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1. Introduction 

Systemic inflammation involves powerful immune response that interferes with 
homeostatic regulation of many physiological processes including those controlling appetite 
and nutritional balance. In advanced chronic diseases, such as chronic obstructive 
pulmonary disease (COPD), rheumatoid arthritis, chronic infection or sepsis, renal failure, 
heart failure and cancer, the immune response is frequently exaggerated insofar as it 
ultimately leads to a severe debilitating state known as cachexia. It is well known that this 
condition deteriorates the quality of life and predicts increased morbidity and mortality. 
According to a recent definition, cachexia is characterized as a complex metabolic syndrome 
associated with a loss of body weight. In this condition, inflammation, anorexia, insulin 
resistance and increased muscle protein breakdown are present and result in depletion of 
skeletal muscle with or without a loss of fat mass (Evans et al., 2008). These hallmarks 
considerably distinguish cachexia from other conditions that are also associated with 
catabolic/anabolic imbalance or body composition disorders (e.g. starvation, dehydratation, 
sarcopenia, malabsorption, hyperthyroidism and lipoatrophy). At present, despite the 
clinical relevance of cachexia and an increasing interest of scientists and clinicians in this 
topic, its causal mechanisms are not yet completely understood. There is a large body of 
evidence that inflammation is a crucial factor in the pathogenesis of cachexia. Since pro-
inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-ǂ), interleukin (IL)-1, and 
IL-6, are able to modulate brain functions, dysregulate hormone levels or cause metabolic 
disturbances, these molecules are of paramount importance. Nonetheless, in the 
multidimensional nature of cachexia it is apparent that this process is a very complex one 
and the underlying mechanisms do not encompass only the cytokines, but rather cytokines 
along with many other inflammatory mediators, hormones, neurotransmitters and 
metabolic factors. This chapter reviews the current knowledge about the role of cytokines in 
the pathogenesis of anorexia, insulin resistance and muscle catabolism as the main features 
of cachexia in human inflammatory diseases and their experimental animal models. The 
presented insight into the intertwined immune, neuroendocrine and metabolic pathways 
contributing to cachexia may lead to a better understanding of this pathological 
phenomenon appearing in chronic diseases and to possible directions for future research. 
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2. Anorexia and starvation in inflammatory diseases 

Lack of appetite and weight loss in inflammatory diseases are common components of a set 
of nonspecific symptoms called sickness behavior that occurs under conditions of almost 
any infection or inflammation. The sickness behavior means disorders in motivational 
behavior such as hypersomnia, fatigue, temperature change (fever or hypothermia), 
anorexia, adipsia, cognitive changes, depressed mood, reduced aggression, exploration 
activity or reproductive behavior (sexual, maternal or paternal behavior). This altered 
behavior is an energy-conservation and -redistribution strategy of the body towards defense 
against noxious agents and generation of fever that exert a high energetic cost (Lorton et al., 
2008). Generally, basal metabolic rate goes up about 25% by the activation of the immune 
system (Straub et al., 2010). Thus sickness behavior represents a valuable homeostatic 
mechanism for survival towards energy reserves not to be depleted by immune processes.  
In this context, the advantage of appetite loss may appear to be controversial considering 
that food intake is a basic behavior to keep energy reserves. However, there are several 
mechanisms by which anorexia increases survival capacity. Its value in the energy 
conservation consists particularly in reduction of energy expenditure by decreasing physical 
activity since there is no search effort for food, and by eliminating the energy necessary for 
food processing (the thermic effect of food). Furthermore, decreased foraging behavior 
protects sick animal from predators, and reduced food consumption limits the nutriments 
available for the growth of microorganisms (Delahanty & Cremeans-Smith, 2002).  
Nevertheless, only the short-term anorexia or starvation may be advantageous to cope with 
transient inflammation attack. A lasting anorexia ultimately leads to devastating state of 
malnutrition followed by inevitable muscle proteocatabolism. In fact, persistent anorexia 
and poor nutrient status have been observed in patients with chronic inflammatory diseases 
and cancer (Evans et al., 2008; Laviano et al., 2008; Straub et al., 2010).  
There is strong evidence approving a failure of homeostatic mechanisms that control energy 
balance in conditions of long-term immune activation. The hypothalamus is the main 
regulatory center of the energy homeostasis. Hypothalamic areas contain neurons 
expressing orexigenic and anorexigenic neuropeptides that are modulated by peripheral 
signals. The major role is played by gastrointestinal signal of hunger ghrelin, and adiposity 
and satiety signal leptin. Ghrelin is released from stomach in response to starvation and 
activates orexigenic neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons in the 
hypothalamic arcuate nucleus (ARC) that result in increased food intake. In contrast, leptin 
level drops down during starvation and also stimulates appetite, as low leptin signaling 
blocks the activity of anorexigenic pro-opiomelanocortin (POMC)/cocaine and 
amphetamine-regulated transcript (CART) neurons and concomitantly enhances orexigenic 
NPY/AgRP release in the ARC (Valassi et al., 2008). Most studies agree that during 
inflammatory anorexia-cachexia syndrome ghrelin levels are upregulated while leptin 
down-regulated, but food intake is not increased (Laviano et al., 2008). 
Our studies have shown that rats with chronic inflammatory arthritis associated with 
anorexia had increased ghrelin and decreased leptin plasma levels along with 
overexpression of orexigenic neuropeptide (NPY, AgRP) mRNAs and decreased mRNA 
expressions of anorexigenic neuropeptide CART in the ARC (Stofkova et al., 2009b, 2010). 
However, we did not observe any improvement in food intake or body mass in this chronic 
inflammatory condition (Stofkova et al., 2009b; 2010). Similar situation has occurred in 
tumor-bearing rats with anorexia-cachexia syndrome. Hashimoto and coauthors (2007) have 
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demonstrated increased NPY/AgRP and decreased CART mRNAs in the ARC as well as 
reduced circulating leptin levels that have not been associated with the amelioration of 
cachectic symptoms. It appears that the mechanisms evolved to maintain energy balance are 
not sufficient enough to suppress anorexia in chronic inflammatory burden. This could 
involve negative interference of pro-inflammatory signals with protein synthesis or release 
of orexigenic neuropeptides. In this context, Scarlett and colleagues (2008) have observed 
that pro-inflammatory signals decrease the secretion of AgRP from hypothalamic explants, 
while increasing the expression of AgRP mRNA in hypothalamus in rodent models of acute 
and chronic inflammation.  
Remarkably, food restriction may attenuate the catabolic response of inflammation. It is well 

documented that IL-1ǃ- or acute inflammation-induced anorexia can be reduced by prior 

food restriction (Mrosovsky et al., 1989; Kent et al., 1994; Lennie et al., 1995, 1998; Elander et 

al., 2007). Similarly, 48 h fast in rats reduced lipopolysaccharide (LPS)-induced Fos 

expression in the paraventricular nucleus of the hypothalamus (PVN), increased orexigenic 

NPY and decreased anorexigenic CART mRNAs in the ARC, in association with attenuation 

of anorexia and body weight loss (Gautron et al., 2005). In our study, food-restriction in 

arthritic rats led to a more profound decrease of mRNA expressions for anorexigenic factors 

(POMC, CART, IL-1ǃ) and marked increase of mRNA expressions for orexigenic factors 

(NPY, AgRP) in the ARC when compared to arthritic rats fed ad libitum (Stofkova et al., 

2010). Moreover, food restriction in rats with adjuvant arthritis decreased arthritic score and 

parameters of inflammation including plasma leptin, but up-regulated plasma ghrelin and 

corticosterone levels (Jurcovicova et al., 2001; Stofkova et al., 2010). Accordingly, mild 

starvation through alterations in leptin and ghrelin levels may have protective anti-

inflammatory effects on signaling pathways in the hypothalamus that lead to conservation 

of body energy and favoring the foraging behavior.  

It is worth noting that ghrelin and leptin mutually cooperate not only in the regulation of 

energy balance but also in the control of immune responses. Ghrelin is considered as an 

anti-inflammatory hormone since it inhibits expression of pro-inflammatory cytokines such 

as IL-1ǃ, IL-6 and TNF-ǂ (Dixit et al., 2004). Ghrelin has also been reported as a potent 

mediator of lymphocyte development in the primary lymphoid organs and was able to 

reverse age-associated thymic involution. A number of studies over the past decade have 

described ghrelin as a promising therapeutic agent in the treatment of inflammatory 

diseases. Ghrelin administration attenuated anorexia as well as inflammation and rate of 

mortality during endotoxin- or IL-1ǃ-induced inflammation (Chang et al., 2003; Gonzalez et 

al., 2006; Wu et al., 2007; Chorny et al., 2008). In chronic inflammation, treatment with 

ghrelin significantly ameliorated experimental colitis in mice and rats (Gonzalez-Rey et al., 

2006; Konturek et al., 2009), chronic kidney disease in rats (Deboer et al., 2008) or 

experimental autoimmune encephalomyelitis in mice (Theil et al., 2009) due to its inhibitory 

effect on pro-inflammatory cytokines. In experimental arthritis in rats, ghrelin treatment 

significantly reduced clinical signs of the disease as well as the release of the high mobility 

box 1 (HMGB1), a DNA-binding factor that acts as a late inflammatory factor (Chorny et al., 

2008). Similarly, Granado et al. (2005a) observed ameliorated external symptoms of adjuvant 

arthritis in rats along with decreased IL-6 serum levels after ghrelin agonist (GHRP-2) 

administration. Moreover, GHRP-2 also prevented the increase in the activity of the 

ubiquitin-proteasome proteolytic pathway involved in the cachexia-induced skeletal muscle 

atrophy of arthritic rats (Granado et al., 2005b).  
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Leptin is cytokine-like hormone structurally classified as a member of the long-chain helical 
cytokine family, which also includes IL-6, IL-11, IL-12 or leukemia inhibitory factor (LIF). It 
stimulates proliferation of the majority of immune cells, and on memory T cells leptin 
promotes the switch towards Th1-cell immune responses by increasing interferon-gamma 
(IFN-Ǆ) and TNF-ǂ secretion while suppresses Th2-cell immune responses producing IL-4 
and IL-10. Leptin may play an important role in pathogenesis of autoimmunity as leptin-
deficient mice are resistant to (or develop less severe) experimental Th1-mediated 
autoimmune diseases (Stofkova, 2009a). Notably, a decrease in serum leptin levels induced 
by acute starvation led to a delay of the onset of experimental autoimmune 
encephalomyelitis and attenuated clinical symptoms by promoting a Th2-mediated cytokine 
switch (Sanna et al., 2003). Furthermore, in patients with rheumatoid arthritis, reduced 
circulating leptin levels due to 7-day fast were associated with decreased CD4+ T-cell 
activation and an increased number and function of IL-4-producing Th2 cells that resulted 
in attenuation of measurements of the disease activity (Fraser et al., 1999).  
These findings indicate that during inflammatory anorexia low leptin and high ghrelin 
levels may represent an attempt of endocrine system to increase food intake and to turn off 
the activated immune system. A short period of mild starvation could intensify these 
compensatory mechanisms and could be beneficial in certain autoimmune or chronic 
inflammatory conditions (e.g., where hyperleptinemia is a detrimental factor). However, 
usefulness of starvation regime in other inflammatory diseases should be considered 
carefully depending on actual nutritional status of patients and the severity of cachexia 
syndrome.  

3. The role of cytokines in the central control of appetite 

Several studies have provided important insight into the complex effects of cytokines on 
brain functions including the generation of the anorectic response. The cytokine that was 
initially held responsible for causing anorexia-cachexia syndrome was TNF, but it was soon 
clarified that the action of TNF can only be understood in the context of simultaneous 
presence of other cytokines (Matthys & Billiau, 1997). A number of cytokines such as IL-1ǂ, 
IL-1ǃ, IL-2, IL-6, IL-8, IL-11, IL-18, IFN-ǂ, IFN-Ǆ, LIF, ciliary neurotrophic factor (CNTF), 
brain-derived neurotrophic factor (BDNF), granulocyte macrophage colony-stimulating 
factor (GM-CSF), fibroblast growth factor (FGF), and HMGB-1 has been shown to inhibit 
food intake after central or peripheral administration at least equally powerfully as TNF 
(Buchanan & Johnson, 2007). For instance, when TNF-ǂ was administered individually it 
had less potent anorectic effects than those of IL-1ǃ or when co-administered with IL-1ǃ 
(Sonti et al., 1996). IL-6 also inhibits food intake when administered centrally but not 
peripherally. Nevertheless, IL-6 deficient mice showed attenuated suppression of food 
intake during acute inflammation (Buchanan & Johnson, 2007). IL-1ǃ is a potent 
anorexigenic cytokine when administered peripherally or centrally in rodents, and 
treatment with IL-1ǃ antagonists can completely prevent IL-1ǃ-induced anorexia (Rothwell 
& Luheshi, 1994; Kent et al., 1992). Furthermore, peripheral IL-1ǃ through the interactions 
with IL-1 receptor also induces inhibition of gastric emptying and motility that can 
exacerbate hypophagia in patients with anorexia-cachexia syndrome (Suto et al., 1996). 
Central or peripheral injection of IFN-ǂ also leads to a decrease in food intake that correlates 
with a depression of the lateral hypothalamus neuronal electrical activity (Reyes-Vazquez et 
al., 1994). 
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It is well established that systemic inflammation during microbial infections, cell injury, 
autoimmunity or cancer triggers an excessive production of pro-inflammatory cytokines. 
But since hypothalamus is the main site regulating feeding behavior and body weight, 
cytokines must reach the brain regions to initiate anorexia. However, the blood brain barrier 
(BBB) which is composed by endothelial cells of the cerebral blood vessels joined by tight 
junctions is impenetrable for cytokines. So how can they get there and trigger anorexia when 
the inflammation is of peripheral origin?  
There were described three possible pathways that may account for cytokine-induced 
anorexia after peripheral inflammation: 1) a humoral pathway by which cytokines reach the 
central nervous system via blood (direct actions on circumventricular structures 
characterized by the absence of the BBB); 2) a pathway that involves active transport of 
cytokines across the BBB or their binding to the luminal side of the blood vessels and 
induction of the production of immunomodulators (prostaglandins, nitric oxide) that can 
easily cross the BBB, and central de novo synthesis of cytokines (e.g. in microglial cells and 
astrocytes); and 3) transduction by a neural pathway from gut to the brain, via sensory vagal 
or non-vagal, splanchnic afferents (Schwartz et al., 2002; Grossberg et al., 2010).  
Peripheral administration of LPS has been used as a good model demonstrating that 
peripheral inflammation induces expression of cytokines including IL-1ǂ, IL-1ǃ, IL-6, TNF-ǂ 
and LIF in the brain. In addition, it was observed that these cytokines can further propagate 
and maintain their activity by stimulating their own production and simultaneously the 
production of other cytokines in the brain (Grossberg et al., 2010). Although, this situation 
occurs after a single LPS injection, recent studies have reported that the following injection 
of LPS has brought about protective anti-inflammatory effects within the brain. Intriguingly, 
immunological challenge with the endotoxin LPS three weeks after a first LPS injection 
resulted in attenuated hypothalamic expression of cytokines while splenic expression was 
elevated (del Rey et al., 2009). On the basis of these findings, it seems that modulation of 
central cytokine expression may involve an adaptive mechanism protecting the brain from 
augmentation of inflammatory signaling and subsequent neuronal damage or behavioral 
and neuroendocrine changes (del Rey et al., 2009). 
Increased expression of pro-inflammatory cytokines in the brain has also been reported in 
experimental models of chronic diseases associated with anorexia including colitis (El-Haj et 
al., 2002; K. Wang et al., 2010), cancer (Plata-Salaman et al., 1998) and arthritis (Stofkova et 
al., 2009b, 2010). Yet, there are some contradictory findings showing no differences in brain 
cytokine (IL-1ǃ, IL-6, TNF-ǂ) protein expressions among tumor-bearing mice with 
prostanoid-related anorexia and their pair-fed controls (W. Wang et al., 2001).  
Notwithstanding, there is no doubt that central inflammation plays a pivotal role in 
anorexia associated with infections or chronic inflammatory diseases. Importantly, the 
anorexigenic effects of LPS or IL-1ǃ were eliminated in the absence of central myeloid 
differentiation primary response gene 88 (MyD88), the primary inflammatory intracellular 
signal transduction pathway for type I IL-1 receptor (IL-1RI) and toll-like receptor 4 (TLR4), 
that activates the transcription factor nuclear factor-kappaB (NF-κB) (Ogimoto et al., 2006; 
Wisse et al., 2007b). Moreover, central inhibition of NF-κB pathway by a specific inhibitor 
the NEMO (Binding Domain (NBD) peptide), which completely abolishes COX-2 synthesis 
in response to IL-1ǃ in the brain microvasculature, significantly blocked the inflammatory 
anorectic behavior (Nadjar et al., 2005).  
IL-1ǃ has been the most studied cytokine in relation to anorexia-cachexia syndrome. Its key 
role in the development of inflammatory anorexia was documented in experimental models 
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of cancer and colitis, in which neutralization of IL-1ǃ significantly improved food intake 
(Laviano et al., 2000; El-Haj et al., 2002).  
Several studies have attempted to clarify the possible mechanism through which IL-1ǃ 
elicits anorexia. Since IL-1ǃ dose-dependently up-regulates leptin expression in adipose 
tissue, and leptin decreases food intake and body weight, it was thought that IL-1ǃ anorectic 
effect is mediated via leptin activation. However, IL-1ǃ is able to induce anorexia 
independently from leptin activation, as it was shown in animal models with severely 
attenuated leptin signaling (Faggioni et al., 1997; Lugarini et al., 2005). On the other hand, 
there have been proposals that leptin besides activating the anorexigenic neuropeptides may 
also mediate anorexigenic responses via actions dependent on release of IL-1 and 
prostaglandins in the brain. Interestingly, it has been reported that central injection of IL-1 
receptor antagonist (IL-1ra) inhibited the suppression of food intake caused by central or 
peripheral injection of leptin. Consonantly, IL-1RI knockout mice showed no reduction in 
food intake in response to leptin (Luheshi et al., 1999), and lack of IL-1RI-mediated 
biological activity caused mature-onset obesity (Garcia et al., 2006). However, there is 
controversy on the importance of the hypothalamic IL-1 for the physiological regulation of 
food intake by leptin. It appears that central IL-1 signaling is required for the 
pharmacological, but not physiological, effects of leptin on energy balance (Wisse et al., 
2007a). 
Recent studies have demonstrated that IL-1ǃ suppresses appetite directly by the activation 
of central melanocortin system through its receptor IL-1RI abundantly expressed in neurons 
regulating appetite (DeBoer & Marks, 2006; Scarlett et al., 2007, 2008). The central 
melanocortin system forms the populations of POMC- and AgRP-expressing neurons in the 
ARC and the brainstem neurons in the nucleus tractus solitarius (Grossberg et al., 2010). 
POMC is the precursor of melanocortin peptides including ǂ-melanocyte stimulating 
hormone (ǂ-MSH), which exerts anorexigenic effects by acting on central melanocortin 
receptors (MCRs) (Fan et al., 1997). In the brain, only the type-3 melanocortin receptors 
(MC3R) and type-4 melanocortin receptors (MC4R) have been found. The most important 
one through which ǂ-MSH inhibits appetite is MC4R and this receptor is mainly expressed 
in the PVN. The neuropeptide AgRP is an endogenous antagonist at melanocortin receptors 
and majority of AgRP neurons project to MC4R-expressing neurons (Ollmann et al., 1997; 
Grossberg et al., 2010). 
An intracerebroventricular (i.c.v.) injection of IL-1ǃ into the lateral ventricles activated 
expression of Fos protein in the ARC POMC neurons resulting in the inhibition of feeding 
behavior. In addition, IL-1ǃ stimulated the release of ǂ-MSH from hypothalamic explants 
(Scarlett et al., 2007). Additionally, IL-1ǃ has been shown to decrease secretion of AgRP from 
the hypothalamus (Scarlett et al., 2008). The hypothesis that IL-1ǃ acts through central 
melanocortin signaling also supports the finding that anorectic effect of IL-1ǃ was 
significantly attenuated by MC3/4-R antagonists (Lawrence & Rothwell, 2001). 
It is very likely, that IL-1ǃ (and other cytokines) interacts with hypothalamic serotonergic 
neurons to activate pathways of central melanocortin system (Laviano et al., 2008). 
Serotonin, a monoamine neurotransmitter derived from tryptophan, modulates behavioral 
reactions and various physiological processes. The important role of serotonin has also been 
defined in relation to satiety (Leibowitz et al., 1990). The serotonergic regulation of energy 
balance comprises the modulation of the endogenous release of both agonists and 
antagonists of the melanocortin receptors. Serotonin hyperpolarizes and inhibits AgRP 
neurons as well as decreases an inhibitory drive onto POMC cells by activation of serotonin 
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1B receptors (5-HT1BRs). Serotonin also activates POMC neurons via activation of serotonin 
2C receptors (5-HT2CRs). This leads to reciprocal increases in ǂ-MSH release and decreases 
in AgRP release at MC4R in target sites and subsequently to hypophagia (Heisler et al., 
2006). Increased serotonin release associated with depressed food intake has been found 
after an injection of IL-1ǂ into ventromedial hypothalamic nucleus in normal rats (Yang et 
al., 1999). During cachexia IL-1 increases levels of tryptophan in the plasma and 
cerebrospinal fluid, thereby suggesting increased serotonin synthesis and secretion (Tijerina, 
2004; Laviano et al., 2008). These findings indicate that both IL-1 and serotonin are 
important factors involved in the pathogenesis of anorexia-cachexia syndrome.  
CNTF and LIF are another cytokines that possess anorectic effects through influencing 
POMC neurons in the hypothalamus via gp130/signal transducer and activator of 
transcription 3 (STAT3) signaling pathway (Janoschek et al., 2006, Grossberg et al., 2010). 
Moreover, in the murine hypothalamus, CNTF induces proliferation of cells that show 
functional phenotypes relevant for energy-balance control, including a capacity for leptin-
induced phosphorylation of STAT3 (Kokoeva et al., 2005). CNTF has also been shown to 
suppress NPYergic signaling in the hypothalamus by direct action (parallel to leptin) on 
NPY neurons (Xu et al., 1998). In contrast, within the hypothalamic orexigenic NPY system, 
neither IL-1ǃ nor TNF-ǂ and IL-6 was able to alter NPY release from the hypothalamic slices 
(King et al., 2000). Similarly, in IL-1ǃ-treated and pair-fed group rats, there were unchanged 
NPY concentrations in the ARC (McCarthy et al., 1995). Beyond these results, other studies 
have shown that NPY i.c.v. administration blocks and reverses IL-1ǃ- or INF-ǂ-induced 
anorexia (Sonti et al., 1996; Turrin et al., 1999). Therefore, the interactions between cytokines 
and orexigenic NPY system in the pathogenesis of inflammatory anorexia remain to be 
elucidated.   

4. The role of cytokines in the muscle catabolism  

Muscle wasting is another debilitating complication found in variety of cachectic states such 
as cancer, sepsis, chronic heart failure, chronic kidney disease, rheumatoid arthritis, COPD, 
and AIDS (Glass & Roubenoff, 2010). The primary cause of muscle wasting is the systemic 
inflammatory response that leads to accelerated muscle proteolysis, decreased muscle 
protein synthesis, impaired muscle progenitor cell proliferation, or increased apoptosis of 
muscle cells. Most research papers suggest that the main catabolic factors responsible for 
these pathological processes are cytokines. But which ones are the main candidates? What 
are the similarities and differences among their actions? What are the critical pathways that 
are affected? 
In the last decade skeletal muscle has been identified as an endocrine organ that produces 
and releases cytokines and other peptides, so-called “myokines” (Pedersen & Febbraio, 
2008). It is well established that these myokines modulate muscle cell viability, growth, 
differentiation and finally death as well as exert their effects in other organs of the body. 
They can be synthesized and released not only from immune cells infiltrating skeletal 
muscles (e.g. during exercise) but also by muscle fibers per se (Pajak et al., 2008). Among a 
wide group of myokines should be named pro-inflammatory cytokines such as TNF-ǂ, 
IL-1ǃ, IL-6, IL-8, IL-15, IFN-Ǆ, CNTF, LIF, or TGF-ǃ (Pajak et al., 2008; Hunt et al., 2011; 
Burks & Cohn, 2011; Stockli et al., 1989; Cheng et al., 2008; Pedersen & Febbraio, 2008). 
Cytokines act on skeletal muscle cells through the specific membrane receptors that may 
differ for each cytokine in their intracellular domains and thus mediate distinct cellular 
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responses. For instance, IL-1 has two unique receptors on target cells: The type I receptor 
(IL-1RI) transduces a signal, whereas the type II receptor (IL-1RII) binds IL-1 but does not 
transduce a signal and has been named a “decoy” receptor (Dinarello, 1996). Sarcolemma of 
the skeletal muscle was found to express very low levels of cytokine receptors under normal 
(resting) physiological conditions, but has a capacity for cytokine receptor induction and 
thereby amplification of cytokine actions in response to exercise and inflammatory stimuli 
such as endotoxin or increased level of cytokine itself. As for the inflammation, treatment of 
L6 myotubes with a combination of endotoxin, TNF-ǂ, and IFN-Ǆ for 24 h led to the 
increased mRNA expression of six pro-inflammatory cytokine receptors (IL-1RI, IL-1RII, 
IL-6 receptor (IL-6R), IFN receptor IFNR, TNF receptor (TNFR)I, TNFRII), whereas TNF 
alone induced expression of only IL-6R and TNFRII mRNAs (Y. Zhang et al., 2000). The 
TNF-ǂ receptor TNFRI contains a cytoplasmic TNFR-associated death domain (TRADD), 
which is essential for activation of the caspase cascade and subsequently induction of 
apoptosis. However, TNFRI signaling provides also a mechanism to protect cells from an 
apoptotic response since TRADD can associate with TNFR-associated factor (TRAF)2, 
TRAF1 and receptor interacting protein (RIP) to activate the NF-κB and c-Jun N-terminal 
kinase (JNK) pathways, which protect cells from apoptosis. The second TNF-ǂ receptor 
TNFRII misses the death domain and contains TRAF-interacting motifs (TIMs) in their 
cytoplasmic domain. Activation of TIM leads to the recruitment of TRAF family members 
and the subsequent activation of signal transduction pathways like NF-κB, JNK, p38, 
extracellular signal-related kinase (ERK) and phosphoinositide 3-kinase (PI3K) (Hehlgans & 
Pfeffer, 2005). The NF-κB is an essential mediator for protein degradation and expression of 
the ubiquitin-proteasome system, the major pathway for breakdown of muscle contractile 
proteins leading to muscle loss (Lecker et al., 1999; Y.P. Li & Reid, 2000). Likewise the 
activation of the ubiquitin-proteasome system is vital for ubiquitination and degradation of 
IκB, an inhibitory protein that binds the NF-κB and retains this factor in the cytoplasm 
where it cannot activate gene expression of a number of inflammatory peptides (Z.J. Chen, 
2005). The NF-κB-induced proteolysis in cachectic syndrome provides the energy supply for 
the stimulated immune system. The products of proteolysis amino acids are transported to 
the liver where they are an important substrate for gluconeogenesis, but also are consumed 
in synthesis of acute phase proteins such as C-reactive protein (CRP) and serum amyloid A 
(Morley et al., 2006). 
Among a variety of stimuli, TNF-ǂ is one of the most potent activators of NF-κB (Pajak et al., 
2008). TNF-ǂ has been shown to induce the ubiquitin-proteasome system dependent 
proteolysis after its acute intravenous administration in rats, or in vitro in isolated rat soleus 
muscle (Garcia-Martinez et al., 1993, 1994; Llovera et al., 1997). This direct effect of TNF-ǂ on 
the muscle cell is mediated not only through the activation of NF-κB (Y.P. Li et al., 1998; Y.P. 
Li & Reid, 2000), but also various other signal transduction pathways. Sishi & Engelbrecht 
(2011) have reported that TNF-ǂ strongly potentiated its proteolytic effects through certain 
mitogen-activated protein kinases (MAPKs), or PI3-K/Akt pathway resulting in decreased 
muscle fiber diameter. Furthermore, when differentiated L6 myotubes were subjected to 
increasing concentrations of recombinant TNF-ǂ for 24 and 48 h, an up-regulated expression 
of E3 ubiquitin ligases MuRF-1 (muscle RING finger 1) and MAFbx (muscle atrophy F-box; 
also called artrogin-1) along with the transcription factors NF-κB and forkhead transcription 
factor (FKHR; also called forkhead box protein O1 (FOXO1)) were observed (Sishi & 
Engelbrecht; 2011). FKHR is the other principal factor involved in muscle atrophy and 
activation of ubiquitin-proteasome proteolytic pathway (Tisdale, 2007). The important role 
of TNF-ǂ in muscle wasting has also been proved by the anti-TNF treatment in situation 
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when TNF production rises. In tumor-bearing rats or septic rats, the anti-TNF treatment 
powerfully inhibited muscle wasting by blocking the enhanced ubiquitin-proteasome 
dependent proteolysis (Costelli et al., 1993; Combaret et al., 2002).  
Besides influencing the activity of the ubiquitin-proteasome system and subsequently 
muscle proteolysis, TNF-ǂ also affects muscle differentiation by interaction with MyoD gene 
expression. MyoD is a crucial transcriptional factor that is required for the differentiation of 
muscle stem cells, and it functions early in myogenesis to help stem cells proliferate in 
response to muscle injury (K. Zhang et al., 2010). It has been shown that TNF-induced 
activation of NF-κB in differentiating C2C12 myocytes inhibited skeletal muscle 
differentiation by suppressing MyoD mRNA at the posttranscriptional level. In 
differentiated myotubes, TNF plus IFN-Ǆ signaling was required for NF-κB-dependent 
down-regulation of MyoD and dysfunction of skeletal myofibers. The same results have also 
been observed in mouse muscle in vivo (Guttridge et al., 2000). Additionally, increased 
TNF/IFN signaling repressed the expression of myosin heavy chain at the transcriptional 
level, possibly resulting from the cytokine-mediated inhibition of MyoD synthesis 
(Acharyya et al., 2004). TNF-ǂ may also inhibit myogenesis through induction of the nitric 
oxide synthase gene (iNos). Increased nitric oxide conjugates with superoxide to form 
peroxynitrite, which is responsible for the down-regulation of MyoD mRNA. It appears that 
TNF-ǂ exhibits a dual effect on myogenesis, stimulating it at low concentrations (0.05 
ng/ml), while inhibiting it at higher concentrations (0.5 and 5 ng/ml) (Tisdale, 2008).  
The next mechanism through which TNF-ǂ promotes muscle wasting is depression of 
muscle protein synthesis. This depression is mediated at least in part by defects in the 
control of mRNA translation (Lang et al., 2002). Moreover, when TNF-ǂ and IFN-Ǆ were 
presented in the extracellular environment during C2C12 myoblast differentiation, they 
prevented the stimulatory action of insulin-like growth factors I (IGF-I) on protein synthesis. 
This effect of TNF-ǂ and IFN-Ǆ was associated with the decreased phosphorylation of 
serine/threonine protein kinases, protein kinase B (PKB/Akt) and p70S6 kinase, in C2C12 
myogenic cells (Grzelkowska-Kowalczyk & Wieteska-Skrzeczynska, 2010). Inhibition of 
muscle IGF-I production could be another mechanism contributing to the catabolic effect of 
TNF-ǂ since an increase of this cytokine in muscle after LPS injection significantly inhibited 
local IGF-I expression (Fernandez-Celemin et al., 2002). 
Finally, exposure of C2C12 myotubes to TNF-alpha induces apoptosis characterized by 
enhanced caspase-3 activity, which results in poly(ADP-ribose) polymerase (PARP) cleavage 
and increased histone-associated-DNA fragmentation. Although IFN-Ǆ was proposed as a 
pro-cachectic factor, it reversed the TNF-ǂ-induced apoptotic activity (Tolosa et al., 2005).  In 
line with this finding, Cheng et al. (2008) have demonstrated that IFN-Ǆ promotes muscle 
healing, in part, by stimulating formation of new muscle fibers. Administration of an IFN-Ǆ 
receptor blocking antibody to wild-type mice impaired induction of IFN response factor-1, 
reduced cell proliferation, and decreased formation of regenerating fibers. Additionally, 
IFN-Ǆ null mice showed similarly impaired muscle healing associated with impaired 
macrophage function and development of fibrosis (Cheng et al., 2008). In contrast, a 
transgenic mouse that constitutively overexpresses IFN-Ǆ at the neuromuscular junction 
demonstrated an age-dependent necrotizing myopathy (Shelton et al., 1999). According to 
contradictory findings on functions of IFN-Ǆ in skeletal muscle homeostasis, the possible 
therapeutic potential of IFN-Ǆ targeting is still illusive. 
Other cytokines generally accepted as mediators of muscle proteolysis are IL-1 and IL-6 
(Zamir et al., 1992, 1993; Authier et al., 1997; Goodman, 1994). In vitro studies confirmed 
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that IL-1ǂ and IL-1ǃ are able to stimulate muscle catabolism via NF-κB signaling leading to 
an increased expression of atrogin-1/MAFbx and MuRF-1, and reduced myofibrillar protein 
content (W. Li et al., 2009). However, in vivo studies showed that catabolic effects of IL-1 are 
not as severe as those of TNF-ǂ. Although the treatment with recombinant IL-1ra prevented 
muscle proteolysis induced by administration of IL-1, this treatment only reduced, but did 
not normalize, the increased muscle protein breakdown rates seen during sepsis in rats 
(Zamir et al., 1994). Further, an acute intravenous administration of 100 μg/kg body weight 
of human recombinant TNF-ǂ resulted in an important increase in the levels of ubiquitin 
mRNAs in rat skeletal muscle, whereas administration of a similar amount of human 
recombinant IL-1ǃ did not (Garcia-Martinez et al., 1995). Also, administration of IL-1ra to 
tumor-bearing rats did not result in any improvement of cachexia, thus suggesting that the 
role of IL-1 in muscle cachexia may be secondary to the actions of other mediators (Argiles 
et al., 2005). Regarding IL-6, it was reported that IL-6 was the only pro-inflammatory 
cytokine of the six cytokines measured that was elevated in all terminally ill cancer patients 
with cachexia and its levels rise just before death (Iwase et al., 2004). Elevated circulating 
IL-6 level associated with reduced muscle oxidative capacity, mitochondria dynamics, and 
markers of oxidative stress in both oxidative and glycolytic muscles and with severe 
wasting have been found in Apc(Min/+) mice, a model of human colon cancer (White et al., 
2011). An increased atrogin-1/MAFbx, but not MuRF-1, gene and protein expression were 
also observed in these mice, and when they were exposed to IL-6 overexpression, 
atrogin-1/MAFbx mRNA and protein levels were up-regulated. However, atrogin-
1/MAFbx mRNA increased too little and did not translate to protein in wild-type non-
cachectic mice after IL-6 overexpression. Consistently, it was observed that without 
underlying disease IL-6 induces body mass or skeletal muscle mass loss only in 
supraphysiological doses. It is also possible, that IL-6 stimulates muscle cachexia indirectly 
as a lipolytic agent inducing a release of lipid from adipose tissue stores, and this state of 
hyperlipidemia is detrimental for skeletal muscle (Carson & Baltgalvis, 2010).  
The IL-6-related cytokine LIF may be involved in the pathogenesis of heart failure since it 
has been shown to reduce contractile function and to induce alterations in energy 
metabolism and insulin sensitivity in isolated cardiomyocytes. Moreover, the presence of 
this cytokine has been found in failing hearts (Florholmen at al., 2004, 2006). In skeletal 
muscle LIF has been shown to be a critical factor for TNF-ǂ-induced inhibition of myoblast 
differentiation (Alter et al., 2008). 
Although most pro-inflammatory cytokines are negatively involved in muscle wasting 
during inflammatory diseases or cancer, IL-15 may be an example of compensatory effects 
of activated immune system on muscle homeostasis. IL-15 is a cytokine with structural 
similarity to IL-2 that exhibits a broad range of pro-inflammatory activities including 
induction of T and B cell proliferation, NK cell cytotoxicity and NK-cell-derived cytokines 
(IFN-Ǆ, granulocyte-macrophage colony stimulating factor (GM-CSF), TNF-ǂ), and may 
protect T cells and neutrophils from apoptosis (Argiles et al., 2009). Nevertheless, IL-15 is a 
cytokine which is highly expressed in skeletal muscle and has been shown to have anabolic 
effects. Quinn et al. (1995) have reported that IL-15 can stimulate differentiated myocytes 
and muscle fibers to accumulate increased amounts of contractile proteins. Furthermore, 
overexpression of IL-15 induced skeletal muscle hypertrophy accompanied by increased 
levels of sarcomeric myosin heavy chain and alpha-actin in the culture of differentiated 
myotubes. In contrast to well-known anabolic factor IGF-I, which only stimulates protein 
synthesis under these culture conditions, IL-15 stimulates protein synthesis as well as 
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inhibits protein degradation (Quinn et al., 2002). In vivo studies demonstrated that IL-15 
administration improves the pathophysiology of dystrophic muscle in mice (Harcourt  et al., 
2005) as well as cachectic muscle in rats bearing the Yoshida AH-130 ascites hepatoma 
(Carbo et al., 2000; Figueras et al., 2004). The possible mechanism through which IL-15 
mediates its anabolic effects is an inhibition of the ATP-ubiquitin-dependent proteolytic 
pathway as described Carbo et al. (2000), and/or a decrease in both TNF-alpha receptors 
TNFRI and TNFRII, and iNos protein levels as described Figueras et al. (2004). Recently 
Waldmann et al. (2011) performed a safety study in rhesus macaques that received 
recombinant human IL-15. Interestingly, IL-15 mediated neutrophil redistribution from the 
circulation to tissues, increased numbers of circulating NK and CD8 central and effector-
memory T cells. These findings suggest that IL-15 might represent a new 
immunomodulatory and anabolic tool for the treatment of cachexia associated with 
metastatic malignancies (Waldmann et al., 2011). However, the potential application of IL-15 
in other conditions associated with inflammatory cachexia syndrome should be carefully 
evaluated because IL-15 is also proposed as an important factor in pathogenesis of several 
chronic inflammatory diseases such as rheumatoid arthritis (Petrovic-Rackov & Pejnovic, 
2006). Contradictory findings have been obtained in possible involvement of IL-15 in 
sarcopenia, the degenerative loss of skeletal muscle mass and strength associated with 
aging, in rats. Though one study has shown that preservation of IL-15 signaling by caloric 
restriction is associated with mitigated loss of muscle mass (Marzetti et al., 2009), other 
study has described that treatment with IL-15 promotes apoptosis in skeletal muscle and 
decreases muscle mass in both young adult and aged rats (Pistilli & Alway, 2008). 
Other interesting anabolic cytokine could be anti-inflammatory IL-10 that restrains 
inflammatory responses in macrophages and T cells by inhibiting cytokine and chemokine 
synthesis and reducing expression of their receptors. This cytokine is able to prevent 
inflammatory muscle wasting since it suppresses the ability of exogenous IL-1ǃ to inhibit 
IGF-I-induced myogenin and myosin heavy chain expression in myoblasts by specific 
reversal of IL-1ǃ activation of the JNK kinase pathway. Thus IL-10 may be useful 
therapeutic approach to inhibit the IL-1ǃ receptor-induced JNK kinase pathway resulting in 
IGF-I resistance (Strle et al., 2008). 

5. The role of cytokines in the insulin resistance and changes in intermediary 
metabolism 

Impaired insulin sensitivity is another symptom frequently present during cachexia in 
humans and animal models (Crossland et al., 2008; Smiechowska et al., 2010; Asp et al., 
2010; Doehner et al., 2010). This metabolic disorder also develops due to the excessive 
activation of inflammatory pathways. It is well established that TNF-ǂ is a potent activator 
of JNK and I kappa beta kinase (IκK) that phosphorylates insulin receptor substrate (IRS) 
proteins at inhibitory serine (Ser) sites and thereby inactivates further transmission of the 
insulin signal (Hotamisligil, 2003). In fact, when five potential inhibitory Ser sites of IRS 
were mutated, the protection from the adverse effects of pro-inflammatory cytokines (IL-1ǃ, 
TNF-ǂ, and IFN-Ǆ) and improvement of ǃ-cell survival and function were observed 
(Gurevitch et al., 2010). Other inflammatory mediators that interact with IRS 
phosphorylation are suppressors of cytokine signaling (SOCS)-1 and SOCS-3 that decrease 
tyrosine (Tyr) phosphorylation of IRS, which is essential for transmission of insulin signal 
(Ueki et al., 2004). Importantly, IL-6 inhibits insulin action in liver, but not in muscle, by 
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both phosphorylation of the inhibitory Ser site of IRS-1 and induction of SOCS-3 expression 
(Weigert et al., 2006). 
The key role of inflammation in the development of insulin resistance also demonstrate 
findings that the inhibition of TNF-ǂ activity either chemically or genetically results in 
improved insulin sensitivity (Hotamisligil, 2003), and application of nonsteroidal anti-
inflammatory drugs enhances insulin sensitivity (Donath et al., 2005). 
It is important to note, that pro-inflammatory cytokines may blunt not only insulin signaling 
but also IGF-I signaling since IRS proteins are important substrates for IGF-I receptor as 
well. IGF-I increases muscle protein synthesis and activates functions of satellite cells, the 
quiescent stem cells in adult muscle, which act as a reserve population of cells, able to 
proliferate in response to injury and give rise to regenerated muscle (Morgan & Partridge, 
2003). With this regard, impaired IGF-I signaling leads to abnormal protein metabolism and 
promotes fibrosis in regenerating muscle as recently reported L. Zhang et al. (2010) in 
cachectic mice with chronic kidney disease. It seems that particularly relevant cytokine in 
impaired insulin/IGF-I signaling during chronic kidney disease could be IL-6 since 
cachectic response to angiotensin II was suppressed in IL-6-deficient mice. Indeed, 
angiotensin II promotes the release of IL-6 and serum amyloid A, and these two mediators 
act synergistically to impair insulin/IGF-I signaling in muscle that subsequently results in 
muscle proteolysis (L. Zhang et al., 2009).  
Because impaired insulin/IGF-I signaling decreases muscle protein synthesis, one cannot 
ignore the obvious implication, that insulin resistance may be a cause rather than a 
consequence of muscle cachexia. From this point of view, it has been shown that in mice 
with cachexia induced by colon-26 tumors, insulin resistance occurred before the onset of 
weight loss, and treatment with rosiglitazone, a peroxisome proliferator-activated receptor-
gamma (PPARǄ) agonist and potent insulin action-enhancing agent, improved insulin 
sensitivity and also led to the reduction of early markers of cachexia and increase in body 
weight (Asp et al., 2010). These results suggest that correction of insulin resistance may 
provide a new therapeutic approach for cachexia and further research is needed to define 
the role of insulin resistance in variety of catabolic diseases.    
Besides the impact of cytokines on insulin resistance, free fatty acids (FFA) are other crucial 
mediators that contribute to this pathological condition (Boden, 2001). Noticeably, 
derangements in lipid metabolism are common features of many chronic diseases 
accompanied by cachexia (Grunfeld & Feingold, 1992; Vaziri & Norris, 2011; Elkan et al., 
2009; Rauchhaus et al., 2000). Although the most obvious cause of secondary dyslipidemia is 
a sedentary lifestyle with excessive dietary intake of saturated fat, cholesterol and trans fats, 
the corroborating evidence indicate that during cachexia the key players of the changes in 
lipid metabolism are inflammatory cytokines along with counter-regulatory hormones 
released in response to cytokine activity, such as glucocorticoids and catecholamines 
(Morley et al., 2006; Grunfeld & Feingold, 1992; Memon et al., 1993; Feingold et al., 1994; 
Rauchhaus et al., 2000). Approvingly, the response to LPS is associated with TNF- and IL-1-
induced increase in serum cholesterol and triglyceride levels as well as increase in hepatic 
hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity in mice (Memon et 
al., 1993). In mice, LPS also decreases the activity of lipoprotein lipase (LPL), the enzyme 
responsible for plasma triglyceride clearance, in both adipose and muscle tissue. This effect 
of LPS was suggested to be mediated by cytokines such as TNF, IL-1, LIF, IFN-ǂ, and IFN-Ǆ, 
depending upon type of tissue. In intact mice, all these cytokines down-regulated LPL 
activity in adipose tissue, while in skeletal and cardiac muscle only IL-1 and IFN-Ǆ followed 
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this effect. However, inhibition of TNF or IL-1 activity did not affect the ability of LPS to 
decrease adipose tissue or muscle LPL activity, indicating that mechanisms underlying LPS 
actions on lipid homeostasis are complex and several inflammatory signals might be 
involved (Feingold et al., 1994).  
Furthermore, it has been shown that TNF-ǂ stimulates synthesis of free fatty acids (FFA) de 

novo in the liver through raising levels of citrate and suppression of liver peroxisomal ǃ-

oxidation by inhibiting the activity of peroxisomal fatty acyl-CoA. In adipose tissue TNF-ǂ 

increases lipolysis and down-regulates the expression of fatty acid transport protein (FATP) 

and fatty acid translocase (FAT) (X. Chen et al., 2009).  

Another study highlighted that pro-inflammatory cytokines such as TNF, IL-1, and IL-6 

exert their effect directly on the hepatocytes and suppress transcriptional activity of PPAR 

and liver X receptor (LXR) by decreasing expression of nuclear hormone receptors: Retinoid 

X receptor alpha (RXRǂ), PPARǂ, PPARǄ, liver X receptor alpha (LXRǂ), and coactivators 

PPARgamma coactivator 1alpha (PGC-1ǂ), PGC-1ǃ, and steroid receptor coactivator 1 

(SRC-1). These factors play major role in the regulation of the expression of proteins 

involved in lipid and lipoprotein metabolism, and thus their suppression contributes to the 

alterations in hepatic lipid metabolism that occurs during inflammation (Kim et al., 2007). 

Recently, Stienstra et al. (2010) have demonstrated important impact of Kupffer cells on the 

development of liver steatosis. Interestingly, Kupffer cells have been shown to promote 

hepatic triglyceride storage via IL-1ǃ-dependent inhibition of PPARǂ expression and 

activity leading to decreased expression of PPARǂ target genes involved in mitochondrial 

and peroxisomal fatty acid oxidation. These findings point toward cross-talk between 

Kupffer cells and hepatocytes that may be implicated in the pathogenesis of fatty liver 

disease due to chronic inflammation (Stienstra et al., 2010). With regard to these findings, 

we observed elevated concentrations of liver triglycerides concomitantly with increased 

mRNA expression of IL-1ǃ in the liver of cachectic rats with adjuvant arthritis that indicate 

impaired lipid metabolism caused by inflammation. Although these alterations were not 

associated with decreased insulin sensitivity (estimated by homeostatic model assessment 

(HOMA) index) (Stofkova et al., 2010), our other study showed down-regulation of insulin-

dependent glucose transporter GLUT4 in adipocyte membranes of arthritic rats (Jurcovicova 

et al., 2010). At this point it is important to note that chronic treatment with IL-1ǃ slightly 

decreases the expression of GLUT4 and inhibits its translocation to the adipocyte plasma 

membrane in response to insulin. This inhibitory effect is due to a decreased amount of 

IRS-1 expression in adipocytes (Jager et al., 2007). Similarly, IL-6 and TNF-ǂ exert long term 

inhibitory effects on the gene transcription of IRS-1, GLUT4, and PPARǄ in 3T3-L1 

adipocytes (Rotter et al., 2003). 
In addition to disturbances in lipid homeostasis, pro-inflammatory cytokines have also been 
reported to affect glucose metabolism. In several studies, chronic elevation in TNF-ǂ, IL-1ǃ, 
or IL-6 levels as well as acute exposure to LPS were associated with reduced blood glucose 
concentrations without affecting insulin secretion (Metzger et al., 1997a, 1997b, 2004; 
Grempler et al., 2004; del Rey et al., 2006; Raetzsch et al., 2009). Insulin independent 
cytokine-induced decrease in circulating glucose levels was accompanied by reduced 
expression and/or activity of gluconeogenic enzyme glucose-6-phosphatase (Metzger et al., 
1997a, 1997b, 2004; Grempler et al., 2004), down-regulation of the mRNA level for GLUT2, 
the major glucose transporter of the liver, enhanced 2-deoxy-glucose uptake by peripheral 
tissues (Metzger et al., 2004), or decreased liver glycogen content (Metzger et al., 1997b). 
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Notably, increased IL-1ǃ levels are able to block D-fructose intestinal uptake through 
inhibition of GLUT5 intrinsic activity by induction of NO signaling pathways. This effect of 
IL-1ǃ importantly contributes to hypoglycemia (Garcia-Barrios et al., 2010). Nevertheless, 
besides the above mentioned peripheral mechanisms, hypoglycemic effect of IL-1ǃ also 
involves mechanisms integrated in the brain since blockade of IL-1 receptors in the brain 
partially counteracted IL-1-induced hypoglycemia (del Rey et al., 2006).  
Another cytokine that controls carbohydrate metabolism is macrophage migration 
inhibitory factor (MIF). Addition of MIF to differentiated L6 rat myotubes increased 
synthesis of fructose 2,6-bisphosphate (F2,6BP), a positive allosteric regulator of glycolysis. 
The same effect, followed by decreased serum glucose level, was found when TNF-ǂ was 
administered to mice. However, pretreatment with a neutralizing anti-MIF mAb completely 
inhibited this effect. Moreover, anti-MIF also prevented hypoglycemia and increased muscle 
F2,6BP levels in TNF-ǂ-knockout mice after LPS administration (Benigni et al., 2000).  
The cytokine-induced decline in plasma glucose levels may be an important initiating event 
that promotes the hydrolysis of triglycerides in adipose tissue and the proteolysis in muscles 
to provide gluconeogenic precursors. These results suggest that pro-inflammatory cytokines 
may cause metabolic disturbances through several direct and/or indirect mechanisms. 

6. Cytokines and cachexia-related chronic diseases 

Cachexia syndrome is characterized by an excessive expression of pro-inflammatory 
cytokines which is proposed as a consequence of an imbalance between apoptosis (pro-
inflammatory) and wound healing (anti-inflammatory) properties of immune cell responses 
(Khatami, 2008, 2009, 2011). This disturbance and the relationship between pro-
inflammatory cytokines, wasting, and mortality is a common denominator of multiple 
cachexia-related chronic diseases. Cachectic patients with chronic heart failure have 
markedly increased plasma levels of TNF-ǂ, IL-6 and IL-1 compared to non-cachectic 
patients with chronic heart failure having near-normal levels (Filippatos et al., 2005). Indeed, 
circulating levels of IL-6 and TNF-ǂ increase in patients as their functional heart failure 
classification deteriorates (Torre-Amione et al., 1996). Elevated levels of pro-inflammatory 
cytokines IL-1, IL-2, IL-6, IFN-Ǆ, and TNF-ǂ have also been observed in HIV patients with 
severe weight loss (Gelato et al., 2007). In patients with chronic kidney disease, increased 
serum CRP level positively correlating with IL-6 is associated with a higher cardiovascular 
disease risk. Moreover, particularly IL-6, whose level is dependent on stimulation of TNF-ǂ 
and IL-1, predicts mortality in patients with end-stage renal disease (Cheung et al., 2010). In 
patients with rheumatoid arthritis, the overproduction of TNF-ǂ and IL-1ǃ is associated 
with hypermetabolism and reduced body cell mass, and serum concentrations of these 
cytokines as well as IL-6, IL-15, IL-18, and IL-12 correlate strongly with disease severity 
(Roubenoff et al., 1994; Petrovic-Rackov & Pejnovic, 2006; de Paz et al., 2010). Patients with 
COPD also exhibit an increase in resting energy expenditure and a decrease in free-fat mass, 
and these patients have markedly increased acute phase reactant proteins and inflammatory 
factors (IL-8, soluble TNF receptors: sTNF-R55 and sTNF-R75) in their serum (Schols et al., 
1996). Furthermore, TNF-ǂ, IL-1ǃ and IL-6 blood levels are significantly elevated in patients 
with COPD compared to those in healthy subjects, and that may contribute to a shift toward 
catabolism and development of cachexia in these patients (Debigare et al., 2003; von 
Heahling et al., 2009; Singh et al., 2010). The pathophysiology of cancer cachexia is 
associated with number of pro-inflammatory, pro-cachectic and apoptotic factors (e.g. 
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Cytokine Proposed functions in the pathogenesis of cachexia Chronic disease 

TNF-ǂ Anorectic effect (↑synthesis of IL-1ǂ/ǃ in the brain); 
↑muscle protein degradation (activation of ubiquitin-
proteasome system and muscle-specific E3 ubiquitin ligases 
(MuRF-1 and atrogin-1/MAFbx) via NF-κB, FOXO1, 
MAPKs or PI3-K/Akt pathways); ↓muscle protein 
synthesis (negatively interferes with mRNA translation, 
and inhibits expression and effect of IGF-I); ↓myogenic 
differentiation (MyoD destabilization in a NF-κB-
dependent manner); ↑apoptosis of differentiated myotubes; 
↑insulin resistance (phosphorylation of IRS at inhibitory Ser 
sites); ↑triglyceride and cholesterol plasma levels; 
hypoglycemic effect (insulin independent) 

Cancer 
COPD 
HIV/AIDS 
Heart failure 
Renal failure 
Rheumatoid 
arthritis 
Sepsis 

IL-1ǂ 
and/or 
IL-1ǃ 

Anorectic effect (central melanocortin system activation); 
↓gastric emptying; ↑muscle protein degradation 
(↑expression of atrogin-1/MAFbx and MuRF-1 via p38 
MAPK and NF-κB signaling, ↑TNF-ǂ expression in skeletal 
and cardiac muscle); ↑insulin resistance (phosphorylation 
of IRS at inhibitory Ser sites, ↓IRS-1 expression in 
adipocytes, ↓GLUT4 expression and translocation to the 
plasma membrane, ↓liver PPARǂ expression and activity); 
↑triglyceride and cholesterol plasma levels; hypoglycemic 
effect (insulin independent) 

Cancer 
COPD 
HIV/AIDS 
Heart failure 
Renal failure 
Rheumatoid 
arthritis 
Sepsis 

IL-6 Anorectic effect (only after central administration or co-
administration with IL-1ǃ); predominantly ↑adipose tissue 
loss (↑lipolysis) than skeletal muscle loss; ↑insulin 
resistance (phosphorylation of IRS at inhibitory Ser sites 
and ↑SOCS-3 expression in liver, ↓IRS-1, GLUT4 and 
PPARǄ gene expression in adipocytes); ↑triglyceride and 
cholesterol plasma levels; hypoglycemic effect (insulin 
independent) 

Cancer 
COPD 
HIV/AIDS 
Heart failure 
Renal failure 
Rheumatoid 
arthritis 
Sepsis 

IFNs Anorectic effect (depression of neuronal electrical activity 
in the lateral hypothalamus); ↑muscle wasting (synergize 
TNF-ǂ effect); ↑insulin resistance (phosphorylation of IRS at 
inhibitory Ser sites) 

Cancer 
HIV/AIDS 

CNTF Long-term anorectic effect (suppression of NPYergic 
signaling in the hypothalamus, gp130-mediated activation 
of POMC neurons) 

Cancer 

LIF Anorectic effect (gp130-mediated activation of POMC 
neurons in ARC); promotes inhibition of myoblast 
differentiation mediated by TNF-ǂ; ↓contractile functions of 
cardiomyocytes; ↑insulin resistance in cardiomyocytes 

Cancer 
Heart failure 

Table 1. Selected key cytokines involved in cachexia-related chronic diseases 
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TNF-ǂ, IL-1, IL-6, IFN-Ǆ, LIF, and CNTF) that can be produced not only by the host's 
immune response but also by tumor cells. Prolonged excessive production of these 
mediators is causally related with the decreased quality of life and survival time of the 
patients (Argiles et al., 2005). Inflammatory cytokines such as TNF-ǂ, IL-1, IL-6, and INF-Ǆ 
are also implicated in anorexia, weight loss and whole body inflammation in patients with 
sepsis. However, sepsis shows a biphasic immunological pattern characterized by an early 
hyperinflammatory phase and a late anti-inflammatory phase which may lead to 
immunodeficiency. Therefore clinical trials aimed at down-regulating inflammatory mediators 
were not successful consistently (Kox et al., 2000). The potential contribution of key pro-
inflammatory cytokines to anorexia-cachexia syndrome in chronic diseases shows Table 1. 

7. Conclusion 

Our understanding how inflammatory cytokines disrupt physiological mechanisms 
regulating food intake, muscle homeostasis and insulin sensitivity, and how these 
disruptions affect disease severity and quality of life in patients with cachexia enhanced 
majorly over the past decade. At the present time, sufficient evidence is available to indicate 
that cytokines are able to: (1) Enter the brain and interact with neuronal circuits involved in 
the control of energy balance, resulting in anorexia; (2) Accumulate in the skeletal or cardiac 
muscle and accelerate muscle catabolism (the effect on cardiac muscle contributes to the 
increased risk of heart failure); (3) Interact with insulin signaling (directly or through altered 
lipid metabolism), causing insulin resistance and promoting muscle wasting; and (4) 
Generate dyslipidemia, the most important risk factor for atherosclerosis. Currently, despite 
their key role in the pathogenesis of cachexia, anti-cytokine strategies for the treatment of 
cachexia brought controversial results. Regarding a fact that cytokines act in a complex 
harmony of interactions, rather than as isolated triggers of their own, blocking a single 
cytokine cannot prevent cachexia. Therefore, there is a need for research focusing on 
pharmacological treatment not against a single cytokine but rather against multiple 
cytokines or transcriptional factors common for a set of crucial cytokines. 
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