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1. Introduction 

Chronic hepatitis B virus (HBV) infection is associated with a high risk for the development 
of chronic liver diseases (CLDs) which include hepatitis, cirrhosis and hepatocellular 
carcinoma (HCC). HCC is among the top five most prevalent tumor types worldwide, has 
few effective treatment options, and is highly lethal. The pathogenesis of CLD and HCC is 
immune mediated, and the virus has developed a number of defense mechanisms that 
essentially prevent infected cells from being effectively eliminated by the immune system. 
This, in part, involves the sustained, high level expression of the virus encoded protein, 
hepatitis B x antigen (HBx). Recent work has shown that HBx blocks pathways of innate 
immunity (Kumar et al., 2011; Wei et al., 2010), thereby blunting the development of 
adaptive immunity that is central to virus elimination. In addition, HBx inhibits immune 
mediated apoptosis by multiple pathways, including those mediated by Fas and tumor 

necrosis factor alpha (TNF). In this context, HBx has been shown to up-regulate TNF 
expression (Lara-Pezzi et al., 1998), which is thought to kill uninfected hepatocytes more 
readily than infected cells, thereby promoting expansion of the virus within the liver, since 
virus infected hepatocytes would preferentially regenerate following a bout of chronic 
hepatitis. HBx also switches the growth signals mediated by elevated transforming growth 

factor beta 1 (TGF1) from that of negative growth regulation to that of positive growth 

regulation. TGF1 is a transcriptional target of HBx (Yoo et al., 1996), suggesting that HBx 
expression in the liver promotes fibrogenesis and the development of cirrhosis. Within the 
infected hepatocyte, HBx blocks the action of tumor suppressors, such as p53 and Rb 
(Feitelson et al., 2008), and up-regulates the expression of selected host genes that strongly 
promote hepatocarcinogenesis even in the absence of HBx (see below). Recent work has also 
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shown that HBx promotes phenotypic changes in hepatocytes characteristic of epithelial-to-
mesenchymal transition (EMT). One of the molecular hallmarks of EMT, down-regulated 
expression of the cell adhesion molecule, E-cadherin, is blocked by sustained HBx 
expression via several mechanisms (Feitelson et al., 2009). HBx also overrides immune 
mediated apoptotic signals by constitutively activating key signaling pathways, such as 

nuclear factor kappa B (NF-B), which is known to be hepatoprotective (Beg et al., 1995, 
1996), and phosphatidylinositol 3-kinase (PI3K)/Akt, which is known to promote growth in 

many tumor types (Chung et al., 2004). The finding that HBx stabilizes -catenin by a 
variety of mechanisms, and up-regulates ErbB2 (Liu et al., 2009), further underscores the 
importance of these actions in maintaining hepatocellular growth and survival required for 
virus propagation during the many years and decades that span chronic infection. 
Unfortunately, these same pathways are also those that contribute centrally to the 
development of HCC. This body of work provides many opportunities for the development 
of diagnostic markers that form a fingerprint of those chronically infected patients who are 
most likely to go on and develop HCC. These markers will serve as therapeutic targets for 
the repositioning of known drugs for this new indication, and/or the discovery of new 
drugs that will target rate limiting pathways during multi-step carcinogenesis. In doing so, 
this work proposes that the chemoprevention of cancer, instead of the treatment of tumor 
bearing patients, is worth pursuing, and could likely reduce or eliminate the morbidity and 
mortality associated with chronic HBV infection long before tumors appear. This represents 
an important challenge, since the knowledge gained will identify cause and effect 
relationships important for the identification of definitive biomarkers and pharmacological 
targets that participate decisively in tumorigenesis.  

2. Relationship between HBx expression and the pathogenesis of CLD and 
(HCC): A model 

HBx is one of four genes expressed by HBV during infection, and is known to have gene 
regulatory functions. Truncated envelope polypeptides that appear during chronic infection 
may also regulate gene expression and contribute to the pathogenesis of CLD and liver 
cancer (Chen et al., 2006; Lauer et al., 1992), but their contributions are less well 
characterized. HBx has been defined as a trans-activating protein that promotes virus gene 
expression and replication during infection (Belloni et al., 2009; Spandau & Lee, 1988; Tsuge 
et al., 2010). Experimental infection of newborn woodchucks with the related woodchuck 
hepatitis virus (WHV) results in the development of carriers in nearly 100% of cases, and 
most of these go on to develop severe chronic hepatitis and HCC (Tennant & Gerin, 2001). 
However, infection of neonatal woodchucks with an X protein negative clone of WHV failed 
to establish the chronic carrier state (Chen et al., 1993; Zoulim et al., 1994). This suggests that 
X protein promotes viremia. The impact of X protein on virus gene expression and 
replication is also supported by considerable in vitro data (Benhenda et al., 2009; Keasler et 
al., 2009; Tsuge et al., 2010). During the course of CLD, bouts of hepatitis are associated with 
hepatocellular destruction and regeneration. Among infected cells, the X open reading 
frame (ORF), which is at the end of the virus genome, becomes repeatedly integrated into 
host DNA at the replication forks that exist in host DNA during regeneration. This suggests 
that the intracellular levels of HBx increase with the severity and progression of CLD, and 
there is now considerable experimental evidence to support this hypothesis (Feitelson et al., 
1993a; Jin et al, 2001; Wang et al., 1991a, 1991b). In fact, the highest levels of HBx expression 
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have been observed in cirrhotic nodules (Wang et al., 1991a, 1991b). As indicated above, 
HBx trans-activates HBV enhancers and promoters, thereby promoting long term virus 
replication. However, it is proposed that when the levels of intracellular HBx increase with 
time among patients with CLD, it trans-regulates the expression of many cellular genes as 
well (Balsano et al., 1994; Twu & Schloemer, 1987) by a variety of mechanisms. It is 
postulated that these changes in cellular gene expression help to make cells more permissive 
to continued virus replication, but also protect the cells from immune responses aimed at 
removal of infected hepatocytes. This is accomplished by triggering EMT (Du et al., 2010; 
Yang et al., 2009), by promoting up-regulated expression of selected oncogene associated 
pathways, and by turning off tumor suppressor, senescence and apoptotic pathways (Kew, 
2011; Oishi et al., 2007; Park et al., 2011; Xu et al., 2010) that are often activated by immune 
responses against virus infected cells. The fact that HBx promotes cell cycle progression and 
cell growth (Feitelson et al., 2005), means that when this happens in normal hepatocytes, 
negative growth regulatory (senescence and tumor suppressor) pathways are triggered to 
reestablish homeostasis. The latter may underlie the putative “proapoptotic” properties of 
HBx observed in cell lines and in vivo, even though there is a considerable literature 
showing that HBx is also “anti-apoptotic” (Assrir et al., 2010). In this model, it is proposed 
that apoptosis is a cellular response to inappropriate growth stimulatory signals in the liver 
mediated by HBx during chronic infection and not due to an inherent property of HBx. 
Although there is considerable literature suggesting that HBx inhibits several DNA repair 
systems (e.g., Cheng et al., 2010; Martin-Lluesma et al., 2008; Mathonnet et al., 2004; Qadri et 
al, 2011), which would promote the development of mutations in the liver prior to the 
appearance of tumors, it appears that a major contribution of HBx to the pathogenesis of 
CLD is epigenetic. This is because many natural effectors of HBx correlate with HBx 
expression in chronically infected human livers and because mutations are not widespread 
in preneoplastic hepatocytes (Feitelson et al., 2002). The finding that HBx and its natural 
effectors (target genes) correlate in nontumor liver, but are mostly absent from adjacent 
tumor tissues, suggests that HBx and its target genes drive pathogenesis prior to the 
appearance of tumor, but are no longer rate limiting once tumors appear. In the latter case, it 
is proposed that epigenetic mechanisms mediated by HBx are replaced by genetic 
mechanisms that are independent of HBx. If so, then HBx may play a predominant role in 
the pathogenesis of CLD, but a more modest role in tumor progression.  

3. Natural targets of HBx 

Early work characterized HBx as a trans-regulatory protein that was initially shown to up-
regulate the expression of almost every target gene that was evaluated using mostly reporter 
gene assays in transient transfected cell lines (Rossner, 1992). It seemed that in order to 
better understand what HBx was doing in vivo, the natural effectors and targets of HBx in 
the infected liver had to be identified and characterized. HBx targets that were up- or down-
regulated were identified by microarray analysis, miRNA arrays, chromatin 
immunoprecipitation, and by other techniques (e.g., Hu et al., 2006; Sung et al., 2009; Wu et 
al., 2001, 2002). Some of the targets include telomerase (Liu et al, 2010), the ras pathway 
signaling molecule, RASSF1A (Yang, et al, 2010), the metastasis associated protein, MTA 

(Bui-Nguyen et al, 2010), -catenin (Lian et al., 2006; Pan et al., 2007), E-cadherin (Liu et al., 
2006), c-myc (Wu et al., 2001), and DNA methyltransferase 1 (Zheng et al., 2009). HBx is a 
protein binding protein that also regulates gene expression by activating a number of signal 
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transduction pathways in the cytoplasm (e.g., NF-B, PI3K/Akt, JAK/STAT, PKC, AP-1, 
ras, src, Wnt and others) (Feitelson & Duan, 1997; Henkler & Koshy, 1996; Kew, 2011). 
Constitutive activation of these signaling pathways has been identified with up-regulated 
expression of specific target genes. For example, HBx mediated activation of the mitogen-
activated protein kinase (MAPK) pathway has been shown to up-regulate the expression of 

hypoxia-inducible factor-1 alpha (HIF-1) (Yoo et al., 2003), which promotes the survival of 
hepatocytes in cirrhotic nodules, where a hypoxic environment is known to exist during 
CLD. Further, HBx mediated constitutive activation of Wnt signaling is associated with up-
regulated expression of c-myc and cyclin-D1, both of which promote hepatocellular growth. 
In the nucleus, HBx interacts with the basal transcription machinery (Haviv, et al., 1995, 
1996), binds to the transcriptional scaffolds CBP/p300 (Cougot et al., 2007) and mSin3a 
(Arzumanyan et al., 2011), and alters the extent of DNA methylation and histone acetylation 
(Zheng et al., 2009). Further, there is increasing evidence that HBx alters the expression of 
host gene expression by up- or down-regulating selected miRNAs (Kong et al., 2011; Wu, et 
al., 2011). In many cases, the natural targets of these epigenetic changes have not been 
identified. The importance of doing so will provide both prognostic markers and 
therapeutic targets relevant to the pathogenesis of CLD and HCC, thus providing 
opportunities for earlier intervention.  

3.1 HBx and fibrogenesis 

3.1.1 Transforming growth factor beta 1 (TGF1) 

The close association between intrahepatic expression of HBx and the severity of CLD 

suggests that HBx may take a part in driving pathogenesis. TGF1 is an important mediator 

of fibrosis and apoptosis in carriers with CLD (Castilla et al., 1991; Liu et al., 1999), as 

indicated by the direct correlation between serum TGF1 levels, elevated aminotransferases, 

and fibrosis scored in liver biopsy specimens (Flisiak et al., 2004). HBx has been shown to 

transcriptionally up-regulate the expression of TGF1 both in cell cultures and in HBx 

transgenic mice (Martin-Vilchez et al., 2008; Norton et al., 2004; Yoo et al., 1996). In liver 

tissue with HBx protein expression, phospho-Smad2 was detectable, suggesting a functional 

link between viral protein expression and TGF-1 signaling. Phospho-Smad2 staining 

correlated significantly with fibrotic stage in patients with HBV infection and 

steatosis/steatohepatitis (Weng et al., 2009). HBx mediated up-regulation of TGF1 was 

further potentiated by suppressed expression of the natural inhibitor of TGF1, alpha-2-

macroglobulin (2M, Figure 1) (Pan et al., 2004). HBx may suppress 2M gene expression by 

either activation of NF-B, which then blocks the activation of the 2M gene by STAT3, 

and/or by the HBx activation of PI3K, which then blocks 2M expression. Independent 

work showed that HBx also shifted TGF1 signaling from tumor suppression to tumor 

promotion in the livers of patients with chronic hepatitis B, and that this involved 

differential phosphorylation of smad3 in vivo (Murata et al., 2009). HBx was also shown to 

enhance TGF signaling by stabilizing a protein complex consisting of smad4 and 

components of the basic transcriptional machinery (Lee et al., 2001). The fact that HBx 

stimulates multiple signal transduction pathways (e.g., NF-B, PI3K, MAPK, Wnt, ras, src, 

etc), combined with altered smad signaling, also appear to override the homeostatic and 

growth inhibitory properties of TGF1. This results in the development of a strong 

profibrogenic environment in the liver (Akhurst, 2002) which may underlie the close 
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relationship between HBx, inflammation, and fibrogenesis seen in earlier studies (Wang et 

al., 1991a, 1991b). In this context, hepatic inflammation, fibrosis and cell death were 

demonstrated in TGF1 transgenic mice (Sanderson et al., 1995), underscoring the 

contribution of elevated TGF1 expression to CLD. Interestingly, HBx also blocks TGF1 

mediated growth inhibition and apoptosis, in part, through the up-regulation of PI3K (Shih 

et al., 2000), suggesting that HBx may confer resistance to TGF1 mediated growth 

inhibition, while uninfected cells remain sensitive, thereby favoring survival of virus 

infected hepatocytes. These observations are consistent with the strong correlation between 

HBx staining and the progression of CLD among HBV infected carriers (Jin et al, 2001; Wang 

et al., 1991a, 1991b).  

 

Fig. 1. Proposed model of how HBx may contribute to the development of cirrhosis. See the 
text for details. 

3.1.2 Fibronectin (FN) 

This close relationship is exemplified by the observations that HBx activation of NF-B 
resulted in the stimulation of the fibronectin (FN) promoter (Figure 1), and that liver tissue 
samples from chronically infected patients showed a strong correlation between HBx and 
FN mRNA in hepatocytes from fibrotic and cirrhotic livers (Norton et al., 2004). In this 
context, the fact that HBx binds to and inactivates the tumor suppressor protein, p53, both in 
vitro and in vivo (Feitelson et al., 1993b; Ueda et al., 1995), and that p53 normally 
suppresses the FN promoter, suggest that inactivation of p53 also results in increased FN 
production. Interestingly, up-regulation of FN in HBx expressing cells also showed a 
modest (50%) decrease in adherence to FN (Lara-Pezzi et al., 2001a, 2001b) and depressed 

expression of the FN receptor, 51 integrin. There was also an observed decrease in the 

levels of collagen/laminin receptor 1 subunit in HBx positive compared to negative cells 
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(Lara-Pezzi et al., 2001a), suggesting that HBx promotes the detachment of infected cells 
from the extracellular matrix (ECM). This detachment was associated with increased cell 
migration, indicating that changes in the ECM-cell relationship probably also contributed 
to alterations in tissue morphology that accompany the development of cirrhosis. Since 

activated ras and src signaling depress 51 expression (Varner et al., 1995), that HBx 
stimulates ras and src signaling (Klein & Schneider, 1997), and that HBx disrupts 
adherens junctions in a src dependent manner (Lara-Pezzi et al., 2001b), it is likely that the 
activation of these signaling pathways by HBx contribute importantly to decreased 
integrin expression, decreased cell adhesion, and an increased propensity for cell 
migration and loss of tissue morphology in the infected liver, and to metastasis in already 
established tumors.  

3.1.3 Lysyl hydroxylase (LH3) 

As indicated above, the accumulation and remodeling of ECM is central to the development 
of fibrosis and cirrhosis. In this context, the finding that HBx up-regulates the expression 
of the enzyme, lysyl hydroxylase 3 (LH3) in liver cells, and that LH3 co-stains with HBx in 
livers of HBV infected patients (unpublished observations), suggests another mechanism 
whereby an HBx target gene may contribute to fibrosis (Figure 1). LH3 mediates the 
chemical cross-linking of several collagen and collagen-like molecules (Myullyla et al., 
2007). This may promote stabilization of the ECM during chronic infection. Given that 
LH3 knockout mice with disrupted formation of basement membranes during 
embryogenesis resulted in embryonic lethality (Myullyla et al., 2007), the over-expression 
of LH3 during chronic HBV infection may promote the development and persistence of 
basement membranes that are characteristic of fibrosis. This would sever the intimate 
relationship between hepatocytes and the bloodstream observed in normal livers. 
Although LH3 is associated with the endoplasmic reticulum,  it has also been found in the 
extracellular space and in serum (Salo et al., 2006), implying that LH3 serum levels may 
be elevated in the blood prior to the development of HCC.  

3.1.4 Does HBx activate stellate cells? 

It is also possible that HBx expression promotes stellate cell activation. Although there is 
little evidence that HBV infects stellate cells, when HBx was transfected into a human 
stellate cell line, it promoted proliferation and up-regulated expression of fibrosis related 
molecules (Guo et al., 2009). Independent work showed that HBx expressing hepatocytes 
induced paracrine activation of human and rat hepatic stellate cells. When these cells were 
exposed to conditioned medium from HBx-expressing hepatocytes, they showed increased 
expression of collagen I, connective tissue growth factor, alpha smooth muscle actin, matrix 

metalloproteinase-2, and TGF, together with an enhanced proliferation rate (Martin-
Vilchez et al., 2008). More recently, hedgehog signaling and ligand production have been 
demonstrated to be activated in clinical samples from HBV (and hepatitis C virus) infected 
patients These ligands promoted the in vitro expansion of liver myofibroblasts, activated 
endothelial cells, and progenitors expressing markers of tumor stem/initiating cells (Pereira 
et al., 2010). Independent data has shown that hedgehog signaling is profibrogenic, in that it 
promotes activation and EMT in quiescent hepatic stellate cells (Choi et al., 2009), and in the 
context of cholestatic liver injury (Omenetti et al., 2011). Given that hedgehog signaling is 
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also known to promote tissue remodeling in the liver (Omenetti & Diehl, 2008), it is possible 
that this may contribute to the progression and formation of cirrhotic nodules in the liver of 
chronically infected patients. Preliminary data also suggests that HBx activates hedgehog 
signaling in liver cancer cells (Kim et al., 2011), although the role of this activation in 
hepatocarcinogenesis remains to be studied. Further, it is not clear whether the up-
regulation of hedgehog ligands is activated by HBx, and whether this in some way 
contributes to fibrogenesis.  

3.2 HBx up-regulated genes in chronically infected liver 

3.2.1 Up-regulated gene, clone 7 (URG7) 

Subtractive hybridization of mRNAs from HBx positive compared to negative human 
hepatoblastoma (HepG2) cells yielded a set of differentially expressed mRNAs that revealed 
additional mechanisms whereby HBx contributes to the pathogenesis of HCC. Several 
unique mRNAs were identified by subtractive hybridization, and among them were a 
number of previously uncharacterized transcripts. One of them, URG7, encoded a 99 amino 
acid polypeptide with no distinguishing functional motifs (Lian et al., 2001), was found to 

down-regulate the expression of the TGF1 inhibitor, 2M (Figure 1), suggesting that it 
contributes to the development and progression of fibrosis. It appears to do so by activation 

of PI3K, by stabilization of -catenin, and by blocking the activities of caspase 8 and 3 (Pan 
et al., 2007) (Figures 1 and 2). Among its many activities, HBx also activates PI3K (Lee et al., 

2001), stabilizes -catenin (Lian et al., 2006), and blocks caspase 3 (Gottlob et al., 1998), 
suggesting that these functions may be carried out by URG7. Further data showed that 
both HBx and URG7 activated fragments of the β-catenin promoter, and also promoted 
expression of β-catenin target genes. These include c-myc (Terradillos et al., 1997), multi-
drug resistance gene 1 (MDR1) (Doong et al., 1998) and cyclin D1 (Park et al., 2006). While 

the activation of -catenin target genes by URG7 suggests that the latter promotes tumor 
formation, URG7 did not promote growth of HepG2 cells in soft agar, nor did it accelerate 
the outgrowth of HepG2 based tumors in SCID mice (Lian et al., 2001). Its role in blocking 

apoptosis, however, is shared with that of -catenin (Chen et al., 2001).  Importantly, one 
of the major characteristics of tumor cells is resistance to immune mediated apoptosis. The 
finding that URG7 is over-expressed in infected liver, but not in HCC cells from clinical 
specimens, suggests that resistance to apoptosis precedes the development of tumor, and 
that it probably protects HBV infected cells from immune damage and elimination. On the 
molecular level, caspase 8, which is just up-stream of caspase 3, transmits death signals 

from Fas (T cell) and from TNF signaling (Figure 2). In this context, it had previously 
been shown that HBx blocks Fas mediated killing in primary human hepatocytes (Diao et 
al., 2001), which may actually be mediated by URG7. Further, the finding that HBx 

activates NF-B (Su & Schneider, 1996), that activated NF-B protects hepatocytes from 

cell death (Beg et al., 1995, 1996), and that NF-B transcriptionally activates URG7 (Pan et 
al., 2001), suggest a pathway that promotes persistence of the carrier state (and sustained 
HBV replication) even in the presence of recurring immune responses spanning many 

years. The findings of elevated TNF production in human hepatocytes infected with 
HBV, and that HBx targets this up-regulation (Lara-Pezzi et al, 1998), not only suggests 

that TNF is a target for HBx, but is also consistent with the strong correlation between 
HBx expression and inflammatory liver disease (Jin et al., 2001; Wang et al., 1991a, 1991b). 
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Additionally, the observation that HBx activates the expression of Fas ligand in HCC cell 
lines (Shin et al., 1999), may provide a way for virus infected cells to escape direct T cell 
killing by inducing apoptosis in such T cells. This would not only promote chronicity, but 
in tumor cells, an escape from immune elimination.  

3.2.2 Up-regulated gene 11 (URG11) and hepatocarcinogenesis 

Another transcript identified by subtractive hybridization in HBx positive compared to 
negative HepG2 cells encoded a novel protein provisionally designated as URG11 (Lian et 
al., 2003). The protein product was about 70kDa (673 amino acids) in size and contained five 
von Willebrand factor type-C repeats and one C-type lectin domain. Functional 
characterization showed that over-expression of URG11 significantly stimulated cell growth 
in culture, anchorage-independent growth in soft agar, accelerated tumor formation, and 
yielded larger tumors in SCID mice injected subcutaneously with HepG2 cells. Further  

work showed that HBx trans-activated URG11, and that URG11 trans-activated the -catenin 
promoter. URG11 specific siRNA inhibited the growth of HBx expressing liver cells in 

serum free medium. The latter was associated with depressed levels of -catenin. As  

 

Fig. 2. Model showing selected steps of how HBx inhibits apoptosis and promotes 
tumorigenesis. HBx alters pathways involving URG7 (in purple), URG11 (in green), and 
ErbB-2 (in red). See the text for additional details. 
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with URG7, there was extensive co-staining between HBx and URG11 in chronically 
infected liver (Lian et al., 2006) but not in tumor. This suggests that URG11 promotes 
hepatocellular growth prior to the appearance of HCC. The ability of URG11 specific siRNA 
to block the growth of liver tumor cells both in vitro and in vivo, not only underscores the 
importance of elevated URG11 to cell growth, but also suggests that it may be a novel target 
for the development of specific therapeutics against HCC (Fan et al., 2011). Independent 
work has recently shown that URG11 was induced under hypoxic conditions in human 
kidney tubule cells (Du et al., 2010). The latter was associated with increased levels of HIF-

1, which is also known to be a target of HBx (Holotnakova et al., 2010). Importantly, 
HIF-1 is known to trans-activate VEGF in vivo (Yoo et al., 2003), suggesting that 
neovascularization may occur in cirrhotic nodules prior to the appearance of HCC. If this 
occurs during the pathogenesis of chronic hepatitis B, it would most likely be observed in 
cirrhotic nodules, since this represents a hypoxic environment characterized by high 
levels of HBx expression (Wang et al., 1991a, 1991b). Interestingly, elevated expression of 
URG11 in kidney tubule cells was also associated with suppression of E-cadherin, and up-
regulation of the mesenchymal markers vimentin and alpha-SMA, suggesting that URG11 
is associated with EMT. In chronic HBV infection, the development of cirrhosis is 
accompanied by considerable alterations in the tissue architecture within the liver, 
implying that URG11 may also play a significant role in tissue remodeling during the 
pathogenesis of chronic infection.  

3.2.3 Elevated vascular endothelial growth factor receptor 3 (VEGFR-3) 

Vascular endothelial growth factor receptor 3 (VEGFR-3), which is associated with 
angiogenesis, is a receptor tyrosine kinase that is expressed in lymphatic endothelial cells 
(Iljin et al., 2001). Binding of VEGFR-3 to the ligands VEGF-C or VEGF-D stimulate 
lymphangiogenesis (Alitalo & Carmeliet, 2002), while in carcinogenesis, the production of 
VEGFs by tumors promote metastases and result in decreased survival (Su et al., 2006). 
Elevated VEGF has been found in patients with HCC (Dahr et al., 2002, Poon et al., 2003). 
VEGFR-3 is also expressed in tumor cells from several tumor types (Bando et al., 2004, Su et 
al., 2006), including HCC (Dahr et al., 2002), implying the existence of an 
autocrine/paracrine loop that promotes tumor development independent of 
lymphangiogenesis (Su et al., 2006). In HCC, elevated VEGFR-3 is associated with portal 
vein invasion of tumors, increased hepatic tumor recurrence, and shorter survival (Dhar et 
al., 2002), suggesting that VEGFR-3 is important in the pathogenesis of HCC. In this context, 
differential display of HBx positive compared to negative cells showed that HBx up-
regulated the expression of an mRNA which encoded a splice variant of VEGFR-3 (Lian et 
al., 1997). This was verified at the mRNA and protein levels in HBx positive compared to 
negative HepG2 cells. In infected liver, expression of VEGFR-3 was prominent in nodules of 
HCC and correlated with HBx expression. VEGFR-3 stimulated cell cycle in culture, 
anchorage independent growth in soft agar, and accelerated tumor formation and larger 
tumor size in SCID mice injected with HepG2 cells over-expressing VEGFR-3. Further work 
showed that over-expression of VEGFR-3 in the absence of HBx resulted in activation of 

PI3K/Akt, which then activated -catenin gene expression (Figure 2), and with inactivation 
of the tumor suppressor, PTEN. Interestingly, HBx also mediates these changes, suggesting 
that they may be actually carried out by up-regulation of VEGFR-3. These findings also 
suggest that in addition to lymphangiogenesis, VEGFR-3 may promote tumorigenesis in 
HBx associated HCC. 
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3.2.4 Elevation of -catenin and suppression of E-cadherin 

Constitutive activation of-catenin is characteristic of many tumor types (Fukuchi et al., 

1998; Morin et al., 1997). This results in constitutive Wnt signaling, where -catenin 

translocates to the nucleus and stimulates the expression of genes that promote 

tumorigenesis (Clevers & van de Wetering, 1997; Peifer & Polakis, 2000; Terradillos et al., 

1997). Importantly, -catenin mutations are found in small HCCs and in preneoplastic liver 

(Calvisi et al., 2001; Terris et al., 1999,), suggesting they occur early in tumor development. 

The finding of frequent -catenin mutations in a subset of human HCC (de La Costa et al., 

1998, Miyoshi et al., 1998), especially in HBV-negative tumors (Hsu et al., 2000), implies that 

the majority of -catenin activation must occur by mechanisms other than mutation. In the 

chronically infected liver, HBx has been shown to be associated with the constitutive 

activation of wild type -catenin. The finding that the activation of wild type -catenin was 

associated with URG11 (Lian et al., 2006) and URG7 (Pan et al., 2007), underscores the 

importance of this activation in hepatocarcinogenesis. Moreover, -catenin appears to be 

stabilized by a number of mechanisms, including trans-activation of the -catenin promoter 

(Lian et al., 2006; Pan et al., 2007), inhibition of proteasomal degradation (Cui et al., 2006; 

Zhang et al., 2000), and suppression of E-cadherin expression (Arzumanyan et al., 2011; Lee 

et al., 2005; Liu et al., 2006) (Figure 2). The latter is of particular importance because 

suppression of the cell adhesion protein, E-cadherin, is a hallmark of EMT, which is 

important to the pathogenesis of CLD and HCC. The importance of suppressed E-cadherin 

expression is further underscored by the findings that this occurs by DNA methylation of 

the E-cadherin promoter (Lee et al., 2005; Liu et al., 2006), by the inhibition miR-373 

expression by HBx, and by HBx mediated stimulation of histone deacetylase (HDAC) at the 

E-cadherin promoter (Arzumanyan et al., 2011). Independent of the mechanism involved, 

suppression of E-cadherin has important ramifications upon -catenin. Normally, -catenin 

participates in cell adhesion by serving as a link between E-cadherin and the cytoskeleton. 

When E-cadherin expression is suppressed, -catenin is released from this role and 

translocates to the nucleus where it activates genes that promote cell growth. Thus, in the 

presence of HBx, there is an inverse correlation with E-cadherin expression, and a direct 

correlation with the accumulation of cytoplasmic and nuclear -catenin at the expense of 

membranous -catenin, both in cultured cells and in clinical specimens (Arzumanyan et al., 

2011; Lian et al., 2006; Liu et al., 2006). This suggests a tight coupling between EMT and the 

promotion of hepatocellular growth prior to the development of HCC (Du et al., 2010). 

3.2.5 Elevated expression of ErbB-2 

Another natural effector of HBx is ErbB-2 (Liu et al., 2009). ErbB-2 (HER2 or neu) is a 

member of the epidermal growth factor receptor tyrosine kinases that is involved in the 

transmission of differentiation and proliferation signals (Olayioye et al., 2000, Yarden & 

Sliwkowski, 2001). High levels of ErbB-2 have been shown in various types of cancers 

(Sauter et al., 1993; Slamon et al., 1987; Tanner et al., 1996), and in some tumors, over-

expression is associated with poor prognosis. In breast cancer, up-regulated ErbB-2 appears 

to be an early event, since it appears in tumor and nontumor tissue (Menard et al., 2002). In 

HCC, elevated ErbB-2 has been reported in hyperplastic nodules (Niu & Wang, 2005) and in 

30-40% of HCCs (Chen et al., 2002; Neo et al., 2004). However, ErbB-2 was not found in HCC 
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tissues from other studies (Alitalo & Carmeliet, 2002; Hsu et al., 2002; Vlasoff et al., 2002). 

The finding that HBx up-regulates and stabilizes -catenin (Lian et al., 2006), which in some 

tumors is activated by elevated levels of ErbB-2, suggested that constitutive expression of -

catenin may be associated with elevated ErbB2. Accordingly, when HBx positive and 

negative cells were subjected to proteomics analysis, ErbB-2 was up-regulated in HBx 

expressing but not control cells. ErbB-2 was also strongly up-regulated in HBV infected 

liver, where it correlated with HBx expression, and weakly in some HCC nodules (Liu et al., 

2009). Among tumor bearing patients, strong ErbB-2 staining in the liver was associated 

with dysplasia, and a shorter survival after tumor diagnosis. This implies that elevated 

ErbB-2 is an early marker of HCC. Treatment of HBx expressing cells with ErbB-2 specific 

siRNA not only reduced ErbB2 expression, but also reduced the expression of -catenin, 

suggesting that ErbB-2 contributed to the stabilization of -catenin. ErbB-2 specific siRNA 

also partially blocked the ability of HBx to promote DNA synthesis and growth of cells in 

vitro (Liu et al., 2009). These results suggested that ErbB-2/-catenin up-regulation 

contributed to HBx mediated hepatocellular growth. The additional finding that HBx 

stimulates expression of the epidermal growth factor receptor (EGFR or ErbB1) (Menzo et 

al.,1993), and that EGFR signaling stabilizes -catenin (Takahashi et al., 1997), suggested that 

EGF signaling may be strongly activated in patients at high risk for HCC or with already 

established tumors. This suggests that elevated ErbB-2 may be rate limiting in tumor 

formation, and if so, may be a therapeutic target (Altimari et al., 2003). Further, the 

accumulation of wild type -catenin in the presence of elevated ErbB-2 correlated with the 

activation of PI3K/Akt signaling, which is known to be activated by HBx and ErbB-2 (Lian 

et al., 2006; Shih et al., 2000; Yarden & Sliwkowski, 2001) (Figure 2). PI3K/Akt activity may 

also be stimulated by src, the latter of which is activated by HBx, early in tumor 

development (Lara-Pezzi et al., 2001b; Shih et al., 2003). Further, the peptidyl prolyl 

isomerase, Pin1, is up-regulated in HCC, and is known to stabilize both HBx (Pang et al., 

2007) and ErbB-2 (Lam et al., 2008), suggesting a variety of possible mechanisms underlying 

the close HBx/ErbB-2 relationship. 

3.2.6 Other natural target genes of HBx 

In addition to transcriptional regulation of gene expression, HBx up-regulates expression of 

the ribosomal protein, S15a (Lian et al., 2004) and down-regulates expression of the 

translation initiation factor, Sui1 (Lian et al., 1999). S15a is a highly conserved protein (Chan 

et al., 1994; Reed, 1980; Schaap et al., 1995) that promotes mRNA/ribosome interactions 

early in translation (Lavoie et al., 1994). S15a also stimulates growth in yeast (Pringle et al., 

1981; Reed, 1980,), in plants (Bonhan-Smith & Moloney, 1994; Bonham-Smith et al., 1992) 

and in human lung carcinoma cells (Akiyama et al., 2000). The observation that S15a 

stimulates hepatocellular growth and survival in vitro, and tumor formation in vivo, suggests 

that it also plays a role in hepatocarcinogeneis, and that HBx contributes to transformation, 

in part, at the level of protein translation by up-regulated expression of S15a (Lian et al., 

2004). As stated above,, HBx was also shown to depress the expression of the translation 

initiation factor, sui1. Sui1, whose function is to work with eIF-2 to enable the initiator 

tRNAMET to establish ribosomal recognition of an AUG codon (Yoon and Donahue, 1992), 

suggests that the expression of hu-sui1 contributes to the regulation of protein translation. In 
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vivo work showed that sui1 was expressed in nontumor liver but not in tumor cells from 

patients with HCC. Sui1 inhibited cell growth in culture, in soft agar, and partially inhibited 

tumor formation in nude mice, suggesting that suppression of sui1 may result in the 

abrogation of negative growth regulation that contributes to the development of HCC (Lian 

et al., 1999). Given that S15a and sui1 are both involved in regulating translation, it is likely 

that HBx also contributes to HCC by altering gene expression at multiple steps within 

translation, although the mRNAs that are differentially translated remain to be identified. 

HBx also stimulates the expression of the novel protein, URG4 (Tufan et al., 2002). URG4, 

encodes a protein of about 104 kDa that was strongly expressed in HBV- infected liver and 

in HCC cells, where it co-stained with HBx, and was weakly expressed in uninfected liver, 

suggesting URG4 was an effector of HBx in vivo. Over-expression of URG4 without HBx in 

human hepatoblastoma cells promoted hepatocellular growth and survival in tissue culture 

and in soft agar, and accelerated tumor development in nude mice (Tufan et al., 2002). 

URG4 over-expression was associated with elevated cyclin D1 expression, and treatment of 

such cells with URG4 specific siRNA reduced both cyclin D1 expression and inhibited cell 

cycle progression (Tufan et al., 2010). These observations suggest that URG4 may be an 

oncogene that contributes to HBV associated HCC. Independent work showed that over-

expression of URG4 in osteosarcoma tissues directly correlated with tumor recurrence and 

metastasis, as well as with the proliferative activity of osteosarcoma cells. Patients with high 

expression of URG4 had shorter survival time, suggesting that URG4 might be rate limiting 

in carcinogenesis and a valuable prognostic marker in osteosarcoma patients (Huang et al., 

2009). Thus, URG4 may contribute to carcinogenesis outside of the liver. 

HBx also appears to up-regulate the expression of insulin - like growth factor 2 (IGF-2) and 

the IGF-1 receptor in HCC (Kim et al., 1996; Su et al., 1994). The finding that insulin-like 

growth factor-2 expression, which is normally observed only in fetal liver (Soares et al., 

1985), is elevated in HCCs (D’Arville et al., 1991, Cariani et al., 1991), and in premalignant 

proliferative nodules in the liver (Cariani et al., 1988; D’Arville et al., 1991), suggest that its 

reactivation may be an early step in the development of this tumor type. The elevation of 

IGF-2 expression in HCCs from HBV infected but not uninfected patients, combined with 

the finding of a strong correlation between IGF-2 and HBx in the liver by 

immunohistochemical staining (Su et al., 1994), suggest that IGF-2 may be a natural target of 

HBx during chronic infection. In human hepatoma cell lines, IGF-2 was expressed strongly 

in growing cells, but was undetectable in confluent cultures (Su et al., 1994), suggesting that 

it was associated with cell proliferation. At the molecular level, the tumor suppressor, PTEN 

normally suppresses IGF-2 expression (Kang-Park et al., 2003), but in the presence of HBx, 

PTEN expression is blocked, resulting in activation of IGF-2 (Chung et al., 2003). Normally, 

PTEN is up-regulated by another tumor suppressor, p53, but since HBx binds to and 

inactivates p53 (Feitelson et al., 1993b; Wang et al., 1994), PTEN expression also drops 

(Chung et al., 2003). In addition, HBx activation of Sp1 via protein kinase C (PKC) and 

p44/p42MAPK signaling pathways are also operative in promoting IGF-2 gene expression 

(Kang-Park et al., 2001). These multiple pathways underscore the importance of IGF-2 up-

regulation in hepatocarcinogenesis. Finally, the finding that HBx stimulates the expression 

of the IGF-1 receptor in human HCC cell lines (Kim et al., 1996), which binds both IGF-1 and 

IGF-2, suggests that HBx may set up an autocrine loop that enhances cell growth. Thus, the 
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up-regulated expression of IGF-2, which appears to be a target of HBx in vivo, may promote 

hepatocarcinogenesis. 

The finding that HBx interacts with and inhibits the function of the proteasome (Huang et 

al., 1996) suggests another mechanism whereby HBx could alter gene expression at a post-

translational level. This inhibition appears to be important in supporting HBx trans-

activation activity (Hu et al., 1999). Given that HBx trans-activates virus gene expression and 

replication, when mutants of the X protein that bound to and inhibit the proteasome were 

introduced into WHV, and the resulting virus used for experimental infection, no or 

transient viremia was observed. In contrast to wild type WHV, which resulted in a high 

carrier rate among experimentally infected woodchucks, none of the animals infected with 

the X mutant developed the carrier state (Zhang et al., 2001). Further work in vitro showed 

that in the presence of proteasome inhibitors, replication of the wild-type virus was not 

affected, while the replication of the X-negative HBV or WHV was enhanced and restored to 

the wild-type levels. Similar results were obtained in mouse models replicating wild type 

and X mutant HBV (Zhang et al., 2010). Thus, HBx appears to affect hepadnavirus 

replication through a proteasome-dependent pathway (Zhang et al., 2004). Moreover, in the 

livers of transgenic mice where the levels of HBx expression increased with age, there was a 

parallel age related decreases in the peptidase activities of the proteasome in the liver (Hu et 

al., 2006). Microarray analysis showed that many of the genes affected involved 

transcription and cell growth. For example, insulin-like growth factor-binding protein 1 was 

down-regulated in the HBx mouse liver (Hu et al., 2006), while in vitro, HBx stabilized c-myc 

(Kalra & Kumar, 2006) and the protooncoprotein, pituitary tumor-transforming gene 1 

(PTTG1) (Molina-Jimenez et al., 2010), by blocking ubiquitination and proteasomal 

degradation. HBx also differentially regulated the level of -catenin through two ubiquitin-

dependent proteasome pathways depending upon the status of p53 (Jung et al., 2007). Given 

that HBx expression is dominant in liver compared to HCC tissue (Wang et al., 1991a, 

1991b), it was not surprising to find an elevated proteasomal activity in HCC compared to 

surrounding nontumor liver, both in HBx transgenic mice that developed tumors, and in 

clinical samples from patients with HCC (Cui et al., 2006). These observations suggest that 

changes in proteasome function accompany the pathogenesis of CLD and HCC, and that 

these changes appear to be related to the levels of HBx .  

4. Conclusions 

Tumorigenesis is a multi-step process, and as outlined above, HBx impacts upon this 

process by targeting selected pathways and genes in natural infection. For most of the target 

genes presented here, up-regulated or down-regulated expression was established by 

comparison of gene expression profiles in HBx positive compared to negative cells, 

suggesting that they were due to the properties of HBx. Clinical validation was carried out 

on liver and tumor tissues obtained from HBV infected patients. For up-regulated genes, 

there was strong co-staining between HBx and the putative target, while for down-regulated 

genes, there was an inverse relationship by immunohistochemistry, and in many cases, 

northern blotting or RT/PCR analyses as well. Moreover, many of the natural targets of HBx 

discussed herein were characterized to gain at least a preliminary outline as to their 

contribution to the pathogenesis of HCC. The overall results show that HBx contributes to 
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multiple steps in hepatocarcinogenesis, and that the pleiotrophic nature of HBx, known for 

many years, is now being better understood by the functions of the proteins encoded by 

these target genes. These data provide crucial information as to the steps in the pathogenesis 

of HCC that are likely to be rate limiting, which is very important for the application of 

therapeutic approaches to known targets and for the development of therapeutics to novel 

targets. The hope embodied in these studies is that they will lead to the development of 

diagnostic/prognostic biomarkers and/or therapies that will specifically target gene 

products whose functions appear to be rate limiting in tumorigenesis. The fact that most of 

the up-regulated genes are over-expressed in liver, and much less often in tumor, means 

that specific therapies could be devised to ultimately reduce the risk for development of 

HCC, and if this is achieved, this would open up the probability that chemoprevention 

could become a realistic approach to treating patients at high risk for the appearance of 

cancer. This approach will not only be useful, for approaching cancer prevention in the liver, 

but if one or more of the URGs described above are also elevated in precancerous lesions 

from other tissue types, the approach would become more widespread in preventing the 

development of other tumors. In doing so, this has the possibility of establishing a different 

paradigm for therapeutic approaches against cancer.  
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