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1. Introduction  

A human body contains at least tenfold more bacteria cells than human cells and the most 

abundant and diverse microbial community (also known as microbiota or microbiome) 

resides in the large intestine (colon). It is estimated that this colonic microbiome is composed 

of ∼1014 bacterial cells, comprising >103 species (Dethlefsen et al., 2006; Qin et al., 2010). 

Intestinal microbiomes differ from individual to individual but remain relatively stable 

during adult life (Green et al., 2006; Arumugam et al., 2011). The resident microbiome 

provides the host with core functions that are essential for digestion of food and control of 

intestinal epithelial homeostasis. Conversely, an increasing body of evidence supports a 

relationship between infective agents and human colorectal cancer (CRC) by production of 

DNA damaging metabolites or toxins, and the induction of cell proliferation and pro-

carcinogenesis pathways by a subpopulation of the intestinal microbiota. It could be 

speculated that the intrinsic intestinal microbiome of a certain individual may contain an 

unfavorable number of disease-inducing bacteria. On the long term, their activities may 

override the health-promoting activities of the commensal bacterial population. On the 

other hand, the dramatic physiological alterations that result from colon carcinogenesis itself 

(Hirayama et al., 2009) disturbs the local intestinal microenvironment and causes (local) 

shifts in the microbiota composition and provides a portal of infection for certain 

opportunistic pathogens. The latter phenomenon could explain why some uncommon 

bacterial infections are often associated with CRC. In this chapter we will discuss the 

mechanisms by which intestinal bacteria may drive the initiation and progression of 

sporadic CRC, but also the driving forces of intestinal carcinogenesis on local microbial 

dysbiosis and the consequences thereof will be reviewed.  

2. Intestinal microbiome 

The colonic epithelium is the first line of defense against enteric antigens and bacteria. In a 

healthy colon, the epithelial barrier regulates uptake of nutrients and limits uptake of 

potential toxic substances and infectious agents (Chichlowski & Hale, 2008). Goblet cells are 

specialized epithelial cells within the mucosa that produce a viscous mucus layer that covers 

the intestinal epithelium (Heazlewood et al., 2008). This mucus layer is thick and consists of 

an inner firmly attached layer, that excludes bacteria from direct contact with the 
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underlying mucosa, and an outer loose mucus layer that mainly functions as lubricant 

(Atuma et al., 2001). Bacterial colonization of the gastrointestinal tract occurs during the first 

two years of life. After this period, the microbiota composition is rather stable throughout 

adulthood (Dethlefsen et al., 2006). Nevertheless, it is likely that the colonic microbiota 

transiently respond to dietary intake and host physiology (Thompson-Chagoyan et al., 2007). 

The inter-individual microbiomes differ consistently, however, it is thought that these 

different marked microbiota may perform similar functions, and genetically complement 

their host with crucial physiological functions that are not provided by the human genome 

itself (Candela et al. 2010; Gill et al., 2006; Neish, 2009; O'Hara & Shanahan, 2006; Xu et al., 

2007). Intestinal microbiome-specific metabolic functions increase energy yield and storage 

from diet, regulate fat storage and generate essential vitamins, which are primarily due to 

the fermentation of indigestible dietary polysaccharides (Neish, 2009). It has been shown 

that mucosa-associated bacteria differ from the community recovered from feces, but are 

rather uniformly distributed throughout the colon (Green et al., 2006; Macfarlane et al., 2004; 

Zoetendal et al., 2002). This mucosa-adherent population is less prone to physiological 

effects, such as dietary changes (Sonnenburg et al., 2004), and prohibits colonization of 

intruding pathogens (Stecher & Hardt, 2008). Malfunctioning of the host epithelial defense 

mechanisms, increases the risk for bacterial infection and intestinal inflammation, as seen in 

patients with inflammatory bowel disease (IBD). Intestinal disease can also be directly 

triggered by enteropathogenic pathogens, like Shigella, Citrobacter and Salmonella species, 

that avail of virulence mechanisms that allows them to outcompete the commensal mucosa-

associated bacterial population and to breach the mucosal barrier and intestinal innate 

immune system (Stecher et al., 2007). 

3. Bacterial promotion of CRC 

The genetic background of the host together with dietary intake, influences the microbial 

composition in the gut. However progression of CRC itself also influences the gut barrier 

and micro-environment in the intestine. This dynamic interplay between environment, 

genetic and microbial influences makes it hard to dissect the exact contribution of the 

microbiota in the development and progression of CRC. In the next paragraphs, the 

mechanisms by which the intestinal microbiota could contribute to CRC are further 

discussed. The significance of the intestinal microbiome on the development of CRC is 

probably best illustrated by the fact that patients with IBD, which originates from an altered 

host response to a normal intestinal bacterial population (Round & Mazmanian, 2009), have 

a high predisposition for CRC (Macfarlane et al., 2005).  

3.1 Promotion of tumorigenesis  

The effect of intestinal bacteria on CRC development has been studied in the intestinal 
neoplasia mouse model (Apcmin/+). This mutant mouse strain carries a heterozygous 
mutation in the APC locus (Moser et al., 1990), meaning that only a single hit in the wild-
type allele results in adenoma formation. Studies with germ-free Apcmin/+ mice revealed that 
the formation of adenomas was strongly reduced by as much as 50%, compared to mice 
bred under conventional conditions (Dove et al., 1997; Moser et al., 1990; Su et al., 1992). 
When such mice were exposed to enterotoxigenic Bacteroides fragilis (ETBF), tumors 
developed more rapidly, whereas mice colonized with non-toxigenic Bacteroides fragilis 
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(NTBF) showed no increased tumor formation compared to conventional mice (Housseau & 
Sears, 2010).  
These data clearly show that the intestinal microbial population has a strong promoting 
effect on tumor progression in mice that have a genetic predisposition for developing 
intestinal adenomas and that certain species within the intestinal microbiota contribute 
more than average to this process. 

3.2 Stimulation of TLR signaling 

A balanced immune stimulation to commensal and pathogenic bacteria is crucial for a 
healthy intestinal tract. Toll-like receptors (TLRs) are proteins that activate immune 
responses towards potentially harmful pathogens upon sensing of pathogenic substances, 
such as cell wall components. However, chronic overstimulation of these responses may be 
detrimental by leading to the initiation and progression of CRC (Fukata & Abreu, 2007).  
A direct impact of bacteria on the development of CRC through the TLR5/MyD88 pathway 

was demonstrated in germ-free and gnotobiotic mice. These animal experiments revealed 

that MyD88-/- knock-out mice that were treated with the carcinogen azoxymethane (AOM) 

failed to develop colorectal tumors when these mice were subjected to bacteria. In contrast, 

control mice rapidly developed CRC upon bacterial colonization of their intestinal tract. 

These results implicate that TLR/MyD88 signaling is a prerequisite for the development of 

CRC (Uronis et al., 2009). In addition, it was shown that tumors in Apcmin/+ MyD88-/- mice 

were significantly smaller than those found in Apcmin/+ mice (Rakoff-Nahoum & Medzhitov, 

2007). Another study showed that TLR4-/- mice were partly protected against the 

development of neoplasia by tumor-inducing chemical agents (Killeen et al., 2009). 

Additional evidence was presented that TLR4 signaling can promote colon carcinogenesis 

by stimulating tumor infiltration of Th17 cells (T-helper cell subset that produces IL-17) 

through the increased production of pro-inflammatory signals (Su et al., 2010). It can be 

envisaged that bacterial TLR4 ligands, such as LPS, play an important role in this increased 

chemotactic activity of tumor cells (Scanlan et al., 2008). Importantly, Th17 cells have directly 

been implicated in the pathogenesis of Enterotoxigenic Bacteroides fragilis-induced CRC 

(Housseau & Sears, 2010; Wu et al., 2009). Thus, although TLR signaling is important for the 

effective clearance of harmful pathogens and can mediate anti-tumor cell responses, chronic 

TLR activation may tip the delicate balance towards tumor-promoting activities (Rakoff-

Nahoum & Medzhitov, 2009).  

Altogether, the above mentioned studies indicate that chronic bacterial stimulation of 

inflammatory pathways at malignant sites promotes, and may even be a prerequisite for, 

intestinal tumor development.  

3.3 Upregulation of COX-2 

Cyclooxygenase-2 (COX-2) is one of the key players in the progression of CRC. The 
expression of COX-2 is highly elevated in colonic tumors and correlated with disease stage 
and stimulates cell proliferation and pro-inflammatory pathways by the production of 
prostaglandins (Menter et al., 2010). Human intervention studies have clearly shown that the 
usage of Non-Steroidal Anti-Inflammatory Drugs (NSAIDS) can reduce CRC risk by as 
much as 75% (Eaden et al., 2000; Labayle et al., 1991; Thun et al., 1991). Evidence for bacterial 
involvement in the upregulation of COX-2 during CRC development was gained through 
animal and in vitro studies. First, superoxide radicals produced by Enterococcus faecalis were 
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shown to upregulate the expression of COX-2 in hybrid hamster cells containing human 
chromosomes, as well as in macrophages (Wang & Huycke, 2007). Furthermore, 
macrophages that were pre-treated with a COX-2 inhibitor and subsequently exposed to E. 
faecalis totally inhibited the induction of chromosome instability (CIN) in these hybrid 
hamster cells. Second, an animal study published by Ellmerich et al. (2000b) indicated that 
Streptococcus bovis biotype II.1 (Streptococcus infantarius) could also play a role in the 
progression of CRC through induction of the COX-2 pathway. These investigators 
employed a rat model in which pre-treatment with azoxymethane (AOM) induced pre-
neoplastic aberrant crypt foci (ACF). When such rats were co-exposed to S. infantarius or cell 
wall antigens from this bacterium, the number of ACF increased drastically and also 
adenomas were found, whereas the latter were totally absent in the control mice treated 
with AOM alone. In addition, the production of the pro-inflammatory cytokine IL-8 in the 
mucosa of rats exposed to S. infantarius was increased. This finding is in accordance with in 
vitro studies on epithelial Caco-2 cells that release both IL-8 and PGE2 upon incubation with 
S. infantarius (Biarc et al., 2004). Moreover, Abdulamir et al. (2010) have recently shown that 
increased COX-2 and IL-8 expression was associated with the presence of Streptococcus 
gallolyticus (S. bovis biotype I) in human colon tumor tissue. However, IL-8 expression was 
not increased in non-malignant tissue that contained S. gallolyticus. Together these studies 
indicate that COX-2 induction is associated with both tumor development and exposure to 
bacterial stimulants. 

3.4 Toxin-induced promotion of cell proliferation  

Enterotoxigenic Bacteroides fragilis (ETBF) has been implicated in the promotion of CRC 

through inflammatory pathways. B. fragilis is a normal inhabitant of the gastrointestinal 

tract, but its enterotoxigenic form is only present in approximately 20% of the healthy 

population (Sears, 2009). ETBF produces the B. fragilis toxin that degrades E-cadherin in 

epithelial cells, which causes β-catenin to migrate towards the nucleus where it can activate 

cell proliferation pathways (Wu et al., 2003). Consequently, APCmin/+ mice colonized with 

ETBF were shown to suffer from increased tumor burden compared to control mice 

colonized with non-toxigenic B. fragilis (NTBF) strains (Housseau & Sears, 2010; Wu et al., 

2009). Importantly, Wu et al (2009). showed that this increased tumor burden was mediated 

through the increased expression of STAT3 that leads to a Th17 response. Importantly, 

increased tumor formation could be blocked by anti-IL17 therapy. These experiments clearly 

show that induction of a STAT3/Th17-dependent pathway for inflammation, leads to 

inflammation-induced cancer by ETBF in a mouse model. Since ETBF is a quite common 

bacterium in the gastro-intestinal tract, this finding could have major implications for the 

role of these bacteria in the development of CRC in the human population. This idea is 

further corroborated by the fact that patients with CRC have indeed increased carriage 

rates of ETBF compared to NTBF (Toprak et al., 2006). It should be realized that this 

mechanism of tumor induction could also be associated with other toxigenic intestinal 

bacterial strains. 

3.5 Toxin-induced DNA damage 

Certain E. coli strains can induce increased mutation rates in eukaryotic cells as 

demonstrated by Cuevas-Ramos and colleagues (2010). Their experiments showed that E. 

coli strains harboring the pks island caused DNA damage in human epithelial cells and in an 
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ex vivo mouse intestinal model by the induction of single strand breaks and activation of 

DNA damage signaling pathways. The pks gene cluster codes for nonribosomal peptide 

synthetases and polyketide synthetases (pks) that synthesize a genotoxin named Colibactin. 

The pks island is commonly present in about 34% of commensal E. coli isolates. Upon 

infection of epithelial cells with physiological concentrations of pks+ strains, initial DNA 

damage occurred. Furthermore, it was shown that cells continued to proliferate in the 

presence of DNA damage after E. coli infection, resulting in an increased mutation frequency 

(Cuevas-Ramos et al., 2010). These studies suggest that pks+ strains of E. coli could be 

involved in the initiation and progression of CRC. As, E. coli is generally regarded as a 

normal commensal inhabitant of the gastro-intestinal tract, Bronowski and co-workers 

investigated the differences between E. coli strains collected from healthy individuals and 

CRC patients (Bronowski et al., 2008). These experiments showed that a subset of E. coli 

strains recovered from CRC tissue shared pathogenicity islands, encoding an alfa 

haemolysin and a cytotoxic necrotizing factor, with uropathogenic E. coli strains. This 

suggests that besides Colibactin production, other virulence characteristics may also 

mediate the tumor promoting capacity of E. coli pks+ strains. 

3.6 Metabolite-induced DNA damage 

Sulfate reducing bacteria use sulfate as energy source by converting it to sulfide and 
hydrogen sulfide (H2S) in the human colon. The genotoxic potential of H2S is in part 
mediated by oxidative free radicals, which results in increased levels of DNA damage in 
cultured epithelial cells (Attene-Ramos et al., 2006; Attene-Ramos et al., 2007; Attene-Ramos 
et al., 2010). Furthermore, exposure to H2S may disrupt the balance between apoptosis, 
proliferation and differentiation (Cai et al., 2010; Deplancke & Gaskins, 2003). Interestingly, 
also COX-2 was shown to be upregulated in epithelial cells after H2S treatment at 
physiological concentrations, probably through generation of reactive oxygen species 
(Attene-Ramos et al., 2010). Increased fecal H2S concentration was implicated as a risk factor 
for the development of colonic neoplasia in a clinical study (Kanazawa et al., 1996). Whether 
these increased H2S levels originates from increased activity of sulfate reducing bacteria 
and/or reduced epithelial capacity to degrade H2S remains to be investigated.  
E. faecalis was also found to produce extracellular superoxide in colonic tissue of rats, which 
is the result of dysfunctional microbial respiration (Huycke et al., 2002). These rats produced 
up to 25-fold increased concentrations of hydroxylated aromatic metabolites in urine than 
rats colonized with a closely-related strain. Importantly, superoxide can be converted to 
hydrogen peroxide, which has the potential to diffuse into epithelial cells and cause DNA 
damage. In an in vitro setup, it was shown that the formation of DNA adducts by E. faecalis 
was mediated by activated COX-2 expression in macrophages that in turn promoted DNA 
damage in epithelial target cells (Wang & Huycke, 2007; Wang et al., 2008). Since COX-2 
induction has a clear clinical association with CRC, this might indicate that superoxide-
producing bacteria have a contributing role in disease development. This notion is further 
underscored by the finding that E. faecalis fecal carriage was increased in CRC patients, 
whereas the number of butyrate producing bacteria was decreased (Balamurugan et al., 
2008). However, no clinical evidence has been presented that associates superoxide 
producing enterococci with adenomas or CRC (Winters et al., 1998). This clearly indicates 
that, although the in vitro data and animal studies strongly suggest that oxygen radicals 
from bacterial origin could play an important role in CRC initiation or progression, the 
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clinical impact of these findings remains to be properly examined in well-designed clinical 
studies (Huycke & Gaskins, 2004).  
Bacteroides species produce fecapentaenes that are potent mutagens that have been shown to 

alkylate DNA, which leads to mutagenic adducts. Some evidence points towards a 

mechanism in which oxygen radicals cause oxidative damage to DNA (Hinzman et al., 1987; 

Povey et al., 1991; Shioya et al., 1989). Fecapentaenes appear in relatively high concentrations 

in human feces, however, no significant differences in fecapentaene levels were found in 

feces from CRC patients and controls (Schiffman et al., 1989). In view of their mutagenic 

potential, however, fecapentaenes should be regarded as possible bacterial inducers of CRC 

(de Kok & van Maanen, 2000). For instance, their detrimental effects may locally contribute 

to the accumulation of mutations in epithelial cells, which is not directly reflected by the 

increased levels in fecal material.  

3.7 Induction of pro-carcinogenic pathways 

Some evidence exists that certain intestinal bacteria can also directly induce host epithelial 

pathways that make cells more susceptible to DNA damage by carcinogenic substances. 

Maddocks et al. (2009) have shown that enteropathogenic E. coli can down-regulate 

mismatch repair genes in colon epithelial cells. It may be envisaged that this impaired 

expression can lead to a net increased mutation rate upon co-exposure to genotoxic dietary 

compounds. This study accentuates that bacteria can directly interfere with gene expression 

in epithelial cells which, under certain conditions, may lead to increased carcinogenesis 

rates. 

4. CRC microbiome 

The preceding paragraphs describe the potential mechanisms by which bacteria can play a 

role in the initiation and progression of CRC. In the following paragraphs, the effects of 

colonic malignancies on the (local) microbial composition are discussed. It is evident that the 

dramatic physiological and metabolic alterations that result from colon carcinogenesis itself 

(Hirayama et al., 2009) will locally disturb the intestinal environment. Consequently, this 

will cause (local) shifts in microbiota composition as the altered tumor metabolites and 

intestinal physiology will recruit a bacterial population with a competitive advantage in this 

specific microenvironment. This is exemplified by the fact that infections with certain 

opportunistic intestinal pathogens have been associated with CRC for many years (see 

Section 5). Thus pre-malignant sites seem to constitute a preferred niche for a subset of 

intestinal bacteria and facilitate their outgrowth and eventually entry into the human body. 

Importantly, local outgrowth of harmful bacteria could also accelerate tumor progression 

after disease has been initiated by other factors.  

The effect of colonic tumors on the microbiome composition has been investigated by 

several studies. First, Scanlan et al. (2008) investigated the bacterial diversity in healthy, 

polypectomized patients with increased risk for CRC and CRC patients. These studies 

showed a significant increased diversity of the Clostridium leptum and coccoides subgroups 

in the CRC patients compared to a healthy control group. Importantly, metabonomic faecal 

water analysis was able to distinguish CRC and polypectomized patients from healthy 

individuals, which is indicative for an altered metabolic activity of the intestinal microbiota 
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in these patients. In another study by Maddocks et al. (2009) it was shown that the mucosa of 

adenomas and carcinomas contained increased numbers of E. coli compared to colonic 

mucosa from healthy controls. It was speculated that certain surface antigens on tumor cells, 

which display homology to surface antigens of fetal origin, may be responsible for the 

binding of E. coli and thus local recruitment of these bacterial strains (Martin et al., 2004; 

Maddocks et al., 2009; Swidsinski et al., 1998). A similar relation has been described for the 

opportunistic pathogen Streptococcus bovis. This bacterium is thought to selectively colonize 

malignant and pre-malignant colonic sites by which it can cause systemic infections in 

susceptible individuals (see Section 5). Some contradicting results on actual S. bovis 

colonization of tumor tissue have, however, been reported. Conventional culturing 

techniques to determine the carriage rate of S. bovis in adenoma, carcinoma and healthy 

biopsies did not provide clear evidence for the selective colonization of adenomas or 

carcinomas by this bacterium (Norfleet & Mitchell, 1993; Potter et al., 1998). More recently, 

Abdulamir and co-workers showed the presence of Streptococcus gallolyticus (S. bovis biotype 

I) DNA in carcinoma and adenoma tissue via polymerase chain reaction (PCR)-based 

techniques, which are more sensitive than conventional culturing techniques. DNA from S. 

gallolyticus was detected in about 50% of the tumor biopsies and in 35% of off- tumor tissue 

samples from the same patients. Strikingly, however, S. gallolyticus DNA was only found in 

<5% of the colonic tissue samples of healthy control subjects (Abdulamir et al., 2010). More 

recently, several studies have assessed the bacterial communities in healthy, adenoma and 

CRC tissue by deep 16S ribosomal DNA sequencing approaches. Shen and colleagues 

compared the bacterial composition in normal tissue samples from adenoma patients and 

from individuals without colon abnormalities. The data showed increased levels of 

proteobacteria and decreased bacteroidetes species in off- tumor tissue samples from 

adenoma patients (Shen et al., 2010). Interestingly, Sobhani et al. (2011) reported that the 

abundance of Bacteroides was significantly increased in tumor and normal tissue of cancer 

patients compared to healthy controls. More importantly, the abundance of Bacteroides was 

higher in tumor tissue of cancer patients than adjacent off-tumor tissue, which was 

paralleled by an increased IL-17/CD3 immune cell infiltration in the malignant tissues. 

Another recent study by Marchesi et al. (2011), compared differences in healthy and 

cancerous tissue within cancer patients and found that tumor tissue was overrepresented by 

species of the genera Coriobacteridae, Roseburia, Fusobacterium and Faecalibacterium that are 

generally regarded as gut commensals with probiotic features. On the contrary, this study 

found decreased colonization of Enterobacteriaceae, such as Citrobacter, Shigella, Cronobacter, 

and Salmonella in adjacent off- tumor mucosa from the same investigated patients.  

The development of colorectal tumors is schematically depicted from left to right. Initiation 

of carcinogenesis is a process in which many factors are involved. As discussed in this 

Chapter, certain bacterial pathogens, bacterial toxins, or bacterial toxic metabolites (1) may 

contribute to the initiation and progression of CRC by causing DNA damage, induction of 

COX-2/IL-8, TLR signalling and/or cell proliferation pathways (2). Consequently, the 

altered metabolic profile of colon tumor cells and/or differentially expression of bacterial 

receptor molecules on tumor cells (3) creates a new niche that recruits a different bacterial 

population (4) of which certain opportunistic pathogens can eventually breach the bowel 

wall and cause a systemic bacterial infection (5). The latter group of bacteria may play an 

important signalling function for the early detection of CRC by serological assays. 
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Fig. 1. Host-Microbiome interactions during CRC 

5. CRC-associated bacterial infections 

5.1 Streptococcus bovis 

The most extensively studied bacterium that has a well-appreciated association with CRC 
concerns Streptococcus bovis. McCoy and Mason first reported such a case in 1951 (McCoy & 
Mason, 1951). In the 1970’s this association was re-discovered by Hoppes and Lerner, who 
reported that 64% of the S. bovis endocarditis cases had gastrointestinal disease (Hoppes & 
Lerner, 1974). A few years later, Klein et al. (1977) reported an increased incidence of CRC in 
patients with S. bovis endocarditis. These investigators additionally discovered that fecal 
carriage of S. bovis in CRC patients was increased about 5-fold compared to healthy controls. 
At the time, these findings led to the recommendation to perform colonic evaluation in 
patients that were diagnosed with an S. bovis infection. Over the years, many studies have 
confirmed the association between S. bovis infection and CRC. In these studies, the 
prevalence of S. bovis infection with underlying CRC ranged from 10 – 100% (median 60%) 
for patients that underwent colonic evaluation (Boleij et al., 2011b).  

5.1.1 Streptococcus bovis biotypes 

Based on phenotypic diversity, S. bovis was previously divided into three biotypes I, II.1 and 
II.2. Of these biotypes, biotype I is most often associated with endocarditis, while biotype II 
is mostly found in cases of bacteremia or liver disease. Strikingly, the association between S. 
bovis biotype I infection and CRC (21- 71%) is much higher then that of S. bovis biotype II 
(11-30%) (Corredoira et al., 2008; Corredoira et al., 2005; Giannitsioti et al., 2007; Herrero et al., 
2002; Jean et al., 2004; Lee et al., 2003; Ruoff et al., 1989; Vaska & Faoagali, 2009)(Beck et al., 
2008; Tripodi et al., 2004). In fact, the reported incidences of carcinomas and adenomas in S. 
bovis biotype II infected patients are within the range for the normal asymptomatic 
population (0.3% for carcinomas / 10-25% for adenomas), whereas the rates for S. bovis 
biotype I were significantly increased (Lieberman & Smith, 1991; Lieberman et al., 2000; 
Spier et al., 2010). The distinct association of these different S. bovis biotypes with CRC may 
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have accounted for the wide range of association percentages that have been reported over 
the years in literature. More importantly, because most studies have not discriminated 
between S. bovis biotypes the association between S. bovis biotype I and CRC may have 
structurally been underestimated. It is important to note that Schlegel et al. (2003) suggested 
renaming S. bovis biotype I into S. gallolyticus subsp. gallolyticus, S. bovis biotype II/1 into S. 
infantarius subsp. coli or S. infantarius subsp. infantarius and to rename S. bovis biotype II/2 
into S. gallolyticus subsp. pasteurianus. This new nomenclature should be used to better 
discriminate between the different S. bovis subspecies of which S. gallolyticus is the only 
species with an unambiguous association with CRC (Boleij et al., 2011b).  

5.1.2 Streptococcus gallolyticus 

Recently, some striking differences between S. bovis biotypes were revealed that could 
explain their different association rates with CRC. First of all, S. gallolyticus seems to contain 
distinguished mechanisms to adherence to extracellular matrix (ECM) structures like 
collagen and fibrinogen (Ellmerich et al., 2000a; Sillanpaa et al., 2008; Sillanpaa et al., 2009). 
Interestingly, (pre-)malignant colonic sites are characterized by displaced collagen of the 
lamina propria (Galbavy et al., 2002; Yantiss et al., 2001), through which specifically S. 
gallolyticus may colonize these sites. Besides the ECM components, also other structures at 
the epithelial surface may play a role in the initial adhesion to enterocytes. For example, 
Henry-Stanley et al. (2003) reported binding of S. bovis strains to heparan sulfate 
proteoglycans, which may be mediated by surface-associated HlpA (Boleij et al., 2009). In an 
in vitro trans-well model containing a differentiated intestinal monolayer, the paracellular 
translocation efficiency of S. gallolyticus was shown to be significantly higher than that of 
other S. bovis biotypes. This could mean that this bacterium has an advantage over other S. 
bovis subspecies to cross an intestinal epithelium, which possibly only occurs at (pre-
)malignant sites with reduced barrier function (Boleij et al., 2011a). Recent data suggested 
that S. gallolyticus does not induce a strong pro-inflammatory IL-8 response in epithelial cells 
in contrast to other S. bovis strains, which may be a possibly mechanism by which S. 
gallolyticus stays rather invisible for macrophages in the lamina propria. Furthermore, 
Hirota et al. (1995) discovered that S. gallolyticus isolates from endocarditis patients, express 
human sialyl Lewisx antigens on their cell surface unlike other fecal isolates. Mimicking 
human sialyl antigens, which are naturally present on monocytes and granulocutes, could 
therefore be a second mechanism of S. gallolyticus to remain unnoticed by the human innate 
immune system. Moreover, sialyl Lewisx antigens could make these bacteria more efficient 
in binding to endothelial cells and invasion into the circulatory system (Hirota et al., 1996). 
Finally, S. gallolyticus was shown to have superior efficiency to form biofilms on collagen I 
and IV surfaces (Boleij et al., 2011a; Sillanpaa et al., 2008). The latter finding could explain the 
increased incidence of S. gallolyticus as causative agent in infective endocarditis. Based on 
the current state-of-the-literature (July 2011), the following events in CRC-associated S. 
gallolyticus endocarditis can be envisaged i) S. gallolyticus specifically adheres to (pre-
)malignant colonic sites for instance via binding to displaced collagen of the lamina propria 
or other tumor cell specific adherence factors; ii) S. gallolyticus may promote tumor 
progression by induction of the COX-2 pathway; iii) S. gallolyticus takes advantage of the 
distorted structure of the colonic epithelium at (pre-)malignant sites to pass the colonic wall; 
iv) S. gallolyticus stays relatively invisible for the innate immune system and can reach the 
blood stream; v) S. gallolyticus can cause a secondary infection at sites with high exposure of 
collagens, such as present at damaged heart values. It should be noted, however, that many 
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of these data were obtained by in vitro studies and that it remains to be determined how this 
relates to the in vivo situation.  

5.2 Clostridium septicum 

In addition to S. gallolyticus endocarditis, also Clostridium septicum infections have been 
clinically associated with sporadic CRC (Chew & Lubowski, 2001; Mirza et al., 2009). C. 
septicum is not considered to be part of the normal intestinal microbiota and is a rare cause 
of bacteremia (<1% of all cases). Hermsen et al. (2008) investigated 320 cases of C. septicum 
infections, 42% of which had a gastrointestinal origin. Malignant disease was present in 30-
50% of these cases. The underlying mechanism of this association is not known, but it has 
been speculated that the hypoxic and acidic environment of the tumor specifically favor 
germination of C. septicum spores that enter the gastrointestinal tract via contaminated food 
(Dylewski & Luterman). A direct involvement of C. septicum in the development of CRC has 
thus far not been investigated, but it is hypothesized that C. septicum infections are primarily 
a consequence of CRC itself. Also Clostridium perfringens and Clostridium butyricum have 
been described in relation with CRC (Cabrera et al., 1965; Rathbun, 1968). However, these 
strains are much less virulent than C. septicum and their association with CRC is less evident. 
Although infections with C. septicum are rare, underlying malignancy should be suspected 
and also in these cases full bowel examination could eventually save patients’ lives. 

5.3 Helicobacter pylori 

Helicobacter pylori has been classified as gastric cancer-causing infective agent by the 
International Agency for Research on Cancer (IARC) in 1994. Most H. pylori strains, 
however, are non-invasive organism and exist in a non-adherent extracellular mucous 
environment. A small number of strains adheres to gastric epithelial cells, which most likely 
involves a number of different surface receptors (Wilkinson et al., 1998). The presence of the 
pathogenicity island, expressing the cytotoxins VacA and CagA, is an important virulence 
determinant in these strains (Ekstrom et al., 2001; Huang et al., 2003; Crabtree et al., 1994; 
Kuipers et al., 1995). It is thought that long-term exposure to these toxins induces gastric 
inflammation that can eventually lead to gastric carcinomas (Higashi et al., 2002; Fox, 2002). 
A meta-analysis conducted in 2006 by Zumkeller et al. indicated also a slightly increased risk 
for CRC (factor 1.4) in individuals with a H. pylori infection (Zumkeller et al., 2006). Another 
study showed that CagA status was associated with a significantly increased risk (factor 
>10) for CRC among hospitalized patients that were H. pylori seropositive (Shmuely et al., 
2001). Notably, this study again underscores the importance of proper microbiological 
classification and characterization of cancer-associated infectious agents, since not all 
Helicobacter strains may be associated with CRC. Like has been the case for S. bovis, lack of 
proper distinction between H. pylori subspecies could have biased or even underestimated a 
possible association of this bacterium with this disease (Erdman et al., 2003a,b). 

6. CRC Microbiome-based Immunoassays  

The occurrence of specific CRC-associated bacterial infections, as discussed in the previous 
section, paves the way for the development of novel diagnostic tools. In this respect, it is 
important to realize that S. gallolyticus infections occur without clinical symptoms due to its 
mild virulence (Haimowitz et al., 2005). Clinical manifestation of S. gallolyticus infections in 
otherwise compromised patients (e.g. damaged heart valves), may very well only represent 
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the tip of the iceberg of all infections with this bacterium in individuals with (pre-)malignant 
colonic lesions. This notion has been the incentive to investigate whether a humoral immune 
response to sub-clinical S. gallolyticus infections could aid in the early detection of CRC. 
Notably, as infectious agents in general induce a more pronounced immune response 
compared to tumor “self” antigens, CRC-associated bacterial antigens could be instrumental 
in the immunodiagnosis of this disease (Tjalsma, 2011). Furthermore, several features of 
circulating antibodies make these attractive targets in diagnostic medicine: i) they reflect a 
molecular imprint of disease-related antigens from all around the human body, ii) although 
an antigen may be present only briefly, the corresponding antibody response is likely to be 
persistent, iii) the half-life of antibodies is about 15 days which minimizes daily fluctuations, 
iv) antibodies are highly stable compared to many other serum proteins making serum-
handling protocols less stringent, v) the amplification cascade governed by the humoral 
immune system causes a surplus of circulating antibodies after appearance of the cognate 
(low-abundance) antigen. Several studies have shown that serum antibody levels against S. 
bovis/S. gallolyticus antigens could discriminate CRC cases from healthy controls (Abdulamir 
et al., 2009; Darjee & Gibb, 1993; Tjalsma et al., 2006). Interestingly, the humoral immune 
response to ribosomal protein (Rp) L7/L12 from S. gallolyticus was found to be higher in 
early CRC compared to late CRC stages, whereas this was not paralleled by increased 
antibody production to endotoxin, an intrinsic cell wall component of the majority of 
intestinal bacteria (Boleij et al., 2010). This implies that the immune response to RpL7/L12 is 
not a general phenomenon induced by the loss of colonic barrier function. Furthermore, this 
observation could point to a temporal relationship between S. gallolyticus and CRC, 
suggesting that late stage tumors may change in such a way that bacterial survival in the 
tumor microenvironment is diminished. The possibility that disease progression may drive 
bacteria out of the cancerous tissue is similar to what has been reported for H. pylori during 
gastric cancer progression (Corfield et al., 2000; Kang et al., 2006). A relationship of S. bovis 
with early stages of CRC is underscored by a vast amount of case studies showing that its 
infection was associated with pre-malignant adenomas. These cases would have remained 
undiscovered if these patients did not present with an active S. bovis infection. Future 
research should be aimed at development of more specific S. gallolyticus-based serological 
assays to investigate the clinical utility of such tests for the early detection of CRC (Tjalsma 
et al., 2006, 2008; Tjalsma, 2010). Furthermore, as CRC is a highly heterogeneous disease that 
is probably accompanied by even more heterogeneous microbiome shifts, accurate diagnosis 
based on biomarkers from a single bacterial species on the population level is highly 
unlikely. Therefore, future research should also be aimed at the identification of additional 
tumor-associated intestinal bacteria that may never have been found to cause clinical 
infections but do induce a humoral immune response. Furthermore, as discussed in Section 
3 of this Chapter, certain mucosa-associated bacteria may be involved in CRC initiation or 
progression. Invasiveness of these pathogens or exposure to their antigens may elicit IgG 
responses that are valuable for CRC risk assessment. These individuals may not directly 
need bowel examination, but could be enrolled in a more strict monitoring program.  

7. Conclusions  

The development of CRC is a multistep process that may take over 20 years to progress 

from an adenoma into an advanced carcinoma. The fact that the intestinal microbiome plays 

an important role in this process is clearly shown by the inflammatory effects of intestinal 
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bacteria, which are essential to develop disease in animal models. Furthermore, 

accumulating evidence suggests that bacterial production of toxins, toxic metabolites and 

the direct influences on pro-carcinogenic pathways in host epithelial cells are contributing 

factors that promote the accumulation of mutations that may eventually lead to carcinomas. 

However, still many questions remain to be answered. For example, our knowledge on the 

on the impact of CRC on the local intestinal microbiota and vice versa, is still in its infancy. 

Future research should focus on the detailed mapping of the microbiota in close proximity 

of early adenomas and carcinomas. These local changes in microbiota may for instance 

provide clues in the understanding why only 10% of the adenomas progress into 

carcinomas. Such knowledge could give us new leads for cancer diagnosis, for example by 

using signaling bacteria, such as S. gallolyticus that benefit from the altered tumor 

environment, as diagnostic targets. Furthermore, this knowledge could provide leads for the 

selective removal of high-risk bacterial populations by health promoting species, as a new 

strategy in CRC prevention. Altogether, this Chapter points out that the colonic microbiota 

should be regarded as an important factor in intestinal carcinogenesis. Further research in 

this field is crucial to fully understand the etiology of CRC and has a high potential to lead 

to new diagnostic tools and therapeutic interventions.  
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