biological pathway selected by Fisher’s exact test. 
b Causality models selected ay step1. 
c Source of pathway 

d The number of candidate causal/reactive genes associated with pathway/the number of all genes 

associated with pathway. 

e Gene ID of candidate genes associated with pathway. 
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5. Discussion 

The two-step procedure can integrate gene expression data, genotype variation data and 
clinical data, and identify the genetic mechanism of a complex disease. We described three 
different statistical tests based on the two-step procedure proposed by Lee et al.. For 
purposes of comparison, two different CFS related datasets were analyzed via the multi-step 
procedure proposed by Schadt et al.. In these specific datasets, no significant results were 
detected from the multistep method of Schadt et al., while the method of Lee et al. enabled 
us to identify many statistically significant causal relationships, some of which were 
biologically supported by pathway enrichment analyses. These results demonstrated that 
the two-step method based on an exhaustive search investigation would provide more 
power. 

Furthermore, the two-step approach provided some interesting results. First, CFS groups 

and CFS-MDD/m groups would appear to have different genotypes and gene expression 

profiles even though they had the common characteristic of chronic fatigue. In particular, 

CFS has major susceptibility markers within the NR3C1 gene, and CFSMDD/m seems to 

have major susceptibility markers within the catechol-O-methyltransferase (COMT) gene, 

though they are not statistically significant after FDR correction (Table 1B). The NR3C1 gene 

regulates the level of glucocorticoid which is the end product of the hypothalamic-pituitary-

adrenal (HPA) whereas COMT catalyzes the transfer of a methyl group from S-

adenosylmethionine to catecholamines, which is the principal end product of the 

sympathetic nervous system (SNS), of which the role is maintaining stress-related 

homeostasis [Elenkov et al., 2000]. The different major susceptibility gene may be related 

with to the provoking of MDD/m. 

Second, polymorphisms in the glucocorticoid receptor NR3C1 gene act on CFS and CFS-

MDD/m differently. The polymorphisms (rs258750) within NR3C1 have significant effects 

on CFS, and the 105 gene expression levels independently. However, in the integrated 

analysis for comparing CFS-MDD/m and NF groups, polymorphisms within the NR3C1 

gene affect the CFS-MDD/m and several gene expression levels differently. For example, 

the 217 genes are differentially expressed according to the rs6188 marker genotype within 

NR3C1 and disease status, even though polymorphisms within NR3C1 have no direct 

significant effects after FDR correction on the CFS-MDD/m. In addition, the 52 genes also 

regulate the CFS-MDD/m, through integrated action with the rs6188 marker. The different 

action of the NR3C1 gene on gene expression level and disease may be an outcome of other 

factors, such as environmental effects or polymorphisms of the COMT gene. The 

catecholamines which are regulated by the COMT gene, have been often been regarded as 

immunosuppressive [Elenkov et al., 2000]. 

Two pathway enrichment analyses for the 52 candidate causal genes and 217 candidate 
reactive genes indicated that our approach can recover plausible regulatory mechanisms of 
CFS-MDD/m by comparing CFS-MDD/m and NF groups. From the comparison, we 
noticed that the pathways related to the immune system and steroid may have causal effect 
on disease state through an integrative action of the NR3C1 gene. Both the NR3C1 gene that 
regulates the level of glucocorticoid, and the steroid that includes corticosteroids are known 
to regulate the immune function [Webster et al., 2002]. A number of studies have found 
many irregularities in the immune systems in CFS patients [Natelson et al., 2002]. This 
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suggested that an important cause of CFS-MDD/m would be the immune system 
dysfunction, regulated by the neuroendocrine system, which rs6188 in the NR3C1 gene 
seems influence. Another potential implication of this comparison is that the CFS-MDD/m 
status and genetic polymorphisms can jointly induce different activation and expression of 
several lipid related metabolisms, neuron physiology differentiation, and neurotransmitters. 
Our results are supported by the known relationship between eicosanoid or fatty acid and 
CFS [Grey & Martinovic, 1994; Puri, 2007; Puri et al., 2004; Liu et al., 2003]. 

However, since fatigue is a core symptom in major depressive disorder [Pae et al., 2007], 

CFS-MDD/m patients might have fatigue due to the depression rather than unexplained 

causes, and hence the significant results may be related to a ‘major depression disorder with 

melancholic features’ rather than chronic fatigue. For example, the excessive hypothalamus-

pituitary-adrenal (HPA) axis responses, of which the end products are glucocorticoids, are 

known to be hallmarks of depression [Pariante & Miller, 2001; Holsboer, 2000; Pariante, 

2004]. Also, the major depression can be associated with the immune activation, dysfunction 

of neurotransmitters at synapse [Neumeister et al., 2004; Sanacora et al., 2004; Maes & 

Meltzer, 1995], and essential fatty acids [Van Strater & Bouvy, 2006]. 

The integrative analyses considering the interaction effect among different levels of data 

could elucidate different disease susceptibility and differentially expressed genes of 

genetically different individuals. Some results showed that integrating genotype and 

expression data may help the search for new directions for the treatment of common human 

diseases that are not being detected using only one type of data. The integrated analysis 

provided more information than the two separate analyses of gene expression data and 

genotype variation data for characterizing CFS that has several possible causes. 

In conclusion, the two-step approach to the integration of heterogeneous data sets can be 

generally applied to other studies in which gene expression data, genotype variation data 

and clinical data are available, and it can be very useful as the importance of integrated data 

analysis has been increasing. The two-step approach can also be extended to datasets 

containing other type of data, such as protein data rather than clinical data. The two-step 

approach can be readily applicable to quantitative traits rather than binary clinical outcome 

traits, by employing linear regression analysis. Also, it can be easily applied to genome-wide 

association studies, and can handle environmental factors, such as age and sex, by treating 

these factors as covariates in the regression model. Furthermore, the two-step approach can 

be extended to the gene-set approach, the module based approach or co-expression network 

as Presson et al. [Presson et al., 2008] and Chen et al. [Chen et al., 2008] did. 

However, there are some limitations to the two-step method. First, the causality models are 
too simple to represent true mechanisms, which would be more complicated due to possible 
interactions between causal-reactive genes [Schadt et al., 2005]. Further considerations for 
more complicated models are necessary in order to identify the genetic mechanism of 
complex diseases. Second, the two-step approach may need large computing although it is 
applicable to genome-wide studies because it is not limited in the scale of data. Another 
limitation would be a misclassification problem in that the proposed method relies on the 
LCMS. The current two-step approach does not use FDR procedure to account for the model 
misclassification problem. In fact, FDR procedure was employed only in the second step, not 
in the first step for the model selection procedure that chooses the model with the minimum 
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AIC among the three causal models. While anticipating the problem, we still employed the 
LCMS process because it showed good power for detecting true models in the simulation 
evaluated by Schadt et al. The two-step approach can be extended to account for the errors 
caused by the model misclassification in the first step. For example, we can test for the 
difference in the AIC values of three causality models, because the chance for model 
misclassification would be high when the difference between the smallest AIC value from 
the selected model and those from the other models is not large. A permutation-based 
nonparametric test might be developed for this testing. We think it requires a further study 
to control simultaneously two types of errors: causality model selection, and significant 
maker-gene pair identification.  
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