
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



5 

Glutathione-S-Transferases  
in Development, Progression  

and Therapy of Colorectal Cancer 

Tatyana Vlaykova1, Maya Gulubova2, Yovcho Yovchev3,  

Dimo Dimov4, Denitsa Vlaykova1,6,  

Petjo Chilingirov5 and Nikolai Zhelev7 
1Dept. Chemistry and Biochemistry, Medical Faculty, Trakia University, Stara Zagora,  

2Dept. General and Clinical Pathology, Medical Faculty, Trakia University, Stara Zagora, 
 3Dept. General Surgery, Medical Faculty, Trakia University, Stara Zagora,  

4Dept. Internal Medicine, Medical Faculty, Trakia University, Stara Zagora,  
5Oncology Center, Stara Zagora,  

6Regional Hospital, Burgass,  
7University of Abertay Dundee, 

1,2,3,4,5,6Bulgaria  
7UK 

1. Introduction 

Etiologically, sporadic colorectal cancer (CRC) is a complex, multifactorial disease that is 

linked to both exogenic and endogenic factors. Accumulating evidence indicates that 

susceptibility to cancer in general, and to CRC in particular, is mediated by genetically 

determined differences in the effectiveness of detoxification of potential carcinogens and 

reactive oxygen species. The antioxidant enzymes and phase I and II biotransformation 

enzymes are important candidates for involvement in susceptibility to sporadic CRC, due to 

their ability to regulate the metabolism of a wide range of environmental exposures (Perera, 

1997; Potter, 1999; McIlwain et al., 2006; Di Pietro et al., 2010). In addition to carcinogens and 

reactive oxygen species, the majority of anticancer drugs applied in the chemotherapy are 

also substrates and are biotransformed by xenobiotic-metabolizing enzymes, leading to their 

activation and/or detoxification (O'Brien &Tew, 1996; Eaton &Bammler, 1999; Townsend 

&Tew, 2003; Hayes et al., 2005; Michael &Doherty, 2005; Townsend et al., 2005). In this 

respect, great efforts have been focused to clarify the effects of genetic variations, expression 

and activity of xenobiotic-metabolizing enzymes in development, progression and therapy 

of cancers with different histological origin, including CRC (Ranganathan &Tew, 1991; Tew 

&Ronai, 1999; Welfare et al., 1999; Cotton et al., 2000; de Jong et al., 2002; Dogru-Abbasoglu 

et al., 2002; Stoehlmacher et al., 2002; Ates et al., 2005; Romero et al., 2006; Liao et al., 2007; 

Pistorius et al., 2007; Koutros et al., 2009; Di Pietro et al., 2010; Economopoulos & 

Sergentanis, 2010).  

www.intechopen.com



 
Colorectal Cancer Biology – From Genes to Tumor 

 

82

2. Role of GSTs in cell processes 

Glutathione-S-transferase (GST, EC. 2.5.1.18) isoemzymes are involved in phase II xenobiotic 
biotransformation. GSTs belong to a large superfamily of dimeric enzymes, which play an 
important role in cell defense system. So far, 24 isoenzymes have been described in humans, 

classified into 11 classes: 7 cytosolic - alpha (, A), mu (μ, M), pi (, P), sigma (σ, S), theta (θ, 
T), zeta (ζ, Z), and omega (ω, O), one mitochondrial - kappa (κ, K), and three microsomal 
classes, also referred to as membrane-associated proteins in eicosanoid and glutathione 
metabolism (MAPEG) (Sheehan et al., 2001; Hayes et al., 2005; McIlwain et al., 2006; 
Laborde, 2010) The most abundant mammalian GST enzymes belong to cytosolic classes 
alpha, mu, and pi, and their regulation has been studied in details (Hayes &Pulford, 1995). 
Most of the cytosolic GST classes are coded by several genes, gathered in clusters and thus 
these enzymes have several subunits, which form a number of homo- and/or heterodimeric 
isoenzymes (Table 1) (McIlwain et al., 2006; Laborde, 2010). 
 

GST classes Subunits Gene  
(locus)  
designation  

Chromosome 
location of the 
genes/gene clusters 

Cytosolic

GST-alpha (GST, GSTA) 1,2,3,4,5 GSTA1, GSTA2, 
GSTA3, GSTA4, 
GSTA5 

6p12 

GST-mu (GST, GSTM) 1,2,3,4,5 GSTM1, GSTM2, 
GSTM3, GSTM4, 
GSTM5 

1p13 

GST-omega (GST, GSTO) 1,2 GSTO1, GSTO2,  10q25.1 

GST-pi (GST, GSTP) 1 GSTP1 11q13 

GST-sigma (GST, GSTS) 1 GSTS  
(a HPGDS; PGDS) 

4q22.3 

GST-theta (GST, GSTT) 1,2 GSTT1, GSTT2 22q11.2 

GST-zeta (GST, GSTZ) 1 GSTZ1 14q24.3 

Mitochondrial

GST-kappa (GST, GSTK) 1 GSTK1 7q34 

Microsomal
bMAPEG  c MGST1,  

c MGST2,  
d ALOX5AP (FLAP) 
e LTC4S 
c MGST3 
f PGES (PTGES) 

12p12.3-p12.1 
4q28.3 
13q12 
5q35 
1q23 
9q34.3 

aHPGDS - hematopoietic prostaglandin D synthase (PGDS - prostaglandin D synthase) 
bMAPEG - membrane-associated proteins in eicosanoid and glutathione metabolism 
cMGST - microsomal glutathione S-transferase 
dALOX5AP (FLAP) - arachidonate 5-lipoxygenase-activating protein  
eLTC4S - leukotriene C4 synthase 
fPGES - prostaglandin E synthase 

Table 1. Classes, subunits and gene location of human GSTs  
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GSTs catalyze the conjugation of reduced glutathione with a variety of endogenic and 
exogenic electrophilic compounds, including several carcinogens and antineoplastics (Hayes 
&Strange, 1995; Hayes et al., 2005; Michael &Doherty, 2005). This process results in 
alteration, usually a reduction, of the reactivity of the compounds and makes them more 
water soluble and favors their elimination.  
GSTs can also function as peroxidases and isomerases (Hayes &Pulford, 1995; Cho et al., 

2001). Thus GSTA1-1 and GSTA2-2 efficiently catalyze the reduction of fatty acid and 

phospholipid hydroperoxides (Zhao et al., 1999). Moreover, it has been shown that GSTA3-3 

is essential in obligatory double-bond isomerizations of precursors of testosterone and 

progesterone in steroid hormone biosynthesis (Johansson &Mannervik, 2001). Although the 

exact physiological function of omega-class GSTs remains undefined (Board et al., 2000; 

Board, 2011), it has been demonstrated that they can catalyze a range of thiol transferase and 

reduction reactions that are not catalyzed by members of the other classes: GSTO1 has GSH-

dependent reductive activity to dehydroascorbate and to monomethylarsenic acid (V) 

(Board, 2011). GSTZ1 has isomerase activity and catalyzes the conversion of 

maleylacetoacetate to fumarylacetoacetate in the catabolic pathway of phenylalanine and 

tyrosine and also catalyzes the GSH-dependent transformation of -halogenated acids 

(McIlwain et al., 2006).  

There are six MAPEG (membrane associated proteins in eicosanoid and glutathione 

metabolism) subfamily members localized to the endoplasmic reticulum and outer 

mitochondrial membrane. Three of them are involved in the production of leukotrienes and 

prostaglandin E, whereas the other three have glutathione S-transferase and peroxidase 

activities, thus implicated in the protection of membranes from oxidative stress 

(Morgenstern et al., 2011).  

In addition to their catalytic functions GSTs have several complementary functions. Some of 

the GSTs can serve as nonenzymatic binding proteins (known as ligandins) interacting with 

various lipophilic compounds including steroid and thyroid hormones (Litwack et al., 1971; 

Ishigaki et al., 1989; Cho et al., 2001; Vasieva, 2011). Moreover, GST isoenzymes can play a 

regulatory role in cellular signaling by forming protein:protein interactions with key 

signaling tyrosine kinases, involved in controlling stress response, apoptosis, inflammation, 

cellular differentiation and proliferation (Adler et al., 1999; Cho et al., 2001; Wang et al., 

2001; Townsend &Tew, 2003; Townsend et al., 2005; McIlwain et al., 2006; Laborde, 2010; 

Vasieva, 2011).  

There is strong evidence that GST-pi can bind by protein:protein interaction, sequester and 

inhibit c-Jun N-terminal kinase (JNK)/stress-activated protein kinases (SAPKs). JNK is a 

MAP kinase that phosphorylates c-Jun, a component of the activator protein-1 (AP-1) 

transcriptional factor, resulting in the induction of AP-1-dependent target genes which play 

role in cell survival and apoptosis. Thus JNK is implicated in pro-apoptotic/survival 

signaling pathways and may be required for induced cytotoxicity of a variety of antitumor 

drugs (Adler et al., 1999; Wang et al., 2001; Townsend &Tew, 2003; Townsend et al., 2005; 

McIlwain et al., 2006; Laborde, 2010; Vasieva, 2011).  

Recently, GST-pi was shown to affect the apoptosis pathways also by physical association 

with TNF receptor associated factor 2 (TRAF2), an adaptor protein which mediates the 

signal transduction of different receptors and is required for the activation of ASK1 

(apoptosis signal-regulating kinase 1) (Wu et al., 2006; Laborde, 2010; Sau et al., 2010; 
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Vasieva, 2011). ASK1 is a MAP kinase kinase kinase (MAP3 kinase, MAPKKK) that can 

phosphorylate MKK4/7 and MKK3/6 (MAP kinase kinases, MAP2Ks, MAPKK) which are 

involved in stress-induced activation of JNK- and p38 signaling pathways, respectively 

(Dorion et al., 2002; Wu et al., 2006; Sau et al., 2010). 

Isoenzymes of the alpha and mu classes have also been shown in vitro to bind to JNK-Jun 

complexes and inhibit the activation of c-Jun by JNK, however their inhibitory activity was 

weaker than GST-pi (Villafania et al., 2000; Laborde, 2010). In addition, it has been noted 

that GST-mu interacts physically with N-terminal portion of ASK1, thus inhibiting its 

activity and the ASK1-elicited MKK4/7–JNK and MKK3/6–p38 signaling pathways (Dorion 

et al., 2002). 

Another binding partner of GST-pi is the antioxidant enzyme 1-cys peroxiredoxin (1-cysPrx, 

Prx VI), which is a member of the peroxiredoxin superfamily and is able to protect cells 

from membrane peroxidation via GSH-dependent peroxidase activity on phospholipid 

hydroperoxides. The process of heterodimerization of 1-cysPrx with GST-pi leads to 

activation involving also the S-glutathionylation of 1-cysPrx (Manevich et al., 2004; Vasieva, 

2011). 

GST-pi has also been found to function in the S-glutathionylation of oxidized cysteine 

residues of several target proteins following oxidative and nitrosative stress thus playing a 

direct role in the control of posttranslational S-glutathionylation reactions (McIlwain et al., 

2006; Townsend et al., 2006; Townsend et al., 2009; Tew et al., 2011). S-glutathionylation 

occurs on cysteine moieties located in relatively basic environment in response to oxidative 

(ROS) or nitrosative stress (RNS) signaling events. Glutathiolylation is reversible process 

that can occur spontaneously by GSH or catalytically by thioredoxin (Trx), glutaredoxin 

(Grx) or sylphoredoxin (Srx). Thus besides the phosphorylation/dephosphorylation, the 

cells are provided with additional dynamic system of controlling the protein activity 

(Townsend et al., 2009). Proteins sensitive to modification by S-glutathionylation are variety 

of enzymes with thiols in the active centers, cytoskeleton proteins, signaling proteins – 

particularly kinases and phosphatases, transcriptional factors, Ras oncogenic proteins, heat 

shock proteins, ion channels, and calcium pumps (Tew et al., 2011). Since a number of 

proteins that are S-glutathionylated are involved in growth regulatory pathways, the over-

expression of GST-pi in cancers may account for the impaired balance between cell death, 

proliferation and differentiation and could contribute to tumor development, progression 

and treatment response (Townsend et al., 2009; Tew et al., 2011).  

GST-pi was also shown to bind proteins and compounds containing iron and nitric oxide 

and thus may influence the NO metabolism and NO signaling (Vasieva, 2011). It has been 

shown that the natural low molecular mass NO carriers, dinitrosyl-iron complexes (DNIC) 

and S-nitrosoglutathion (GSNO) bind with high affinity to one active site of the dimeric 

GST-pi enzyme, while the enzyme maintains its detoxification activity (Lo Bello et al., 2001; 

Townsend et al., 2006; Vasieva, 2011). Hence, GST-pi (GSTP1-1) may act as a NO carrier, 

which determines it as a player of a number of processes as formation of nitrothiols, 

nitrosylation of proteins, NO mediated iron mobilization from cells, and Zn-homeostasis 

(Vasieva, 2011).  

It has also been reported that certain GSTs play novel roles implicated in cell defense: GST-

theta was suggested to inhibit the pro-apoptotic action of Bax (Kampranis et al., 2000), and 

GST-omega (GSTO1-1) was shown to modulate ryanodine receptors (RyR), which are 
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calcium release channels in skeletal and cardiac sarcoplasmic reticulum, suggesting 

protective functions of GSTO1-1 in mammalian cells from radiation damage and Ca2+  

induced apoptosis (Dulhunty et al., 2001) 

Thereby, these multiple functionalities of the members of GST family, in addition to the 
well-characterized catalytic activities, could contribute and be of importance in GST-highly 
expressing tumors for development and progression of cancers and for acquisition of 
resistance to applied chemotherapeutics.  

3. Polymorphic variants of GSTs 

Numerous polymorphisms have been described in the genes encoding GSTs as most of 
them have been associated with a lack or an alteration of enzymatic activity toward several 
substrates (Ali-Osman et al., 1997; Whyatt et al., 2000; Hayes et al., 2005; McIlwain et al., 
2006). 

3.1 GSTP class 

The GST-pi class is encoded by a single gene spanning approximately 3 kb and located on 

chromosome 11 (11q13). Two GSTP1 single nucleotide polymorphisms (SNPs) have been 

identified. They are characterized by transitions at A1578G (exon 5, A313G) and C2293T (exon 6, 

C341T), resulting in amino acid substitutions Ile105Val and Ala114Val, respectively, which 

appear to be within the active site of the GST-pi protein (Ali-Osman et al., 1997; Watson et 

al., 1998; Hayes et al., 2005; McIlwain et al., 2006). These two SNPs lead to the following four 

alleles: GSTP1*A (105Ile, 114Ala), GSTP1*B (105Val, 114Ala), GSTP1*C (105Val, 114Val), and 

GSTP1*D (105Ile, 114Val).  

It has been proven that the substitutions due to SNPs in GSTP1 are functional: the 

substitution of Ile to Val at position 105 (GSTP1 Ile105Val) results in altered enzyme 

activity to variety of electrophilic molecules (Hayes et al., 2005; McIlwain et al., 2006). 

Thus, there is a strong experimental evidence that the two proteins, encoded by the allelic 

variants, 105Ile and 105Val of the human GSTP1 gene, differ significantly in their catalytic 

activities toward a model substrate; the GST-pi 105Val variant has lower activity toward 

1-chloro-2,4-dinitrobenzene, a standard substrate, than its 105Ile counterpart (Ali-Osman 

et al., 1997; Townsend &Tew, 2003, Coles, 2000 #47). On the other hand, the same variant 

(105Val) displays greater activity toward polycyclic aromatic hydrocarbon (PAH) diol 

epoxides (Sundberg et al., 1998; Coles et al., 2000; Bostrom et al., 2002). The GST-pi 105Val 

enzyme variant is found to be more active than 105Ile variant in conjugation reactions 

with the bulky diol epoxides of PAHs, being up to 3-fold as active toward the anti- and 

syn-diol epoxide enantiomers with R-absolute configuration at the benzylic oxiranyl 

carbon (Sundberg et al., 1998; Coles et al., 2000). The bay-region diol epoxides of PAHs are 

known to be ultimate mutagenic and carcinogenic metabolites (Sundberg et al., 1998; 

Bostrom et al., 2002).  

The frequency of GSTP1 105Ile allele in different Caucasian groups varied from 0.63 to 0.77, 

whereas the frequency of the variant GSTP1 105Val allele ranged between 0.23 and 0.37 

(Table 2) (Katoh et al., 2008). In our previous study we determined the frequency of Ile105Val 

GSTP1 genotypes in 126 ethnic Bulgarian individuals from the region of Stara Zagora (0.54 

for Ile/Ile, 0.39 for Ile/Val and 0.07 for Val/Val) (Vlaykova et al., 2007). The obtained figures 

are consistent with those published for the controls in the case-control study of Bulgarian 
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patients with Balkan endemic nephropathy (Andonova et al., 2004), and for other Caucasian 

type control cohorts in Finland (Mitrunen et al., 2001), Edinburgh area, Scotland (Harries et 

al., 1997), Newcastle and North Tyneside, England (Welfare et al., 1999), East Anglia region 

(Loktionov et al., 2001), etc. (Table 2). Based on these similarities we can conclude that 

despite the heterogeneous origin ethnic Bulgarians do not differ from other Caucasians in 

frequency of Ile105Val GSTP1 genotypes and could be included in larger interinstitutional 

case-control studies for investigation of the effect of this polymorphism on the susceptibility 

to different diseases, including cancers.  

 

Country/racial origin Allele frequencies Genotype frequencies  

  105Ile 
 (%) 

105Val
(%) 

p-value 105 
Ile/Ile
(%) 

105 
Ile/Val 
 (%) 

105Val/ 
Val  
(%) 

p-value 

Bulgaria/Caucasian  
(Vlaykova et al., 2007) 

73 27  54 39 7  

Bulgaria/Caucasian  
(Andonova et al., 2004) 

66 34 0.284 47 38 15 0.182 

Finland/Caucasian  
(Mitrunen et al., 2001) 

74 26 0.873 55 38 7 0.989 

Scotland (UK)/Caucasian 
(Harries et al., 1997) 

72.2 27.8 0.899 51 42.5 6.5 0.906     

Surrey, UK/Caucasian  
(Kote-Jarai et al., 2001) 

70.4 29.6 0.684 51.2 38.5 10.3 0.702 

Newcastle, UK/Caucasian 
(Welfare et al., 1999) 

66.5 33.5 0.318 45 43 12 0.312 

East Anglia, 
UK/Caucasian  
(Loktionov et al., 2001) 

65.5 34.5 0.252 40 49 11 0.128 

Germany/ Caucasian 
(Steinhoff et al., 2000) 

73 27 1.00 55 36 9 0.827 

Sweden/ Caucasian 
(Sorensen et al., 2007) 

69 31 0.534 49 40 11 0.564 

Austria/ Caucasian  
(Gsur et al., 2001)  

63.3 36.7 0.142 39.2 48.2 12.6 0.085 

Portugal/ Caucasian 
(Jeronimo et al., 2002) 

67 33 0.356 43.3 47.5 9.2 0.315 

American non-Hispanic/ 
Caucasian  
(Agalliu et al., 2006) 

66 34 0.284 43 46 11 0.258 

Table 2. Allele and genotype frequencies of the GSTP1 Ile105Val gene polymorphism in 
Bulgarians compared to other Caucasian populations. 
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3.2 GSTM class 

GSTM1 together with the other four GSTM class members (GSTM2, GSTM3, GSTM4 and 

GSTM5) are mapped to 1p13.3 (Pearson et al., 1993; McIlwain et al., 2006; Laborde, 2010). 

The close proximity of GSTM1 and GSTM2, as well as the presence of two almost identical 

4.2-kb regions flanking the GSTM1 gene have been suggested to be the reasons for the 

observed entire GSTM1 gene deletion resulting in a null GSTM1 allele (GSTM1*0) (Pearson 

et al., 1993; Bolt &Thier, 2006). Furthermore, a transversion of G with C at position 534 

(534G>C, formerly noted as 519G>C ) was described leading to a substitution of 172Lys with 

172Asn (formerly Lys173Asn) (McLellan et al., 1997; Bolt &Thier, 2006; McIlwain et al., 2006; 

Gao et al., 2010). This SNP results in two new alleles - GSTM1*A and GSTM1*B, which were 

reported to be functionally identical (McLellan et al., 1997). In addition, a duplication of 

GSTM1 gene has been identified and characterized (GSTM1*1x2 allele) in people who 

displayed ultrarapid GSTM1 activity (McLellan et al., 1997).  

Thus, four allele loci have been described in the human GSТМ1 - GSТМ1*А, GSТМ1*B, 

GSТМ1*0 and GSTM1*1x2, which determine several phenotypes. The frequencies of GSTM1 

alleles and genotypes display race and ethnic variations: 42% to 60% of Caucasians, 41% to 

63% of Asians and only 16% to 36% of Africans are homozygous for GSТМ1*0 (null GSTM1 

genotype) (O'Brien &Tew, 1996; Cotton et al., 2000; He et al., 2004; Hayes et al., 2005; Bolt 

&Thier, 2006; McIlwain et al., 2006; Katoh et al., 2008; Gao et al., 2010). Our results showed 

that the frequency of GSTM1 genotype in Bulgarian control individuals (36% and 42%) 

(Figure 1A) (Dimov et al., 2008; Emin et al., 2009; Vlaykova et al., 2009) is commensurable to 

that reported for some other European populations (Cotton et al., 2000; Ates et al., 2005; 

Katoh et al., 2008; Gao et al., 2010). 

Polymorphic variants have been described for the other GSTM members: GSTM2, GSТМ3, 

GSTM4 and GSTM5 (Inskip et al., 1995; Mitrunen et al., 2001; Reszka &Wasowicz, 2001; 

Hayes et al., 2005; Reszka et al., 2007; Yu et al., 2009; Moyer et al., 2010). The most extensive 

studies have been performed on GSTM3 polymorphisms. This gene has an 

insertion/deletion polymorphism (rs1799735, GSTM3*A/*B) with a wild-type GSТМ3*А 

allele and a variant one, GSТМ3*В, which differ in the rate of expression. The variant 

GSTM3*B allele has 3 bp deletion in intron 6, which introduces a recognition site for YY1 

transcriptional factor and results in enhanced expression of the enzyme protein. (Inskip et 

al., 1995; Loktionov et al., 2001; McIlwain et al., 2006; Reszka et al., 2007). Recently, several 

SNPs in GSTM3 have been identified and studied for their functional activity and in 

association with variety of diseases. These are the rare Gln174Trp (G174W), the more common 

Val224Ile (V224I) substitutions, and the transversion of A with C at -63 position in promoter 

region of GSTM3 (-62A>C) (Liu et al., 2005; McIlwain et al., 2006). The variant 174Trp allele, 

as well as the wild-type 224Val allele, were reported to exhibit decreased catalytic activity, 

whereas the variant -63C allele was associated with increased expression of the gene (Liu et 

al., 2005; McIlwain et al., 2006). 

3.3 GSTT class 

A null polymorphism has also been described in T1 locus of GSTT cluster at 22q11.2. 

Analogously to GSTM1, GSTT1 consisting of 5 exons, is flanked by two highly homologous 

18 kb regions (HA3 and HA5). The null GSTT1*0 allele is possibly caused by a homologous 

recombination resulting in 54 kb deletion containing the entire GSTT1 gene (Sprenger et al.,   
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Fig. 1. Distribution of GSTM1 (A) and GSTT1 (B) null and non-null genotypes in Bulgarian 
patients with CRC and control individuals. Frequency of carriers of GSTM1 and GSTT1 
double null genotype among the patients and controls (C). Data are presented in 
percentages and in real numbers (in brackets); the ORs and the 95% CI are also given.  
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2000; Bolt &Thier, 2006). A SNP (310A>C) in exon 3 of GSTT1 is the reason for substitution 

of Tre104 with Pro104 (Tre104Pro) in GST-theta protein, which was associated with a 

decrease in the catalytic activity possibly due to a conformational changes of the protein 

molecule (Alexandrie et al., 2002). The frequency of the null GSTT1 genotype has also been 

found to vary significantly between different races and ethnic groups: between 13% and 

31% (with some exceptions) in Caucasians in Europe and USA and between 35% and 48% in 

Asians (O'Brien &Tew, 1996; Cotton et al., 2000; He et al., 2004; Hayes et al., 2005; Bolt 

&Thier, 2006; McIlwain et al., 2006; Katoh et al., 2008). Our preliminary results concerning a 

small Bulgarian control group showed homozygosity for GSTT1*0 (GSTT1 null genotype) in 

a rate of only 7% (Dimov et al., 2008; Vlaykova et al., 2009). However, when the control 

group was extended the frequency of GSTT1 null genotype turned out to be 20% (Figure 1B) 

(Emin et al., 2009) which is comparable to other Caucasian populations (Bolt &Thier, 2006; 

Katoh et al., 2008). 

Polymorphic variants have been described also in the second theta-class GST gene, GSTT2. 

Coggan et al. reported a pseudogene (GSTT2P), which rises from G to T transition at nt 841 

(841G>T) in intron 2 of GSTT2 and C to T transition at nt 3255 (3255C>T) in exon 5 of 

GSTT2P changing 196Arg to a stop codon. In addition a G to A transition at nt 2732 

(2732G>A) in exon 4 of GSTT2 was defined that results in substitution of 139Met to 139Ile 

(Met139Ile) (Coggan et al., 1998). However, there is still no clear evidence that the latter SNP 

may have influence on the enzyme function. In the meantime, the defined promoter 

polymorphisms in GSTT2 (-537G>A, -277T>C, -158G>A, and -129T>C) were shown to affect 

the gene expression (Guy et al., 2004; Jang et al., 2007). 

3.4 GSTA class  

Although, variety of polymorphisms of alpha-class GST genes has been defined, their 

functional activity has not yet been comprehensively investigated. Nevertheless, it is already 

proven that the SNPs in the promoter (5’-regulatory) region of GSTA1 (-567, -69, and -52) 

and specifically the substitution at -69C>T (determining a variant GSTA1*B allele), result in 

enhanced promoter activity and increased expression (Coles et al., 2001; Sweeney et al., 

2002; McIlwain et al., 2006). However, for 10 SNPs in the coding regions (exons) of GSTA1 

and GSTA2 was shown to have no significant functional effects (Tetlow et al., 2001). In a 

later study, the new Pro110Ser polymorphism in GSTA2 was found to affect the catalysis 

with several substrates, as the Ser containing isoform has significantly diminished enzyme 

activity (Tetlow &Board, 2004). Similar decrease in the glutathione-conjugating activity was 

also shown for the Leu containing isoform of Ile71Leu (I71L) polymorphism of GSTA3 

(Tetlow et al., 2004).  

3.5 GSTO class 

The omega-class GSTs are coded by 2 genes (GSTO1 and GSTO2) both composed of six 

exons and spread by 7.5 kb on chromosome 10q25.1 (Whitbread et al., 2003; Whitbread et al., 

2005). A total of 26 putative variants have been identified in the coding region of GSTO1 in 

different databases. Among them only 10 have been confirmed candidates and only one 

GSTO1*A140D (A140D, Ala140Asp, 419C>T) has been found in the ethnic group studies 

(Whitbread et al., 2003). In addition a 3-bp deletion polymorphism (AGg from the final GAG 

codone [155E, 155Glu]) has been identified in the boundary of GSTO1 exon4 and intron 4. 
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This deletion has the potential to alter the existing splice site, may reform a new splice 

donor site and causes the deletion of 155Glu (GSTO1*E155del) resulting in a loss of heat 

stability and increased enzyme activity toward 2-hydroxyethyl disulphide (HEDS) and 

CDNB (Whitbread et al., 2003). Only one variant in GSTO2 has been confirmed and 

identified in the population studies: this variation results from an A>G transition at nt 424 

(424A>G) and causes a substitution of 142Asn to 142Asp (Asn142Asp, N142D) (Whitbread 

et al., 2003). 

3.6 GSTZ class 

A number of genetic polymorphisms in the gene encoding glutathione S-transferase-zeta 

(GSTZ1) have been defined: G-1002A, Glu32Lys, Gly42Arg, Thr82Met. The latter three SNPs 

are functional and determine four GSTZ1 alleles referred to as GSTZ1*A (32Lys, 42Arg, 

82Thr), GSTZ1*B (32Lys, 42Gly, 82Thr), GSTZ1*C (32Glu, 42Gly, 82Thr), and GSTZ1*D 

(32Glu, 42Gly, 82Met) (Blackburn et al., 2001). The B, C and D alleles have been associated 

with a lower activity to dichloroacetic acid compared to GSTZ1A (Blackburn et al., 2001), but 

non of these SNPs affect significantly the risk of bladder cancer in Spain (Cantor et al., 2010) 

and breast cancer in Germany (Andonova et al., 2009).  

4. Role of GSTs polymorphisms as risk factors for development, progression 
and therapeutic response of CRC 

4.1 GSTP1 

Epidemiological studies of GSTP1 (GSTP1 Ile105Val) and colorectal cancer risk have 

suggested a deleterious effect of the low activity genotypes, but findings have been 

inconsistent (Harries et al., 1997; Welfare et al., 1999; Kiyohara, 2000; Ates et al., 2005; Gao et 

al., 2009; Economopoulos &Sergentanis, 2010).  

The results of our case-control study (Vlaykova et al., 2007) based on 80 patients with 

primary sporadic CRC and 98 unaffected control individuals showed that the genotype 

distribution is consistent with those published for other Caucasian type control cohorts. We 

also found a statistically significant prevalence of heterozygous GSTP1 genotype by itself 

(105Ile/Val – co-dominant model) and the prevalence of variant allele-containing GSTP1 

genotypes (105Ile/Val or 105Val/Val – dominant model) in control group compared to the 

CRC cases. This suggests a protective effect of the variant 105Val allele lowering the risk for 

developing of CRC. Based on our observations and on the experimental evidence reported 

by other research groups for greater activity of the enzyme encoded by the valiant 105Val 

allele toward polycyclic aromatic hydrocarbon (PAH) diol epoxides (Sundberg et al., 1998; 

Coles et al., 2000; Bostrom et al., 2002), we suggest that the heterozygous GSTP1 genotype 

may determine a better protection toward GST-pi-metabolized chemical toxins and reactive 

oxygen species (Vlaykova et al., 2007). This genotype may provide enzyme with an 

adequate detoxification of some and relatively weak activation of other carcinogens, 

depending on their characteristics. 

Two recent large meta-analyses summarized the results focused on the role of GSTP1 

Ile105Val from 16 published case-control studies involving a total of 4386 colorectal cancer 

patients and 7127 controls (Gao et al., 2009) and 19 studies with altogether 5421 cases and 

7671 controls (Economopoulos &Sergentanis, 2010) .The results of the meta-analysis 
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performed by Gao et al. (Gao et al., 2009) sowed no strong evidence that the 105Val allele 

conferred increased susceptibility to colorectal cancer compared to 105Ile allele either in the 

whole pooled case-controls groups or in the stratified one: by race - Caucasian and Asian 

descent; by the type of controls - in healthy and hospital controls. They also did not find 

evidence for an association with colorectal cancer in dominant (OR= 1.02, 95% CI:0.94, 1.10) 

and co-dominant (OR= 0.88 , 95% CI: 0.77, 1.01) models for the effect of Val. Only a slight, 

but significant, protective effect of Val allele was observed in the recessive model 0.86 (95% 

CI: 0.76–0.98). The final conclusion of this large meta-analysis was that GSTP1 Ile105Val 

polymorphism is unlikely to increase considerably the risk of sporadic colorectal cancer 

(Gao et al., 2009).  

Similar are the results and final conclusion of the recent meta-analysis performed by 

Economopoulos et al. (Economopoulos &Sergentanis, 2010): there were no significant effects 

of 105Val allele on the risk of colorectal cancer either in dominant model (OR=1.025, 95% CI: 

0.922–1.138), co-dominant model (OR=1.050, 95% CI: 0.945–1.166), or in the recessive model 

(OR=0.936, 95% CI: 0.823–1.065). Hence, the conclusions confirmed that the GSTP1 Ile105Val 

status did not seem to confer additional risk for colorectal cancer (Economopoulos 

&Sergentanis, 2010). 

4.2 GSTM1 and GSTT1 

Because GST-mu and GST-theta are important in the detoxification of carcinogens 

implicated in colorectal cancer, the absence of these enzymes is assumed to increase the risk 

of this common malignancy. In this regard a number of epidemiological studies have 

investigated the association of GSTM1 and GSTT1 genetic polymorphisms with colorectal 

cancer risk, however the results from these studies have also been with quite controversial 

conclusions (Cotton et al., 2000; Economopoulos &Sergentanis, 2010; Gao et al., 2010). The 

preliminary results from our study including very limited number of patients and controls 

(45 and 42), showed a statistically significant case-control difference in the presence of 

GSTT1 null genotype (0.30 vs. 0.07, p=0.006), and only a tendency for prevalence of GSTM1 

null genotype in CRC patient (0.57 vs. 0.36, p=0.052) (Vlaykova et al., 2009). The combined 

null genotypes were determined only in patients (0.20), whereas none of the control 

individual was with such genotype (p<0.0001). We found a 5.69-fold (95% CI, 1.59-20.00) 

and 2.34-fold (95% CI, 0.99-5.49) increased risk associated with GSTT1 and GSTM1 null 

genotypes, respectively and 21.533-fold (95% CI, 3.56-128.71) increased risk associated with 

the combined null genotypes. The colorectal cancer was diagnosed earlier in patients with 

GSTM1 null genotype and those patients had tumors in more advanced stage (III or IV) 

(p=0.033) and were with more aggressive phenotype, such as presence of lymph vessel 

invasion (p=0.042) than the patients with non-null genotype. 

A slight difference was obtained when the control group was extended to 81 persons (Figure 

1A, 1B and 1C): the null GSTT1 and GSTM1 genotypes turned out only to tend to associate 

with an increased risk of colorectal cancer (OR=1.797, 95% CI 0.86-3.72, p=0.116 for GSTM1, 

and OR=1.777, 95% CI 0.78-4.05, p=0.175 for GSTT1), however the carriers of GSTM1 and 

GSTT1 double null genotype had significantly higher risk of development of the disease 

(OR=3.697, 95% CI 1.21-11.28, p=0.021) (Figure 1C). As a conclusion, we suggested that the 

inherited simultaneous lack of GST-theta and GST-mu detoxifying enzymes due to the 
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presence of homozygous null genotypes may be associated with development of sporadic 

colorectal cancer (Vlaykova et al., 2009). 

Our findings are analogous to the one of meta-analyses performed on a large number of 

published case-control studies. The results of these meta-analyses support the suggestion 

that GSTM1 and GSTT1 null polymorphisms are associated with increased risk of CRC, 

especially in the Caucasian population (Economopoulos &Sergentanis, 2010; Gao et al., 

2010). Economopoulos et al. have summarized the results from 44 studies for GSTM1 and 34 

for GSTT1 null polymorphisms and concluded that GSTM1 null genotype carriers exhibited 

increased colorectal cancer risk in Caucasian population (OR=1.15, 95% CI: 1.06-1.25), but 

not in Chinese subjects (OR=1.03, 95% CI: 0.90-1.16). They reported similar results for GSTT1 

null polymorphism: OR=1.31, 95% CI:1.12-1.54 for Caucasian population and OR=1.07, 95% 

CI:0.79-1.45 for Chinese subjects (Economopoulos &Sergentanis, 2010). Gao at al., carried 

out a meta-analysis of GSTM1 genotype data from 36 studied including 9149 patients with 

CRC and 13 916 control individuals (Gao et al., 2010). The results indicated that GSTM1 null 

genotype was associated with CRC (OR=1.13, 95% CI: 1.03–1.23) in the pooled cases and 

controls from a number of different ethnics groups. However, the significance of this 

association remained for Caucasians, but not for Asians (Gao et al., 2010). 

4.3 GSTA1, GSTM3, GSTO2 

According to our knowledge there are only a limited number of studies aiming to evaluate 

the possible role of polymorphisms in the genes encoding other GST isoforms as 

predisposing factors for colorectal cancer. The polymorphisms in GSTA1 have been 

explored in colorectal cancer only by four research teams (Sweeney et al., 2002; van der Logt 

et al., 2004; Martinez et al., 2006; Kury et al., 2008) . The Sweeney at al. have found that the 

GSTA1*B/*B (promoter polymorphisms) genotype is associated with an increased risk of 

colorectal cancer, particularly among consumers of well-done meat and have suggested that 

GSTA1 genotype, in addition to the CYP2A6 phenotype should be evaluated as markers for 

susceptibility to dietary carcinogens (Sweeney et al., 2002). However, other studies did not 

find any associations between the GSTA1 polymorphisms and the risk of CRC (van der Logt 

et al., 2004; Martinez et al., 2006; Kury et al., 2008).  

Kury et al., and Martinez at al, have also attempted to elucidate the influence of GSTM3 

genetic variants on colorectal cancer risk, however no correlation between these 

polymorphisms and CRC susceptibility was found (Martinez et al., 2006; Kury et al., 2008). 

Similarly, no effect of GSTM3 polymorphism was found in a large study investigating the 

role of single SNPs within 11 genes of phase I and 15 genes of phase II of xenobiotic 

metabolism (Landi et al., 2005). Opposite results have been reported for 

GSTM3*A/GSТМ3*В alleles (the latter arising from a 3 bp deletion in intron 6): patients who 

were carriers of genotypes with at least one GSTM3*B allele (GSTM3 AB and GSTM3 BB 

combined) had advanced tumour T-stage, increasing Dukes' stage, higher frequency of 

distant metastases and shorter survival (Holley et al., 2006) Thus, the GSTM3 AA genotype 

was suggested to be associated with improved prognosis of CRC especially in patients with 

GSTM1 null genotype (Holley et al., 2006). Analogous results have been reported by 

Loktionov et al. who found associations between GSTM3*B frequency in patients with distal 

colorectal cancers particularly when combined with the GSTM1 null genotype (Loktionov et 

al., 2001).  
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A very recent study investigated the association between GSTO2 N142D (Asn142Asp) genetic 

polymorphism and susceptibility to colorectal cancer and reported that ND and DD 

genotypes were not associated with CRC risk, in comparison with the NN genotype. 

However subjects with NN genotype and positive family history were at high risk to 

develop colorectal cancer in comparison with subjects with DD or ND genotypes and 

negative family history. Thus, GSTO2 NN genotype was suggested to increase the risk of 

colorectal cancer in persons with positive family history for cancer in the first degree 

relatives (Masoudi et al., 2010).  

The common characteristic of the theta-class GSTs is their high affinity for the organic 

hydroperoxide species and particularly toward cumene hydroperoxide (GSTT2), underling 

the importance of GSTT2 activity in protection of cells against toxic ROS and lipid 

peroxidation products (Tan &Board, 1996), which are a major source of endogenous DNA 

damage and thus contribute significantly to cancer genesis and progression. In this respect 

efforts have been done to determine whether GSTT2 promoter SNPs (-537G>A, -277T>C and 

-158G>A) are associated with colorectal cancer risk (Jang et al., 2007). Jang at al., reported 

that -537A allele was associated with colorectal cancer risk, while the -158A allele was 

protective against colorectal cancer, finally suggesting that SNPs and haplotypes of the 

GSTT2 promoter region are associated with colorectal cancer risk in the Korean population 

(Jang et al., 2007). However, in a Caucasian population there was no such association of 

GSTT2 polymorphisms with the risk of CRC (Landi et al., 2005) 

5. Role of GST-pi in cancer progression  

The isoenzyme of class pi, GST-pi, acidic cytosolic protein, possesses unique enzymatic 

properties: broad substrate specificity (e.g. alkylating antitumor agents such as cisplatin 

derivatives), glutathione peroxidase activity towards lipid hydroperoxides, and high 

sensitivity to reactive oxygen species (ROS) (Tsuchida &Sato, 1992; de Bruin et al., 2000; 

Hoensch et al., 2002). As it was discussed above, GST-pi acts also non-catalytically as 

intracellular binding protein for a large number of non-substrate molecules of either 

endogeneous or exogeneous origin, thus contributing to their intracellular transport, 

sequestration and disposition (Laisney et al., 1984; de Bruin et al., 2000; Hayes et al., 2005). 

Besides that, GST-pi plays a regulatory role in the MAP kinase pathway that participates 

in cellular survival and death signals via direct protein:protein interaction with c-Jun-N-

terminal Kinase 1 (JNK1) and Apoptosis Signal-regulating Kinase (Ask1) (Adler et al., 

1999; Tew &Ronai, 1999; Townsend &Tew, 2003; Hayes et al., 2005; Michael &Doherty, 

2005). 

Therefore, the increased protein levels and activity of GST-pi found in a variety of neoplastic 

cancers with different histological origins, including colorectal carcinoma (Moorghen et al., 

1991; Ranganathan &Tew, 1991; de Bruin et al., 2000; Dogru-Abbasoglu et al., 2002; Murtagh 

et al., 2005), are debated as factors responsible, at least partly, for the progression and 

chemotherapy resistance, observed in many cancers (O'Brien &Tew, 1996; Tew &Ronai, 

1999; Townsend &Tew, 2003; Michael &Doherty, 2005). 

Earlier we reported our preliminary results concerning the survival of 76 patients with 

primary CRC according to the level of expression of GST-pi determined by 

immunohistochemistry (Vlaykova et al., 2005). Further we extended the patient population 
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to 132 and found that the tumors varied according to their GST-pi immune staining: there 

were tumors negative for GST-pi, others had weak staining and finally tumors exhibiting 

strong and very strong immune reaction for GST-pi (Figure 2).  

 
 
 

 
 

 
 

Fig. 2. Intensive cytoplasmic immune reaction for GST-pi in the cells of the tumor glands of 
a well-differentiated primary colorectal cancer (х 400). 

The results concerning survival of the patients with CRC with different level of expression 
of GST-pi, showed that the higher expression of GST-pi was significantly associated with 
shorter survival period after surgical therapy (median of 19 months) compared to those 
negative or with weak GST-pi staining (median of 58 months, p=0.004, Log-rang test) 
(Figure 3A). This statistically significant association persisted also after stratification for 
pTNM staging (stage I/II vs. Stage III/IV, p=0.005, Log-rank test) (Figure 3B).  
Interestingly, the strong expression of GST-pi retained its impact as unfavorable prognostic 
factor both for the patients who received an adjuvant chemotherapy (n=63, p=0.008, Log-
rank test) (Figure 4A) and for the once without such treatment (n=66, p=0.019, Log-rank 
test) (Figure 4B). Hence, we suggested that the strong expression of GST-pi may lead to 
lower effectiveness of the administered anticancer drugs or to inhibiting the apoptosis, thus 
influencing the survival of the patients.  
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Fig. 3. Survival of the whole studied patient population with colorectal carcinoma after 
surgical treatment according to the level of expression of GST-pi in tumor cells (A) and after 
stratification to pTNM staging (B).  
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Fig. 4. Survival according to the GST-pi expression of patients with CRC subjected to 
adjuvant chemotherapy (A), Association between the level of expression of GST-pi and 
survival of patients, who did not receive adjuvant chemotherapy (B). 
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Previously, we also described expression of GST-pi in chromogranin A-positive endocrine 

cells in colorectal cancers, which also expressed some other antioxidant enzymes, such as 

SOD1 and SOD2 (Gulubova &Vlaykova, 2010). Moreover, we found that patients having 

tumors with GST-pi-positive endocrine cells have an unfavorable prognosis. We suggest 

that not the neuroendocrine differentiation in general, but the presence of endocrine cells 

with activated antioxidant defense and probably higher metabolic activity might determine 

a more aggressive type of cancer leading to worse prognosis for patients (Gulubova 

&Vlaykova, 2010). 

The observed heterogeneous expression of GST-pi in tumor glands could be due to different 

genetic or epigenetic factors. We suppose that the reactive oxygen species, which are generated 

in high amount during the metabolism of tumor cells could be such factors resulting in 

overproduction of GST-pi . These ROS are found to induce the expression of the genes of GST-

pi and other phase II xenobiotic-biotransformating enzymes (O'Brien &Tew, 1996; Tew 

&Ronai, 1999; Hoensch et al., 2002). There is a growing evidence that these genes have 

regulatory sequences recognized by Nrf2 transcription factor, which in turn is regulated by the 

antioxidant response element (ARE) (O'Brien &Tew, 1996; Tew &Ronai, 1999; Hoensch et al., 

2002). Another Zn-dependent mechanism for ROS-induced expression of genes coding GST-pi 

and other antioxidant enzymes has been proposed (Chung et al., 2005). 

Another factor, resulting in overproduction of GST-pi, could be its gene amplification. Such 

genetic change has been proven for squamous cell carcinoma of head and neck. GSTP1 

amplification has been shown to be a common event and proposed to be associated with 

cisplatin resistance and poor clinical outcome in head and neck cancer patients treated with 

cisplatin-based therapy (Wang et al., 1997; Cullen et al., 2003).  

On the other hand, the lack of or the low expression of GST-pi could be due to the somatic 

inactivation by hypermethylation of promoter sequences of GST-pi gene (Yang et al., 2003; 

Lasabova et al., 2010). Such hypermethylation is the most common event (about 90%) 

described in prostate adenocarcinoma (Jeronimo et al., 2002).  
The results of our studies demonstrated the association between high expression level of 
GST-pi and unfavorable prognosis for the patients with colorectal carcinoma. This 
association was valid both for patients who had received adjuvant chemotherapy and for 
those without such treatment. We suppose that the shorter survival of patients with higher 
GST-pi could be due to lowering of the effectiveness of administered antineoplastic agents. 
The high protein level of GST-pi could contribute to this process either via its direct 
detoxifying effect towards some of the drugs (oxaliplatin) (O'Brien &Tew, 1996; Michael 
&Doherty, 2005), or via the inhibitory effect of GST-pi on MAP kinase signal pathways of 
apoptosis, triggered by 5-FU, mitomicin C, camtothecin or other antitumor drugs included 
in mono- or polychemotherapeutic regiments (Adler et al., 1999; Townsend &Tew, 2003; 
Hayes et al., 2005; Michael &Doherty, 2005). 
The observed association of high GST-pi level with worse prognosis of the patients, who did 

not received chemotherapy, could also be explained with the ability of this enzyme protein 

directly to interact with and inhibit proteins involved in regulation of apoptosis (JNK1 and 

Ask1) (Adler et al., 1999; Townsend &Tew, 2003; Hayes et al., 2005; Michael &Doherty, 

2005). In tumors, the high levels of free radicals, which in general are triggering factors and 

mediators of apoptosis, probably stimulate the expression of GST-pi that can lead to 

suppression of apoptosis. As a result, the decreased apoptosis can lead to increased tumor 

burden, which negatively affects patients survival.  

www.intechopen.com



 
Colorectal Cancer Biology – From Genes to Tumor 

 

98

6. Conclusions 

Colorectal cancer (CRC) is a neoplasm that occurs at high frequency worldwide, including 
Bulgaria. CRC is a complex and multifactorial disease, since several environmental and 
endogenous factors, including personal genetic characteristics, are implicated in its etiology, 
pathogenesis, progression and outcome. The members of the glutathione-S-tranferase (GST) 
family are important candidates for involvement in susceptibility to carcinogen-associated 
CRC and for developing of tumor chemotherapy resistance. In this work we presented a 
short overview of the main cellular functions of some of the GST isoenzymes, their 
polymorphic nature, and their role as risk factors for development of CRC and of resistance 
to chemotherapy. We also presented the results of our studies focused on the role of the null 
GSTM1 and GSTT1 polymorphisms, the Ile105Val SNP in GSTP1 and GST-pi expression as 
risk and prognostic factors in primary CRC. In conclusion, we suggest that the expression 
level of GST-pi in primary tumors could be a valuable prognostic factor for patients with 
colorectal carcinoma both treated with adjuvant chemotherapy and those not subjected to 
such therapy.  
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