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1. Introduction 

Total hip arthroplasty [THA] is one of the most successful and effective procedures developed 
for the treatment of pain and lack of mobility associated with end-stage arthritis such as 
osteoarthritis and rheumatoid arthritis. Approximately 1.5 million joint arthroplastic 
operations are performed annually worldwide. THA, although considered an excellent 
surgical procedure, can be complicated by periprosthetic osteolysis. Periprosthetic osteolysis 
(also called ‘Particle disease’) is initiated by wear debris derived from the implant. In most 
long-term studies on hip arthroplasty, osteolysis related loosening, bone loss or periprosthetic 
fractures are the most frequent causes for revision surgeries (Talmo et al., 2006). 
Osteolysis is a particle-induced biologic process at the metal–bone or cement–bone interface 

of prosthetic implants, manifesting radiographically as scalloped focal or linear endosteal 

radiolucencies due to bone loss and resulting in the loosening of implants. In the early days 

of hip arthroplasty, radiolucencies around implants were noticed and were thought to be 

related to curing of acrylic cement, infection or neoplastic process. These were first 

described by Charnley in association with Teflon cups, though later were also observed in 

patients with stable implants (Charnley, 1966). In 1977, Willert and Semlitsch demonstrated 

the presence of macrophages in response to wear debris and concluded that the particles 

accumulate macrophages in pericapsular lymph drainage, leading to a foreign body 

response and eventual loosening of the implant (Willert, 1977).  

Goldring et al. described the synovial-like character of the interfacial membrane found and 
demonstrated the presence of prostaglandin E2 [PGE2] and collagenase secretion from the 
associated cells (Goldring et al., 1983). The early observations of osteolysis in cemented 
implants led to a general belief that osteolysis was related to the acrylic cement and the term 
‘Cement disease’ was introduced. However, after the demonstration of lytic lesions in 
cementless implants, osteolysis is now considered to be a ‘Particle disease’, suggesting that 
wear-generated particulate debris is the main cause of periprosthetic osteolysis (Harris, 1995). 
Biologic responses to implant debris, the basis of periprosthetic tissue destruction, are due to 
a wide variety of complex events. Aseptic failure occurs later as a secondary issue to the 
chronic granulomatous and inflammatory response, which is stimulated and maintained by 

www.intechopen.com



 
Inflammatory Diseases – Immunopathology, Clinical and Pharmacological Bases 

 

152 

wear particles. This process is progressive and time dependant, ultimately leading to 
prosthetic loosening and failure (Keener et al., 2003). Wear debris can be generated from the 
articulating surfaces and bone cement. In general, higher wear rates are observed in patients 
with osteolysis (Dumbleton et al., 2002). However, the osteolytic process is a result of 
multiple factors, including physical and biologic components (Clohisy et al., 2004a).  
Once macrophages are activated by particulate debris, they secrete various kinds of 
mediators to incite a complex cascade of events culminating in recruitment and maturation 
of osteoclasts, the bone resorbing cells directly responsible for the pathogenic bone loss in 
osteolysis (Glant et al., 1993). Other cell types also seem to be involved in production 
cytokines and inflammatory mediators during this process, such as osteoblasts and 
fibroblasts (Jacobs et al., 2001; Dorr et al., 1990). Matrix degradative enzymes and 
chemokines are also released from several types of cells (Jacobs et al., 2001; Takagi et al., 
1998). The core of the biologic response that leads to osteolysis involves receptor activator of 
NF-κB ligand [RANKL]-RANK axis for osteoclast precursors, resulting in their 
differentiation and maturation (Abu-Amer, 2005; Khosla, 2001). 
 

Category Clinical manifestations 

Soft tissue lesions 
  Acute synovitis (Engler et al., 2001) 
  Particle-induced synovitis (Niki et al., 2007) 
  Heterotopic polyethylene granuloma (Walsh et al., 2011) 

Osseous impairment 

  Periprosthetic osteolysis (Lee et al., 2007) 
  Impaired osteogenesis (Wang et al., 2004) 
  Aseptic loosening (Harris, 1995) 
  Failure of implant (Clohisy et al., 2004) 

Systemic reactions   Metal hypersensitivity (Hallab et al., 2005) 

Table 1. Clinical conditions related with wear debris-induced inflammation following total 
joint arthroplasty 

Moreover, recent researches have uncovered the possibility that biological mechanism of 
osteolysis has to be extended to bone forming activity as well as resorption or dissolution of 
bone tissue. Recent datas suggest that bone-forming cells - osteoblasts, osteoprogenitors, 
and adult mesenchymal stem cells - may also contribute to osteolysis. As to date, there is no 
approved drug therapy to prevent or inhibit periprosthetic osteolysis, this concept will open 
up possibilities for the development of therapeutic agents that can enhance bone formation. 
This review presents novel insights into the current knowledge regarding how wear debris 
interact as an inflammatory process leading to periprosthetic osteolysis. The authors hope to 
outline potential perspectives for the future therapeutic strategies for this devastating 
complication.  

2. Wear particle debris - the main cause of periprosthetic osteolysis  

Wear-generated particulate debris is the main cause of periprosthetic osteolysis. Various 
kinds of cells have been implicated in the mechanisms leading to periprosthetic osteolysis in 
response to wear debris. They are indicative of a complex network of cellular pathogenesis 
(Drees et al., 2007). Several studies with retrieved implants, animal and in-vitro model 
suggest that wear-mediated periprosthetic osteolysis is unlikely to be caused solely by one 
particular cell type or particulate species, but is rather the cumulative consequence of a 
number of biological reactions (Wang et al., 2004).  
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Wear debris is formed at prosthetic joint articulations, modular interfaces, and nonarticulating 
interfaces (Goldring et al., 1993). The majority of particles are less than 5 um in diameter and 
exist in a range of shapes and sizes. Within a clinical context, polyethylene wear represents the 
dominant type of debris that leads to loss of prostheses. With regard to particle size, large 
particles are recognized as nondigestible foreign bodies. Particles within the broad size range 
of 0.2 – 10.0 μm are phagocytosed by macrophages leading to cellular activation. Although 
smaller particles are generally more pro-inflammatory, it is possible that extremely small 
submicron particles are less biologically active (Green et al., 1998). Particles beyond the size 
range of 0.2 – 10.0 μm can escape active phagocytosis, and fail to stimulate macrophages to 
produce high levels of proinflammatory and osteolytic cytokines. In-vitro studies of 
macrophage cultures clearly indicated that smaller [< 20 μm] polymethylmethacrylate 
[PMMA] and polyethylene particles [PE] elicited a significantly greater inflammatory cytokine 
response, as indicated by increased release of tumor necrosis factor [TNF-┙], IL-1, IL-6, PGE2, 
matrix metalloproteinases [MMPs], and other factors (Abbas et al., 2003; Gonzalez et al., 1996; 
Lee et al., 2003; O'Keefe et al., 1998; Shanbhag et al., 1994). 
In addition to size of particles, the cellular response to wear debris depends on numerous 
other parameters of particles such as the composition (Haynes et al., 1998; Sethi et al., 2003), 
shape (Yang et al., 2002b), charge, number (Gonzalez et al., 1996; Sabokbar et al., 2003b), 
volume, and surface area (Shanbhag et al., 1994). Especially the amount of particle around 
implants exhibits a fair correlation with the severity of aseptic loosening, although certain 
cases shows an exaggerated biologic response to particulate debris (Abu-Amer et al., 2007). 
The relative numbers of particles and macrophages are also critical to the intensity of 
reaction. The extent of the reaction by macrophages was also affected by the particle: target 
cell ratio. Therefore, the association between particles and osteolysis represents a dose–
response relationship (Wilkinson et al., 2005) 
Interestingly, osteoblasts also can phagocyte small particles, causing potential adverse 
effects on viability, proliferation and function of osteoblast as well as on osteoclasts 
(Goodman et al., 2006; Lohmann et al., 2000). PE, PMMA or metallic particles reduce 
osteoblasts differentiation of bone marrow osteoprogenitor cells (Chiu et al., 2006), 
expression of collagens by osteoblasts (Vermes et al., 2001; Vermes et al., 2000), osteoblast 
viability by inducing apoptosis (Pioletti et al., 2002) characterized with  decreased 
production of matrix, alkaline phosphatase and TGF-┚ by these cells (Dean et al., 1999). As 
for macrophages, such suppressive effects are also likely dependent on particle size, 
composition and dosage: different particle types can differentially affect osteoblast function 
(Lohmann et al., 2002).  
The size and degree of clumping of particles are also important variables determining the 
biological response, especially in osteoblast. Smaller particles of nano-size have less 
detrimental effect on the functions of osteoblasts, compared to conventional particles (Granchi 
et al., 2005; Gutwein & Webster, 2004). The nano-sized particles were associated with increased 
cell viability, more normal cellular morphology and spreading compared to conventional 
particles, indicating nano-sized particles are less active (Gutwein & Webster, 2004). Therefore, 
roles of nano-sized wear debris in periprosthetic osteolysis deserve further testing.  

3. Periprosthetic membrane in osteolysis around the implant 

The tissue around osteolysis contains a synovial-like interface membrane between the 
prosthesis and the adjacent bone, called the periprosthetic membrane. Periprosthetic 

www.intechopen.com



 
Inflammatory Diseases – Immunopathology, Clinical and Pharmacological Bases 

 

154 

membranes retrieved from patients contain macrophages, fibroblasts and multi nuclear 
giant cells such as osteoclasts. T lymphocytes and B lymphocytes are also seen.. The 
development of osteolysis is triggered by cellular and enzymatic processes within this 
membrane. The periprosthetic membrane is a histopathological hallmark of aseptic 
prosthesis loosening and shares some similarities with the hyperplastic synovium in 
patients with rheumatoid arthritis [RA] (Drees et al., 2007; Goldring et al., 1983; Harris, 
1995). At a molecular level, RA synovial fibroblasts and prosthesis-loosening fibroblasts 
share several common features. 
 

 

Fig. 1. Possible model of interplay between macrophages, fibroblasts, lymphocyte, 
osteoclasts and osteoblast in periprosthetic osteolysis. Osteoclasts develop from precursors 
under the influence of RANKL. The source of RANKL can be fibroblasts, osteoblasts, 
macrophages, or T cells. Particles may stimulate macrophage, fibroblasts and osteoblasts 
directly to induce RANKL and pro-inflammatory cytokines that can induce RANKL. It has 
been hypothesized that T cells stimulated by the pro-inflammatory microenvironment may 
also promote osteoclast formation, synergized with TNF-┙, by secreting IL-17.Thus, 
RANKL, TNF-┙, IL-1, IL-6, IL-17, and M-CSF may mediate the differentiation of myeloid 
precursor cells into multinucleated osteoclasts and development of impaired osteogenecity 
(Abu-Amer et al., 2007; Drees et al., 2007; Kotake et al., 1999;  Tokuda et al., 2004) 

Periprosthetic membranes, retrieved during revision surgery, produce a variety of factors 
including TNF-┙, IL-1, IL-6, and PGs that are involved in mediating osteoclast biology (Chiba 
et al., 1994; Hirakawa et al., 1996; Jiranek et al., 1993; Margevicius et al., 1994; Shanbhag et al., 
1995). These factors induce the final effector molecule, RANKL. It is generally accepted that 
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macrophage lineage cells do not express RANKL under normal conditions. In RA and 
periodontal disease, T cells have been known as the major source of RANKL. However, the 
relatively low numbers of T cells present near periprosthetic osteolysis make it unlikely that T 
cells are the major source of RANKL in periprosthetic osteolysis.  
Studies of periprosthetic membranes of osteolysis patients revealed that fibroblast are the 
major source of RANKL (Haynes et al., 2004; Sakai et al., 2002), with possible involvement of 
macrophages and giant cells (Haynes et al., 2004; Sakai et al., 2002). Expression and secretion 
of MMPs are also elevated in macrophages exposed to wear debris in vitro. Elevated levels 
of degradation enzymes in periprosthetic osteolysis tissues were also observed (Kido et al., 
2004). This array of chemokines, growth factors, pro-inflammatory and anti-inflammatory 
cytokines, and mediators demonstrate a potent ability of periprosthetic tissues to recruit and 
stimulate cells capable of inducing osteoclastic bone resorption and fibrous tissue formation 
(Talmo et al., 2006).  

4. Inflammatory response in particle disease 

The cellular response is dominated by macrophages (Archibeck et al., 2001; Lee et al., 2007; 
Neale & Athanasou, 1999; Quinn et al., 1992). Once macrophages are activated by particulate 
debris, they secrete various kinds of mediators to incite a complex cascade of events 
culminating in osteoclast maturation (Glant et al., 1993). This osteolytic response involves 
various cell types such as osteoclasts, fibroblasts, and osteoblasts/stromal cells, secreting a 
wide range of factors including cytokines, growth factors, and prostanoids (Dorr et al., 1990; 
Jacobs et al., 2001; Perry et al., 1995; Shanbhag et al., 1995). Matrix degradative enzymes and 
chemokines are also released from various cell types (Jacobs et al., 2001; Takagi et al., 1998).  
Particle phagocytosis is the important component of the cellular response: the size of these 
particles is significant. Particles ranging from 0.2 to 10 μm in diameter undergo 
phagocytosis by macrophages (Gelb et al., 1994). The initial response of macrophage by 
particle is formation of fibrous tissue to encapsulate the implant. Often, synovial fluid and 
lining membranes are also formed, and granulomatous tissue is established. Such 
peripsrosthetic tissues have revealed an abundance of macrophages, fibroblasts and giant 
cells (Clohisy et al., 2004b; Ulrich-Vinther et al., 2002).  
In addition, apart from massive recruitment of macrophages to the site of injury, some studies 
identified recruitment of lymphocytes (Abu-Amer, 2005; Arora et al., 2003; Gallo et al., 2002; 
Hallab et al., 2005; Lam et al., 2002; Purdue et al., 2007). Subsequently, pro-inflammatory 
response begins with secretion of factors, gelatinases, and proteases contributing to 
periprosthetic osteolysis, and thus causing  failure of the implant (Abu-Amer et al., 2007). This 
inflammatory response is not restricted to the initial process, but rather it continues to appear 
in middle till late osteolytic stages of periprosthetic osteolysis (Abu-Amer et al., 2007).  
Besides suppressing osteogenic activity, wear debris challenge can also affect the production 

of RANKL and OPG by osteoblasts. Osteoblast lineage cells can express RANKL, OPG, IL-1, 

TNF-┙, IL-6, IL-11 and TGF-┚ (Hofbauer et al., 2000). Ultra high density molecular weight 

polyethylene [UHMWPE] increased the release of RANKL from human osteoblasts, while 

OPG was significantly inhibited. There was inductive also effects on the osteoclastogenesis 

with UHMWPE-human osteoblast-conditioned medium. 

A study of the literature suggests that analysis of the involvement of osteoblasts in 
periprosthetic osteolysis has generally been limited to direct suppressive effect of particles 
on osteoblasts rather than through consideration of the possible effects of a pro-
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inflammatory environment on osteoblast biology. Considering that TNF-┙ is also a potent 
inhibitor of osteoblast differentiation (Ghali et al., 2010; Yamazaki et al., 2009; Zhou et al., 
2006; Karmakar et al. 2010), additional investigations into possible involvement of particle-
activated macrophages in the impaired osteogencity mediated by proinflammatory 
cytokines including TNF-┙ would appear to be warranted. Although insufficient attention 
has been paid to the involvement of osteoblast, the cell type responsible for bone formation, 
more research should be conducted to delineate the potentially critical role of osteoblasts in 
periprosthetic  osteolysis. 

5. Roles of macrophages in particle disease 

Since macrophages are the chief phagocytic cell in periprosthetic membranes, much attention 
has been focused on their role in cytokine production and osteoclast activation (Blaine et al., 
1996; Nakashima et al., 1999b; Shanbhag et al., 1994). Macrophages are abundant in the 
periprosthetic tissues obtained from osteolysis patients, and are engaged in phagocytosis of 
wear particles as evidenced by the presence of such nondegradable particles within these cells.  
However, recent advances in osteoclast biology indicated that bone marrow-derived 
macrophages may play a dual role in periprosthetic osteolysis. First, as the major cell in host 
defense, they respond to particles through cytokine production. Second, macrophages have a 
role as precursors for the osteoclasts (Ingham & Fisher, 2005). Macrophages can phagocytose a 
variety of types of wear particles. Most notably, pro-inflammatory mediators such as PGE2, 
TNF-┙ and IL-6 are generated in abundance by particle challenged macrophages.  
Activation of macrophages by wear debris is a critical event in this process. It is believed that 
recognition of particles relies on phagocytosis of particles by macrophages and unidentified 
cell surface interactions. However, a little is known about the molecular mechanisms involved 
in particle recognition concerning the cell surface receptors that response to particles (Purdue, 
2008). Although particle phagocytosis has been identified as a critical component of this 
biological response, recent studies in human macrophages indicate that direct interactions 
between particle and cell surface are sufficient to activate osteoclastogenic signaling pathways 
(Abu-Amer et al., 2007; Gallo et al., 2002; Gonzalez et al., 1996; Nakashima et al., 1999b). The 
latter interactions may include nonspecific physical induction of transmembrane proteins or 
recognition of cell surface molecules by particles. Recently this phenomenon was explained 
with the role of toll-like receptor (Takagi et al., 2007). However, the precise nature of 
stimulation of cells by particles remains unknown (Abu-Amer et al., 2007). 
Recently, macrophages in periprosthetic space started to be defined as osteoclast precursors. 

In-vitro they have been shown to differentiate into osteoclasts in response to M-CSF and 

stromal cell-derived factors (Sabokbar et al., 1997): RANK ligand alone; or TNF-┙ and IL-1 

in the absence of RANK ligand (Sabokbar et al., 2003a). Human arthroplasty–derived 

macrophages are capable of osteoclastic differentiation in-vitro in the presence of M-CSF and 

TNF-┙ (Ingham & Fisher, 2005; Sabokbar et al., 1997). Although recruitment of osteoclast 

precursor cells from the blood are more important as their source, the role of macrophages 

as osteoclast precusors in the periprosthetic space of osteolysis needs to be more clarified.  

6. Involvement of lymphocyte in inflammatory osteolysis  

The roles of lymphocytes in periprosthetic osteolysis remain to be delineated. Lymphocytes 
are generally absent or present in low numbers in the periprosthetic membranes. Mice 
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deficient in T cells, B cells, and natural killer cells develop osteolysis in response to wear 
particles as readily as wild type mice (Taki et al., 2005). However, the strongest evidence for 
the involvement of lymphocytes in aseptic loosening are a series of recent reports correlating 
a metal-specific lymphocyte response to poor implant performance and characterizing 
lymphocytic infiltration around metal-on-metal arthroplasties (Davies et al., 2005; Hallab et 
al., 2005). To promote osteoclastogenesis, activated T-cells positively regulate RANKL] and 
also negatively interferon-┛.  
T-cell derived RANKL has been well known to play central role in inflammatory bone loss. 
In RA, the role of T cells has also been debated and unresolved as well as in periprosthetic 
osteolysis. An interesting new development has been the recognition of IL- 17 (Kolls & 
Linden, 2004). IL-17, produced predominantly by T-memory cells, acts synergistically with 
TNF-┙ to activate synovial fibroblast-like cells. T-helper cells producing IL-17 show a 
distinctive cytokine profile, which is consisted of IL-17, TNF-┙ and RANKL, but only low 
levels of IFN-┛ and no IL-4 (Looney et al., 2006). Therfore, future work on the role of T cells 
in periprosthetic loosening should include evaluation of T cell signaling, related with the 
fact that inflammatory osteolysis do not produce much IFN-┛. It may be of special 
significance since IFN-┛ has a potent inhibitory effect on osteoclast development and thus 
osteolysis (Looney et al., 2006; Takayanagi et al., 2000). 
 

Cytokine Effects on osteoblasts [OB] Effects on osteoclasts [OC] 

TNF 

 Induces RANKL & M-CSF 
(Wei et al., 2005) 

 Inhibits OB differentiation & apoptosis 
(Gilbert et al., 2000;  Jilka et al., 1998) 

 Increases OC precursor numbers 
(Li et al., 2004; Yao et al., 2006) 

 Acts synergistically with RANKL 
(Lam et al., 2000) 

IL-1 

 IL-1┙: Inhibits differentiation & matrix 
formation in- vitro (Tanabe et al., 2004) 

 IL-1┚: Inhibits collagen synthesis in-vitro 
(Stashenko et al., 1987) 

 Increases OC-genesis along with TNF-┙ 
(Wei et al., 2005) 

 Decreases apoptotic rate of OCs 
(Jimi et al., 1995) 

IL-17 

 Enhances TNF-┙-stimulated IL-6 
synthesis  (Tokuda et al., 2004) 

 Increases RANKL/OPG in cells in-vitro 
(Kotake et al., 1999)

 Induces RANKL and RANK 
(Kotake et al., 1999; Lubberts et al., 2003) 

 Stimulate OC-genesis in RA 
(Kotake et al., 1999)

Table 2. Main effects of pro-inflammatory cytokines on osteoblast and osteoclast 

7. Biological understandings of osteolytic response  

The final cellular consequence of particle action is an excess of osteoclast activity, which 
results in progressive bone erosion. Osteoclasts are multinucleated cells derived from 
circulating osteoclast precursor cell of the monocyte/macrophage lineage, and represent the 
only cell type capable of bone resorption (Boyle et al., 2003). Osteoclast precursors are 
supplied from the periprosthetic space or recruited from the blood itself (Sabokbar et al., 
1997). Wear debris probably increases osteoclast recruitment to periprosthetic tissues via the 
activation of chemokine [macrophage chemoattractant protein-1 ; IL-8] expression by 
macrophages and fibroblasts (Fritz et al., 2005; Nakashima et al., 1999a; Yaszay et al., 2001). 
In addition, macrophage lineage cells isolated from these tissues display a greatly increased 
propensity to differentiate into osteoclasts (Sabokbar et al., 1997; Sabokbar et al., 2003a). 
Osteoclasts can be differentiated by two critical cytokines, RANKL and M-CSF.  
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The molecular balance between RANK−RANKL and OPG has a key role in periprosthetic 
osteolysis. RANKL is the key cytokine regulator of osteoclast generation and activation. 
Interaction between RANK and RANKL constitutes a pivotal signaling pathway in the 
formation of osteoclasts. RANKL is expressed on the surface of activated T cells, marrow 
stoma cells, and osteoblasts as a 45-kDa transmembrane protein. It binds to RANK 
expressed on the surface of osteoclasts and also their precursors. This is necessary for the 
differentiation and maturation of osteoclasts in the presence of the survival factor M-CSF. By 
the binding of RANKL to RANK, the receptor recruits TNFR [TNF receptor]-associated 
cytoplasmic factor 6 [TRAF6]. This acts as a key adaptor for the assembling of signaling 
proteins, which directs osteoclast-specific gene expression and finally leads to their 
differentiation and activation.  
OPG is a naturally occurring decoy receptor for RANKL secreted by stromal cells including 
osteoblasts as a soluble 110 kDa disulfide-linked homodimer. It down-regulates 
osteoclastogenesis by binding RANKL. Osteoclasts formation can be determined principally 
by the relative ratio of RANKL/OPG in the bone marrow microenvironment, and 
alterations in this ratio have been correlated with various bone disorders (Hofbauer & 
Schoppet, 2004).  
Another important fact for regulation of osteoclastogenesis is that many pro-inflammatory 
and anti-inflammatory cytokines act directly to enhance or inhibit the RANKL/RANK axis 
(Abu-Amer et al., 2007). TNF-┙ also promotes osteoclastogenesis, particularly in the state of 
inflammatory osteolysis such as RA and periprosthetic osteolysis. Overexpression of TNF-┙ 
is sufficient to induce calvarial osteolysis even in the absence of added particles, 
emphasizing its pro-resorptive characteristics in mice (Schwarz et al., 2000). The molecular 
basis of increased RANKL in osteolysis is likely downstream of pro-inflammatory cytokines 
such as TNF-┙ and IL-1┚, which are known to increase RANKL expression in several cell 
types (Purdue et al., 2007). RANKL and TNF-┙ seems to work in collaboration to induce 
osteoclast activation. Therefore, TNF-┙ and IL-1┚, acting in concert with RANKL, can 
powerfully promote osteoclast recruitment, activation, and osteolysis (Romas et al., 2002).    
During the past decade, the identification of several molecular pathways involved in bone 
loss raised hope for the development of therapeutic targets for periprosthetic osteolysis. 
TNF family members, especially RANKL, are prerequisites for osteoclast formation. The 
downstream signaling by wear particles, unsurprisingly, overlaps with that of TNF and 
RANKL. Notably, particle-induced pathways lead to the activation of kinases and 
transcription factors which are essential for osteoclastogenesis, such as activation of the 
tyrosine kinase c-src, mitogen-activated protein kinases [MAPK], and the NF-κB cascade 
(Abbas et al., 2003; Abu-Amer, 2005; Lam et al., 2002). Although activation of these 
pathways might be a secondary pathway, selective blockade of these downstream pathways 
reduces particle transmitted effects. The molecular targets described above need to be 
focused for selecting anti-resorptive therapeutic targets (Looney et al., 2006). 

8. Impaired osteogenesis as an inflammatory reaction in periprosthetic 
osteolysis 

The role of osteoblasts in periprosthetic osteolysis has received less attention than that of 
osteoclasts. Osteoblasts play important regulatory roles in bone remodeling. They produce 
and mineralize bone matrix, in addition to modulating differentiation and function of 
osteoclast by producing RANKL and OPG (Lorenzo et al., 2008). Osteoblasts are originated 
from MSCs and differentiated to matured cells. After maturation, osteoblasts diminish their 
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expression of RANKL and increase their expression of OPG, thereby creating a 
microenvironment that favors bone formation over bone loss (Atkins et al., 2003). Although 
osteoblasts have not been intensively investigated within the the field of periprosthetic 
osteolysis, more intensive research needs to be conducted to delineate the potentially critical 
role of osteoblasts based on their bone forming activity.  
Most researches have limited their focus on in-vitro models for the study of direct interaction 
between osteoblast and particle (Dean et al., 1999; Gutwein & Webster, 2004; Lohmann et al., 
2002; Pioletti et al., 2002; Yao et al., 1997). It has been postulated as a main mechanism of 
impaired osteogenesis that wear particles directly inhibit bone forming activity of osteoblast 
by altering typical osteogenic characters. For example, particles directly inhibit cell viability 
and proliferation, in addition to down-regulating the mRNA and protein level of bone 
formation markers. Particles less than 5 μm can also undergo phagocytosis by mature 
osteoblasts (Goodman et al., 2006), leading to potential adverse effects on cellular viability, 
proliferation and function. Along with particle size, composition and dosage can also effect 
these parameters (Lohmann et al., 2002). Moreover, it was reported that osteoblast 
challenged with particles can induce the expression of RANKL, OPG, IL-1, TNF-┙, IL-6, IL-
11, and TGF-┚ (Hofbauer et al., 2000). 
MSCs and osteoprogenitors are also profoundly affected by wear particles (Drees et al., 
2007; Goodman et al., 2006). Differentiation of osteoblasts from MSCs is also down-
regulated by titanium particles (Wang et al., 2002). PMMA particles reduce osteoblast 
differentiation of bone marrow osteoprogenitor cells (Chiu et al., 2006). Titanium and 
zirconium oxide induce MSC apoptosis (Wang et al., 2003). Since MSCs and 
osteoprogenitors from the bone marrow are the precursors of osteoblasts, the reaction of 
these cells to wear particles is critical to both initial osseo-integration of implants and 
ongoing regeneration of the periprosthetic bed (Goodman et al., 2006). Future studies need 
to delineate the molecular mechanisms by which particles adversely affect bone cell lineage 
including MSCs and provide strategies to modulate these effects. 
Recent research has uncovered the possibility that periprosthetic osteolysis likely involves 
multiple mechanisms including bone forming activity as well as bone resorption. It was 
reported that biologic effects on bone-forming cells - osteoblasts, osteoprogenitors, and adult 
MSCs - may also contribute to osteolysis (Chiu et al., 2009; Wang et al., 2002). These findings 
suggest that the following mechanisms of particle bioreactivity may contribute to osteolysis 
by means of exacerbated inflammation by reactive oxygen species [ROS] (Chiu et al., 2009) 
released from activated macrophages and osteoclasts, resulting to impaired periprosthetic 
bone formation with cytotoxic response and suppressed osteogenic differentiation of 
mesenchymal stem cells (Wang et al., 2004). 
So far, most researches in terms of involvement of osteoblast in periprosthetic osteolyis have 
been limited to determine the direct suppressive effect of particle to osteoblast. However, 
the possibility that osteoblast can indirectly communicate with immune cells through many 
sectreted molecules such as TNF-┙, IL-1, ROS requires further exploration (Ghali et al., 2010; 
Yamazaki et al., 2009; Zhou et al., 2006). Following phagocytosis of particles and the 
resultant pro-inflammatory reaction, the released cytokines from macrophages can be 
regarded as a potent inhibitor of osteoblast differentiation. Although insufficient attention 
has been paid to the involvement of osteoblasts, more extensive research should be 
conducted to delineate the potentially critical role of osteoblast in periprosthetic osteolysis. 
Modulation of bone forming activity in addition to existing anti-osteoclastic therapies, such 
as bisphosphonates and TNF-┙ blockade that inhibit bone destruction, represent a potential 
new therapeutic approach to this destructive disorder.  
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9. Molecular basis of inflammatory osteolysis  

Inflammatory osteolysis is a major complication of conditions such as RA, periodontal 
disease, and orthopedic implant loosening. The persistence of these responses is often 
associated with skeletal pathology ranging from localized focal bone erosion and peri-
articular osteolysis in the vicinity of inflamed area, to generalized osteopenia. This 
inflammatory osteolysis reflects increased osteoclast activity with enhanced osteoclast 
recruitment prompted by higher circulating levels of inflammatory mediators. Therefore, 
pathogenesis of inflammatory osteolysis is composed of distinct two primary components, 
inflammatory factors and regulation of osteoclasts. These are thought to operate through an 
ultimate common pathway of accelerated osteoclast recruitment and activation under the 
control of cytokines produced in the inflammatory environment.  
As the only cell type capable of bone resorption, osteoclasts play a central to the 
pathogenesis of inflammatory osteolysis. Differentiation and activation of osteoclast are 
under the aegis of a variety of cytokines. Receptor activator of RANKL and M-CSF are the 
essential osteoclastogenic cytokines and are increased in inflammatory skeletal disease. The 
hyperplastic inflamed synovium also contains inflammatory cells such as lymphocytes, 
plasma cells, activated macrophages, and neutrophils. These cells can secrete a multitude of 
cytokines and growth factors including RANKL, TNF-┙, IL-1, IL-6, PGE2, and IL-17 (Abu-
Amer, 2009). This microenvironment is the evidence for recruitment and differentiation of 
osteoclasts that contribute to bone erosion. 
The interaction of RANK and its ligand, RANKL is central to osteolytic responses on 
account of its critical role in osteoclast differentiation and survival. Interstingly, mouse 
models for the overexpression of OPG or administration of OPG-Fc are resistant to focal and 
systemic bone loss despite existence of the inflammatory response (Kong et al., 1999; Wong 
et al., 1999). These findings suggest that the osteoclast differentiation pathway, the 
RANKL/RANK signaling cascade, play a role as a target for other modulators for 
preventing bone resorption.  
In addition, produced proinflammatory cytokines also play a vital role in the inflammatory 
osteolysis in RA, periprosthetic osteolysis, and periodontitis. Factors including TNF-┙, IL-1, 
IL-17 and bacterial endotoxins also seem to impact osteoclastogenesis and bone resorption 
directly and indirectly (Abu-Amer, 2009). The dominant cytokine in the inflammatory 
osteolysis condition is TNF-┙, primarily produced by activated T cells, macrophages and 
synoviocytes.  
TNF-┙ is the most notable cytokine that can modulate both inflammatory and osteolytic 
process in the inflammatory osteolysis (Abu-Amer et al., 2008). Therefore, TNF-┙ can be 
regarded as the rate-limiting factor and it can be a target to eliminates both the 
inflammatory and osteoclastogenic components of these diseases (Wei & Siegal, 2008). 
However, in the most of researches, the role of TNF-┙ as the inflammatory mediator more 
than the osteolytic effector has been highlighted. This point is supported by studies in which 
inhibition of RANK signaling halted osteolysis whereas inflammation persisted. 
Nevertheless, TNF-┙ augments RANK/RANKL signaling tremendously leading to 
exacerbated osteoclastogenesis of RANKL-treated precursor cells. Therefore it appears that 
osteolytic activity of TNF-┙ requires RANKL/ RANK system in inflammatory disease (Abu-
Amer, 2009). IL-1 also plays an essential role in the pathophysiology of inflammatory bone 
loss. Other prominent pro-inflammatory and pro-osteolytic factors include IL-17 and IL-6.  
Regulation of pro-inflammatory cytokines appears to be a major function of IL-17. IL-17 
directly upregulates IL-1 and TNF-┙-induced inflammatory responses (Abu-Amer, 2009). 
IL-17, secreted by a distinct lymphocyte subset cells, plays an important role in 
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inflammation and bone erosion in a mouse model of CIA. Treatment with anti-IL-17, even 
after the onset of disease, markedly attenuates damage and inflammation of myocardium 
(Fan et al., 2011). In addition, IL-17 producing T cells are present in the synovium of RA 
patients (Page et al., 2004). Moreover IL-17 induces expression of RANKL by osteoblasts and 
synovial fibroblasts, leading to decreasing expression of OPG by stromal cells. Overall, a 
cascade from inflammatory cells lead to secretion of IL-17 which in turn up-regulates 
expression of RANKL, TNF-┙ and IL-1 and down-regulats expression of OPG, providing an 
intricate system supporting inflammation and subsequent osteolysis (Abu-Amer, 2009). Due 
to interdependence of TNF-┙ or IL-1, blockade of either TNF-┙ or IL-1 does not completely 
arrest the periarticular bone loss of inflammatory arthritis, however, inhibition of the two 
cytokines in combination is substantially more effective (Wei & Siegal, 2008).  
The overall mechanism described above also can be applied to periprosthetic osteolysis from 
wear debris. Studies using animal model involving TNF-┙ blockade has been shown to 
significantly reduce wear debris-induced osteolysis (Childs et al., 2001a, b), but residual 
osteolysis still persists. In contrst, disruption of RANKL signaling via genetic ablation or 
high dose RANK-Fc treatment completely eliminates osteoclasts and bone resorption in this 
model (Childs et al., 2002). Similar effects were also achieved via OPG gene therapy (Goater 
et al., 2002; Ulrich-Vinther et al., 2002; Yang et al., 2002a).  
It can be considered that the biological responsive pattern in periprosthetic osteolysis is 
similar to other modes of inflammatory osteolysis in that it is composed of two primary 
components, inflammatory factors and regulation of osteoclasts. This is thought to operate 
through common signaling pathways of cytokines such as TNF-┙, IL-1 and RANKL to 
accelerate osteoclast recruitment and activation under the control of cytokines produced in 
the inflammatory environment against wear debris.  
Understanding the mechanisms by which osteoclasts resorb bone, and the cytokines that 
regulate their differentiation and activity, provides mechanism-based candidate therapeutic 
targets to prevent inflammatory bone loss induced by wear debris from orthopedic 
implants. The success of anti-TNF-┙ and IL-1 therapy highlights the central role that these 
specific cytokines play in this disease except periprosthetic bone loss by wear debris. In 
addition, the interdependence of TNF-┙, RANKL and IL-17 in the generation of osteoclasts 
also allows to explain the observation that combined blockade is more effective in 
preventing pathological bone loss in the inflammatory conditions including periprosthetic 
osteolysis (Buckland, 2011). 

10. Conclusions 

We hereby describe the biological mechanisms that are responsible for inflammatory bone 
loss in periprosthetic osteolysis, highlighting potential targets for further therapeutic 
approaches to prevent and minimize this devastating complication. As it is generally 
accepted that the inflammatory interaction between wear debris and activated macrophages 
is defined as a key event in periprosthetic osteolysis, much effort has been focused on this 
process and its role in osteoclast activation.  
However, to date, despite extensive and complex research concerning periprosthetic 
osteolysis, there is no effective medical therapy to prevent or inhibit periprosthetic 
osteolysis. Therefore, an appreciation of the complex cellular and molecular signal network 
leading to cellular and inflammatory responses will form a foundation, on which several 
therapeutic interventions can be developed to overcome inflammatory periprosthetic bone 
loss. For the future direction, it seems to be reasonable that additional attention should be 
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equally paid to potentiate osteogenesis to overcome bone loss in the periprosthetic 
osteolysis.  
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