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Clinical Implementation of Metabolomics 

Akira Imaizumi et al.* 
Amino Acids Basic And Applied Research Group, Frontier Research Laboratories,  

Institute for Innovation, Ajinomoto, Co., Inc. 
Japan 

1. Introduction 

1.1 Overview 

Metabolomics, which is also referred to as metabonomics, metabolic profiling or metabolic 

fingerprinting, is the comprehensive quantitative measurement of endogenous metabolites 

within a biological system (Fiehn, 2002; Kaddurah-Daouk et al, 2008; Spratlin et al, 2009). 

Detection of metabolites is in general carried out in cell extracts, tissue specimens, or various 

biological fluids including serum, plasma, urine and cerebrospinal fluid (CSF) by liquid 

chromatography mass spectrometry (LC-MS), gas chromatography–mass spectrometry (GC-

MS), capillary electrophoresis–mass spectrometry (CE-MS) or nuclear magnetic resonance 

spectroscopy (NMR). Metabolomics captures the status of diverse biochemical pathways in 

a particular situation and can define the metabolic status of an organism (Aranibar et al, 

2011; DeFeo et al, 2011; Lu et al, 2008; Roux et al, 2011; Soga, 2007; Yuan et al, 2007). In 

clinical settings, biomarkers generated from metabolomics have become one of the most 

essential diagnostic criteria that can be objectively measured and evaluated as indicators of 

normal or pathological states, as well as a tool to assess responses to therapeutic 

interventions (Hunter, 2009; Spratlin et al, 2009; van der Greef et al, 2006; Zeisel, 2007). As 

we describe in this chapter, novel metabolomic markers, for instance, for cancer therapy, 

glucose intolerance, hepatic steatosis, nephrotic and psychiatric disorders, and their 

incorporation into clinical decision-making may considerably change future health care. 

In order for metabolomics to be successful in clinical settings, it must surpass 
conventional methods in reliability and predictive capability, and/or should be more 
informative about disease pathogenesis. Utilizing a systems biology approach in 
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biomarker investigation may allow for a deeper understanding of disease associated 
metabolism. (Jenkins et al, 2004; Kell, 2006). A systems biology approach does not focus 
on identifying a single target or mechanism of an observed phenotype. Instead it seeks to 
identify the biological networks or pathways that connect the differing elements of a 
system (Wheelock et al, 2009). When a shift in equilibrium is observed in a disease, such 
as altered metabolic fluxes or enzymatic activities, it can be elucidated that those 
components of the network that are associated with the observed shift are characteristic 
and potentially descriptive of the disease, and that they accordingly represent potential 
targets for intervention. Thus, the systems approach in combination with metabolomics, 
may lead to the discovery of panels of metabolites that more accurately capture the 
disease status and help acquire information valuable for individualized clinical care 
(Quinones & Kaddurah-Daouk, 2009). Clinical metabolomics is expected to be a 
promising technology for personalized medicine and nutrition. A metabolic marker 
designed to predict individual response including efficacy and side effects during 
therapeutic intervention for each patient will enable administration of optimal treatments 
and improve clinical outcome.  

1.2 Comprehensive vs. focused metabolomics 

The spectrum of biochemicals in a clinical specimen, range from organic acids, amino acids, 

lipids, nucleic acids and their metabolic intermediates to complex secondary metabolites 

with signaling functions. Today, however, clinicians in human health care utilize only a very 

small part of the information contained in the metabolome. Although NMR or MS 

technology enables a comprehensive (i.e. global) measurement of various small molecules, 

in many cases, it is simply too difficult to quantify each molecule and understand 

underlying mechanisms from a global dataset by a single measurement (Steuer, 2006). This 

has led a number of researchers to look at a focused set of (i.e. local) metabolites such as 

amino acids or lipids (German et al, 2007; Kimura et al, 2009), where data from multiple 

measurements such as transcriptomics, proteomics and metabolomics can be effectively 

integrated to allow more insight into the underlying metabolic alternations, by projecting 

multiple datasets onto biochemical pathways and analyzing their interactions under a 

particular physiological state (Caesar et al, 2010; Momin et al, 2011; Noguchi et al, 2008; 

Zhang et al, 2011).  

Recently, there have been reports of trials in integrating different types of ‘omics’ datasets 
for the systemic understanding of metabolic phenotypes at multiple levels. Various 
software packages are available in integrating nonuniform ‘omics’ datasets (Grimplet et 
al, 2009; Gruning et al, 2010; Taylor & Singhal, 2009). The link between information and 
modeling can be achieved by two major types of complementary approaches, a data-
oriented exploratory approach, in which data generates information about the structure 
and relationships between the observed variables in a given system, and a model-based 
bottom-up approach, in which cybernetic and systems–theoretical knowledge are used to 
create models that describe mechanisms and dynamics of a system. Formerly, a model-
based approach had been used for studying in-vitro cellular or organ systems; however, 
because of the complexity in modeling whole body systems, recently this approach has 
been replaced by a data-oriented approach, particularly when dealing with in-vivo 
‘omics’ data in various models including animal models and clinical studies (Dunn et al, 
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2011). The critical step is the construction of models from the raw dataset of 
transcriptomics, proteomics, and metabolomics. This may be achieved by using different 
mathematical techniques ranging from simple Pearson correlations to the use of ordinary 
differential equations (Wheelock et al, 2009). Through this modeling, fundamental 
concepts in the understanding of biological systems like robustness, modularity, 
emergence, etc. are incorporated.  

Most studies currently remain focused on local level networks within a set of related genes 

or protein expressions (Bapat et al, 2010; Kirouac et al, 2010). Yet a combination of different 

levels of networks can be connected to overview the whole system. A change in the gene 

regulatory network may have a corresponding effect in the protein–protein interaction 

network, the metabolic network, etc., which collectively may manifest changes in the 

pathological phenotype. To understand the whole system, it is critical to integrate 

knowledge from different datasets. Although some progress has been made in amino acid 

metabolism, the integration of different types of datasets is still difficult due to differences in 

dynamic range, scales, or analytical errors, particularly in metabolomic analysis (Ishii et al, 

2007; Momin et al, 2011; Noguchi et al, 2008). Therefore, focused-metabolomics, with well 

managed measurements in terms of accuracy and reproducibility, for lipid, amino acid and 

glucose metabolism appears to be a realistic approach to illustrate how the phenotype is 

altered when the metabolic network itself is modified through the alteration of endogenous 

or environmental factors. 

1.3 Generation of multiple metabolite markers 

When generating biomarkers from metabolomic analysis, marker identification, verification, 

and also statistical and experimental evaluations, using bioinformatic techniques of 

identified candidate markers are required. Recently, various data mining methodologies 

have been reported for identifying and prioritizing reliable metabolomic markers with high 

diagnostic capability (Caruana, 2006; Duda, 2001; Gu et al, 2011; Kim et al, 2010; Maeda et al, 

2010; Montoliu et al, 2009). In cohort studies, the definite diagnoses of the patients are 

normally known beforehand. In such trials, “supervised” statistical methods which consider 

patient classification tend to be more efficient in information utilization and suitable for 

obtaining targeted metabolite markers.. In contrast, when phenotypes in patients are 

undetermined, “unsupervised” analysis such as cluster analysis are useful tools for 

biomarker identification and classification of specimen groups. Moreover, improvement in 

discriminatory power has been reported when multivariate mathematical models are 

constructed combining multiple metabolite markers. These approaches include discriminant 

analysis methods such as linear discriminant analysis, logistic regression analysis, decision 

trees, the k-nearest neighbor classifier (k-NN), an instance-based learning algorithm, 

support vector machines or artificial neural networks (Duda, 2001). The Receiver Operating 

Characteristics (ROC), or the area under the ROC curve (AUC) of multivariate markers is 

used to represent its discriminatory performance as a trade off between selectivity and 

sensitivity(Hanley & McNeil, 1982). Obtained metabolomic markers are also required to be 

experimentally validated using larger datasets from multiple clinical trials and also 

statistically validated using cross validation, leave-one-out cross validation, and 

bootstrapping. 
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2. Practical Issues in the clinical implementation of metabolomics 

2.1 Sample stability issues 

Enormous information can be obtained by analyzing large numbers of metabolites, and it is 
utilized for various fields such as health and nutrition. However, the chemical and 
enzymatic stabilities of most metabolites are unknown. Therefore, inappropriate handling of 
samples can lead to inaccurate measurements. In this section, blood sampling issues for 
amino acids analysis as a typical case of sample handling are described. There are mainly 
four steps in the blood sampling process for amino acids analysis; 1) blood collection, 2) 
centrifugation, 3) sample storage, and 4) deproteinization. In this section, the crucial points 
for each step are outlined to highlight the importance of sampling processes in metabolomic 
studies.  

2.1.1 Blood collection 

The concentrations of amino acids are known to show circadian rhythms and some of 

them vary 30% within a day (Forslund et al, 2000). Therefore, it is desirable to collect the 

blood at a fixed time point. Moreover, since the amino acid concentrations increase after a 

protein containing meal, blood collecting between 7am and 10am in a fasting state is 

desirable.  

The concentrations of some amino acids are known to be quite different between blood cells 
and plasma. The differences of essential amino acids are small, but the concentrations of 
nonessential amino acids can be greater by severalfold in blood cells (Filho et al, 1997). 
There are also many metabolic enzymes such as arginase in blood cells which will act on the 
plasma free amino acids (PFAAs). Therefore it is important to verify that haemolysis dose 
not occur in blood samples. If the blood sample shows heavy haemolysis, it is desirable to 
take another sample. 

If blood samples are left at room temperature after collection until centrifugation, many 
amino acids are metabolized due to metabolic enzymes from blood cells. In particular, there 
are many enzymes for metabolizing nonessential amino acids. For instance, glutamine and 
asparagine are well known to be metabolized to glutamate and aspartate. The concentration 
change of glutamate at different temperatures is shown in Figure 1. This suggests that it is 
desirable to cool blood samples after collecting. In another study, we also found that it is 
essential to cool down the blood samples to 0°C immediately after collecting and that Ice-
water is better than the refrigerator or ice because of the faster cooling rate.   

However it is not always easy to prepare ice-water in the medical institutions at the time of 
blood collection. For this reason, we have developed a portable blood tube cooler 
(CubeCooler�, Figure 2). This cooler is composed of high thermal conductive container 

(aluminum) and insulator (polyethylene form), which enables the quick cooling of blood 
samples as well as ice-water and maintains the temperature for 12h (Figure 3). There are 
many coolers which is commercially available. As far as we have examined, these coolers, 
however, could not achieve a cooling rate as close to that of ice-water and could not cool 
blood samples for a long time without differences in temperature arising between tubes 
inserted in different holes. Thus, the cooler we have developed may be a useful tool not only 
for amino acid analysis but also for sample management in other metabolomic studies.  
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Fig. 1. Effect of cooling on concentration of glutamate in whole blood 

 

 

Fig. 2. View of the blood tube cooler (CubeCooler�) 
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Fig. 3. Cooling rate when the blood tubes are set in various conditions and cooling duration 
of the blood tube cooler 
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2.1.2 Centrifugation 

It is desirable to store blood samples in ice-water after collection and to separate the plasma 
from the blood cells within a few hours. As mentioned above, since blood cells contains 
many amino acids and enzymes, it is important not to contaminate the plasma with 
platelets. If contamination occurs, the concentrations of some amino acids, such as 
glutamate, aspartic acid and taurine can be high.  

2.1.3 Sample storage 

It is necessary to store the plasma in a freezer in case of long term storage. When stored at -
20°C, some amino acids, especially glutamate, aspartate and cysteine can gradually 
decrease. Therefore -80°C freezer should be used for long term storage of plasma samples. 
When transporting the samples, the samples should be carried in a box filled with dry-ice.  

2.1.4 Deproteinization 

Since plasma contains proteins such as albumin, deproteinization is necessary before amino 
acid analysis. When analyzed with amino acid analyzer, plasma is generally mixed with 
trichloro-acetic acid or sulfo-salicylic acid and the precipitate is centrifuged. Since these 
reagents are strong acids, it is necessary to rapidly analyze amino acids or store in -80°C 
freezer so that some amino acids like glutamine are not decomposed due to acid hydrolysis. 
When analyzing with LC-MS or LC-MS/MS, organic solvents such as methanol and 
acetonitrile is useful for deproteinization. In this case, the organic solvent may influence the 
derivatization reaction and separation of amino acids. Since recovery rates for amino acids 
depend on the procedure of deproteinization, it is desirable to unify the procedure. When 
analyzing with LC-MS or LC-MS/MS, recovery rates can be calculated by adding stable-
isotope-labeled amino acids as internal standards before deproteinization. 

2.2 Analytical issues 

Nuclear magnetic resonance (Bollard et al, 2001), mass spectrometry (Piraud et al, 2003), gas 
chromatography mass spectrometry (Thysell et al, 2010), liquid chromatography mass 
spectrometry (LC-MS) (Lin et al, 2011a), and capillary electrophoresis mass spectrometry 
(Sugimoto et al, 2010) have been used as primary tools employed for metabolomics.  

A clinical metabolomics approach with LC-MS can be broadly classified into comprehensive 

and targeted analysis. Comprehensive analysis aims to identify and quantify all detectable 

metabolites in a single run. This analysis offers the advantage of giving much information. 

In the past, the retention and separation of polar metabolites had been difficult in LC-MS 

analysis. This was a weakness of LC-MS analysis, and LC-MS was limited to the analysis of 

hydrophobic metabolites such as lipids. However, the development of column technology 

enabled the retention and separation of hydrophilic metabolites(Alpert, 1990; Yoshida et al, 

2007). This technology has been applied for the research of drug metabolites (Plumb et al, 

2003), galactosamine toxicity (Spagou et al, 2011), and renal cell carcinoma diagnosis, 

staging, and biomarker discovery (Lin et al, 2011a).  

In targeted analysis, a selected number of predefined metabolites are quantified. This analysis 
is sometimes used for quantification of metabolites, which is extracted from comprehensive 
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analysis. Derivatization methods, based on specific reactions to targeted functional groups are 
major tools in targeted analysis. This method allows for sensitive and selective quantification 
of endogenous metabolites with amino and carboxyl groups (Tsukamoto et al, 2006; Yang et al, 
2006). An advantage of this method is to be able to select a suitable sample preparation for 
each endogenous metabolite with the same functional group, because of the similar physical 
and chemical properties. This method is also very important for accurate quantification, 
because sample stability is different for each endogenous metabolite. 

The analysis of amino acids with an amino group has a long history. In 1958, a key 
application for physiological amino acid analysis was supplanted by ion exchange column 
chromatography separations on an automated apparatus designed and built by postdoctoral 
fellow Darrel H. Spackman at the request of his mentor William H. Stein, and Stanford 
Moore at Rockerfeller University (Moore et al, 1958). This automated system reduced the 
analytical time from a few weeks to a full day and provided easy to use operation. The 
present system is used for the study of inborn errors of amino acid metabolism in clinical 
laboratories (Qu et al, 2001).  

Recently, pre-column derivatization reagents for amino acid analyses have been developed, 

mainly to achieve greater sensitivity and selectivity, and much attention is paid to the 

design of derivatization reagents for LC-MS (Yang et al, 2006) and LC-MS/MS (Shimbo et al, 

2009a; Shimbo et al, 2009b). These reagents have three notable characteristics (Figure 4). 

First, the reagent must have sufficient hydrophobicity to enable the retention of amino acids. 

Secondly, is should have a desirable structure which will increases ionization efficiency. 

Thirdly, it should be designed to provide characteristic and selective cleavage at the 

bonding site between the reagent moiety and the amino acid in the collision cell of the triple-

stage quadrupole mass spectrometer. Using precursor ion scanning, endogenous 

metabolites with amino groups are can be extracted on ion chromatograms, even in crude 

biological samples.  

3-aminopyridyl-N-hydroxysuccinimidyl carbamate (APDS) reagent is known to provide 
rapid analysis and separation of amino acids of the same charge to mass ratio on a column 
(Shimbo et al, 2009b) (Figure 5). This reagent is applied to the modelling of a diagnostic 
index, “AminoIndex technology”, from differences in PFAA profiles between non-cachectic 
colorectal/breast/lung cancer patients and healthy individuals. (Maeda et al, 2010; 
Okamoto et al, 2009). 

 

Fig. 4. Typical reaction of amino acids with a derivatizaiton reagent for LC-MS/MS. This 
reagent has three notable characteristics; 1) sufficient hydrophobicity (benzene ring) 2) 
increases ionization efficiency (quaternary amine) 3) characteristic and selective cleavage 
(the reagent moiety and the amino acid). 
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Fig. 5. Typical chromatograms of amino acids which were the same charge to mass ratio on 
a column. 

2.3 Statistical issues 

Recently, several applications of metabolome analysis based on computer-aided detection 
and diagnosis (CAD) has been demonstrated (Duda, 2001; Gu et al, 2011; Kell, 2002; Kim et 
al, 2010; Montoliu et al, 2009; Righi et al, 2009; Serkova et al, 2011; Taylor et al, 2010). The 
importance of objective indices for diagnosis based on empirical and statistical knowledge 
are increasing due to the trend called “Evidence Based Medicine (EBM)”. Although CAD 
follows this trend, the required level of statistical analysis is also increasing and becoming 
more complex. The requirement of clinical investigation includes not only statistical 
significance but also feasible and in-depth clinical protocols in which necessary and 
sufficient conditions need to be satisfied. In this section, multivariate statistical aspects of 
metabolome analysis focused on the establishment of medical evidence and investigation of 
biomarkers will be introduced and discussed. 

Reproducibility is the most important point of a diagnostics index. It is more complicated to 
guarantee the statistical reproducibility by multivariate analysis than univariate analysis. 
Adequate experimental design prior to data collection is therefore crucial for the quality 
control of the analysis (Hulley, 2006). In general, knowledge obtained from statistical 
analysis is only capable within the realm in which the data was analyzed and therefore 
cannot extrapolate beyond the realm. Generally, larger sample size is required in case of 
multivariate analysis because freedom of variable space is higher than univariate analysis. 
For example, multivariate analysis of variance (MANOVA) and data simulation are used to 
determine the appropriate sample size. Additionally, it is sometimes necessary for a data set 
to be normalized or scaled for unbiased analysis.  
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The most important point of analysis is algorithm selection. It is well-known as the “no free-

lunch theorem”, that it is impossible to determine the most suitable algorithm a priori, and 

that the pros and cons of each algorithm are not always specific, but dependent on each 

situation. Therefore, preliminary analysis to determine the most felicitous algorithm is 

necessary in each case. Univariate analysis can be performed to figure the behavior of each 

metabolite and to select the variable, i.e. dimensionality reduction of variable space, prior to 

multivariate analysis. It should be noted that the metabolome data are often so connected 

that there is a potential pitfall of statistical analysis, so-called multicollinearity, where the 

excess reduction of dimension sometimes can lead to the loss of latent network structure of 

metabolites. Multivariate analytical methods are applicable for simplification or 

dimensionality reduction of data to easily figure out visualized images of the “metabolite 

space” which has huge body of dimensions (metabolites).  

Algorithms for multivariate analyses are categorized into two different groups, i.e., 

unsupervised methods and supervised methods. Unsupervised methods do not require 

objective variables such as subject status, other observed data, etc., while supervised 

methods require them for the data set to be analyzed. The examples of multivariate 

algorithms are listed in Table 1. Unsupervised learning methods are especially useful for 

investigating the latent structure and decreasing the redundancy of data and therefore they 

are sometime performed in combination. The advantages of unsupervised methods are that 

they minimize the loss of information (Maeda et al, 2010). However, whether the results of 

unsupervised methods can provide the appropriate interpretation or not depends on the 

setting of parameters or the problem to be analyzed. 

 

Models Unsupervised learning

Continuous Discrete

Linear model Factor analysis
Multiple linear regression

(MLR)

Linear discriminant analysis

(LDA)

Principal component analysis

(PCA)

Canonical correlation

analysis
Canonical discriminant analysis

Independent component

analysis (ICA)

Partial least square regression

(PLS)

Partial least square discriminant

analysis (PLS-DA)

Nonlinear model
Hierarchical cluster analysis

(HCA)
Logistic regression analysis Naïve Bayes classifier

K-means cluster analysis
Conditional logistic regression

analysis
Support vector machine (SVM)

Mixture of Gaussians
Generalized linear model

(GLM)
Decision trees

Supervised learning

 

Table 1. Algorithm examples for multivariate analysis 

On the contrary, supervised methods (Caruana, 2006) themselves contain the objective 
variables. Therefore the goal of analysis is to find a model (or classifier) in which the error 
between the model’s response and the target traits is minimized to fit the target traits. Target 
traits can be discrete (e.g., disease vs. healthy, grade of disease) or continuous (e.g., 
measurement value). Supervised methods are also applicable to discover and predict which 
metabolites are responsible for the target traits (Maeda et al, 2010; Okamoto et al, 2009; 
Zhang et al, 2006). However, the generality of the model obtained from those methods can 
not be always guaranteed because of the potential overfitting or bias of data. Therefore, 
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validation of the obtained model is necessary to establish the usefulness for practical use. 
Validation methods are categorized into two classes. The first is cross- validation in which 
single or multiple samples are iteratively left out from the training data set, and the 
remaining samples are used to evaluate the predictive performance of the model. The other 
is usage of external validation data set which must not be used for construction of models. 
Ideally, the latter case in which blinded data set is used is the most appropriate validation. 
However, it is sometimes difficult to perform the validation test itself. 

Various metrics are used as criterion of the performance of diagnosis. In the case of the 
model in which the object variable contains only two classes (e.g., controls and patients), 
receiver-operator characteristic (ROC) curve analysis is the most appropriate criteria for 
evaluating the model because this analysis is independent of both sample size of each group 
and threshold. As threshold metrics, sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and accuracy are used. Among them, both sensitivity and 
specificity is independent of sample size and ratio of each group while the others are 
dependent. Therefore, to determine threshold in terms of PPV, NPV, and accuracy, it is 
necessary to take into account the “real” distribution of subjects. 

3. Examples of clinical implementation of focused metabolomics 

3.1 „AminoIndex technology“: Example for early cancer diagnosis 

Several investigators have reported changes in plasma free amino acid (PFAA) profiles in 

cancer patients (Cascino et al, 1995; Lai et al, 2005; Lee et al, 2003; Maeda et al, 2010; Naini et 

al, 1988; Norton et al, 1985; Okamoto et al, 2009; Proenza et al, 2003; Vissers et al, 2005; 

Zhang & Pang, 1992). Despite evidence of a relationship between PFAA profiles and some 

types of cancer, few studies have explored the use of PFAA profiles for diagnosis because 

although PFAA profiles differ significantly between patients, the differences in individual 

amino acids do not always provide sufficient discrimination abilities by themselves (Cascino 

et al, 1995; Lai et al, 2005; Naini et al, 1988; Norton et al, 1985; Proenza et al, 2003; Vissers et 

al, 2005). To address this issue, we have studied using diagnostic indices based on PFAA 

concentrations that compress multidimensional information from PFAA profiles into a 

single dimension to maximize the differences between patients and controls.  

In previous studies, the alterations in PFAA profiles in cancer patients sometimes seem 

inconsistent, and some discrepancies existed between our study and those reported (Cascino 

et al, 1995; Lai et al, 2005; Naini et al, 1988; Norton et al, 1985; Proenza et al, 2003; Vissers et 

al, 2005). This discrepancy may be due not only to the statistical aspect of data, for example, 

sample size, the biased distribution of cancer stages, etc., but also to some other factors such 

as amino acid measurement methods. In contrast to previous studies, we performed 

analyses using samples in which PFAAs were measured in a unified protocol to guarantee 

the robustness of analysis in terms of the quality of data (Shimbo et al, 2009a; Shimbo et al, 

2009b; Shimbo et al, 2009c). 

As a pilot study, we investigated the possibility for early detection of colorectal cancer 
(CRC) and breast cancer (BC) patients (Okamoto et al, 2009). PFAA profiles were compared 
between cancer patients (who had CRC or BC) and control subjects. The plasma 
concentrations of several amino acids in the CRC patients were significantly different from 
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those observed in the controls. The alteration of the PFAA profile in BC differed from that in 
CRC, with fewer changes observed. Multiple logistic regression analyses with selected 
variables using each data set resulted in AUC of ROC of0.860 for CRC and 0.906 for BC, 
respectively when using training data sets. To confirm the performance of the obtained 
classifier, ROC curves were also generated from the split test data. These reproduced similar 
diagnostic performances, with AUC of 0.910 for CRC, and 0.865 for BC, respectively. 

We then investigated the possibility for early detection of non-small-cell lung cancer 
(NSCLC) using a larger size of samples (Maeda et al, 2010). 141 NSCLC patients and 423 
age-matched, gender-matched healthy controls without apparent cancers were used as the 
study data set. As a result, fifteen amino acids (Ser, Gly, Ala, Cit, Val, Met, Ile, Leu, Tyr, Phe, 
His, Trp, Orn, Lys, and Arg) were identified whose profile in plasma were associated with 
NSCLC. Multiple logistic regression analyses by conditional likelihood methods were 
performed with variable selection and LOOCV cross-validation using the study data set. 
The resulting conditional logistic regression model included six amino acids: Ala, Val, Ile, 
His, Trp, and Orn. The AUC of ROC for the discriminant score was 0.817 in the study data 
set. It should be noted that conditional logistic (c-logistic) regression analysis can correct the 
effects of age, gender, and smoking statuses which are potential confounding factors in the 
discrimination. To verify the robustness of the resulting model, a ROC curve was also 
generated using the split test data set, which had not been used to construct the model.  An 
AUC of ROC for the discriminant score was 0.812 in the test data set, again demonstrating 
that the obtained model performed well (Figure 6). 

  

Fig. 6. ROC curves for discriminant scores for the discrimination of NSCLC(Maeda et al, 
2010). 

It was indicated that the model could discriminate lung cancer patients regardless of cancer 
stage or histological type. Furthermore, the distribution of the discriminant scores for small-
cell lung cancer (SCLC) patients was similar to that for NSCLC patients (Figure 7).  
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Fig. 7. ROC curves for discriminant scores subgrouped by NSCLC  stage and histological 

type (Maeda et al, 2010). A. ROC curves for cancer stage of study data set. B. ROC curves for 

cancer stage of test data set. C. ROC curves for histological type of study data set D. ROC 

curves for histological type of test data set (including SCLC patients). 

These studies demonstrated the potential use of PFAA profiling as a focused 

metabolomics approach for the early detection of patients with various types of cancer. 

Combining novel analytical techniques and statistical analyses, previously unknown 

aspects of amino acid metabolism in humans have been revealed. The analysis using 

considerably larger sample size provided sufficient statistical power to test the 

robustness of PFAA profiling for cancer diagnosis. We also demonstrated the possibility 

of detecting cancers, both specifically and broadly, using multivariate analysis to 

compress the PFAA profile data, even for patients with early stage cancer. Following the 

further accumulation of data (not shown), AminoIndex® Cancer Screening (AICS) has 

been commercially released from Ajinomoto Co., Inc., in Japan in April 2011. AICS 

enables multiple cancer diagnoses simultaneously of gastric, lung, colorectal, prostate 

and breast cancer. 
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3.2 „AminoIndex technology“: Example for diagnosis of liver fibrosis 

In the clinical pathway of patients with chronic hepatitis C infection, the progression of liver 

fibrosis leads to cirrhosis and eventually increases the risk of hepatocellular carcinoma 

(Poynard et al, 2003). The efficacy of current therapy depends on the fibrosis grade, and 

therefore the detection of fibrosis stage is desirable for determining the clinical settings, i.e., 

whether treatment is necessary, and what treatment is appropriate (Aspinall & Pockros, 

2004; Fried, 2002; Shiffman, 2004). Although fibrosis grading based on biopsy has been 

considered as a gold standard, there is a high demand for less invasive but effective 

alternative methods.  

In searching for surrogate markers other than biopsy, several methods ranging from the 

serologic marker-based test (Fibrotest)(Imbert-Bismut et al, 2001) to the ultrasonic-based 

transient elastography (Fibroscan)(Castera et al, 2005), and others(Lin et al, 2011b) have been 

suggested. On the other hand, since the liver is an important organ for the metabolism of 

amino acids, glucose synthesis, fatty acid synthesis, urea synthesis and protein 

synthesis(Cynober, 2004), it is reasonable to expect any metabolic derangement due to liver 

failure like liver fibrosis may induce the variation of amino acid metabolism and eventually 

the variation of PFAA concentration.  

In this section we describe the PFAA profiling which was first applied to the diagnosis of 

liver fibrosis using clinical data(Zhang et al, 2006). The aim of this study was to develop a 

diagnostics index for the diagnosis of liver fibrosis as a less invasive and effective method 

using PFAA profiles. The liver specimens were analyzed histologically and graded with the 

METAVIR scoring system(Metavir., 1994), where F0 means no fibrosis, F1 portal fibrosis 

without septa, F2 fibrosis with rare septa, F3 portal fibrosis with numerous septa, and F4 

cirrhosis. The distribution and variation of the 23 PFAAs of all patients over fibrosis stages 

is represented in a radar chart, Figure 8. 

In the progression of fibrosis from F01 to F4, the decrease of BCAA and inversely the 

increase of aromatic amino acids, Phe and Tyr, can be observed typically in the profiles of 

the radar chart. In the non-parametric multi-stage comparison test (Kruskal-Wallis test) , for 

each amino acid among different fibrosis stages, significant changes in concentration of Phe, 

Val, Ile, Tyr, Gln, Leu, Met (p <0.01) and ABA (alpha-amino butyric acid, p <0.05) were 

observed. Dataset including fibrosis stage and PFAA concentrations were analyzed to obtain 

the diagnostics index for liver fibrosis (AI_fibrosis) in fractional form, (Phe)/(Val) + 

(Thr+Met+Orn)/(Pro+Gly), which was optimized as a surrogate marker for the liver stages 

obtained through biopsies. The distribution of molar ratios in two fractional forms over 

fibrosis stages are shown in Figure 9.  

The observation of two molar ratios in the classifier revealed that the former ratio mainly 

contributed to the F4 discrimination, whereas the latter mainly contributed to discrimination 

of advanced fibrosis (F3 and F4). For the discriminative power assessment of the surrogate 

AI_fibrosis as a whole, the area under the curve of receiver operator characteristic curve 

(ROC AUC) was used.  The classifier exhibited high discriminative power for advanced 

fibrosis (fibrosis stages F3 and F4) from the earlier stages F0-2 and also for cirrhosis (F4) 

from all other stages, with ROC AUC ( 95% CI ) 0.92  (0.84-1.00 ) and 0.99 ( 0.96-1.00 ), 

respectively. 
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Fig. 8. Radar chart of mean values of PFAAs over fibrosis stages.  F01: dashed, F2: dot-dash, 
F3: dotted, F4: solid. Mean values are scaled in z-score. 

 

Fig. 9. Molar ratio variation over fibrosis stages. The change in distribution among F0-F2,F3 
and F4 stages indicated a stage-dependent trend. Circles are 80% regions of each stage, F0-
F2: dashed and square, F3: dotted and triangle, and F4: solid and christcross. 

www.intechopen.com



 
Clinical Implementation of Metabolomics 

 

303 

The Fischer’s ratio (Val+Leu+Ile)/(Phe+Tyr) was originally created for diagnosis of hepatic 
encephalopathy (Fischer et al, 1975; Fischer et al, 1976) and has been reported to show good 
performance in assessing chronic hepatitis (Kano et al, 1991). Therefore a comparison study 
between the Fischer’s ratio and the classifier was undertaken, where the index was 
generated to have a positive correlation with the degree of fibrosis, showing an inverse 
pattern to Fischer’s ratio.  The AI_fibrosis indicated ROC AUC values larger than Fischer’s 
ratio: the ROC AUC values of Fischer’s ratio being 0.87 (0.77-0.96) for advanced fibrosis and 
0.91 (0.83-0.99) for cirrhosis, respectively. There is a close relationship between the 
AI_fibrosis and the Fischer’s ratio as partially supported by the fact that the ratio Phe/Val 
correlated well with the inverse of Fischer’s ratio (r = 0.95) because the BCAAs exhibited 
good mutual correlation, as did Tyr and Phe. In summary, these results suggest that the 
AI_fibrosis based on amino acid concentration can be applied to evaluate liver fibrosis as an 
effective and less invasive method as a surrogate marker for liver biopsy, although future 
extended validation study is still necessary.  

3.3 Lipidomics: A review on the use of lipid metabolomics for clinical use 

Lipidomics, a type of focused metabolomics, is the comprehensive measurement of a variety 

of lipid classes: free fatty acids (FFA), triglycerides (TAGs), cholesterol esters (CEs), 

lysophosphatidylcholines (LPCs), phosphatidylcholines (PCs), lysophosphatidyl 

ethanolamines (LPEs), diacylglycerols (DAGs), and sphingomyelins (SMs) and ceramides, 

generally using LC-MS/MS (Bou Khalil et al, 2010; Bucci, 2011; Dennis, 2009). Several 

studies have reported the potency of lipidomic analyses for biomarker discoveries in 

humans in diabetes, non-alcoholic fatty liver disease (NAFLD) (Puri et al, 2009), Alzheimer’s 

disease (Han et al, 2011; Valdes-Gonzalez et al, 2011) and cancers (Hilvo et al, 2011; Min et 

al, 2011). For instance, Rhee et al reported the LC-MS–based lipid profiling of 189 

individuals who developed type 2 diabetes and 189 matched disease-free individuals, with 

over 12 years of follow up in the Framingham Heart Study (Rhee et al, 2011). They found 

that lipids of lower carbon number and double bond content were associated with an 

increased risk of diabetes, whereas lipids of higher carbon number and double bond content 

were associated with a decreased risk. In addition, Barr et al demonstrated differential 

serum lipidomics in both NAFLD patients and in a mouse model of NAFLD by ultra 

performance liquid chromatography-mass spectrometry (UPLC-MS) (Barr et al, 2010). 

Multivariate statistical analysis of the UPLC-MS datasets revealed metabolic similarities 

between NAFLD mice and human NAFLD patients in relative serum metabolite levels 

compared to normal subjects. Lipidomic analysis is also applicable to other biological fluids 

such as cerebrospinal fluid (CSF), in addition to plasma and serum (Fonteh et al, 2006). For 

instance, phospholipid profiling in the CSF by nano-HPLC-MS has been reported in 

Alzheimer’s disease (AD) patients, and a statistically significant increase of SMs were 

observed in CSF from probable AD patients compared to normal subjects (Han et al, 2011). 

4. Elucidation of mechanisms underlying metabolomic diagnosis 

4.1 Introduction 

Many living systems have homeostatic mechanisms to continuously maintain their 
biological activity.  Yet, when a dynamic multi-parametric metabolic response to patho-
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physiological stimuli is evoked in many disease-associated cells and tissues, it leads to the 
formation of disease-specific enzymatic metabolite profiles quite different from that of the 
healthy hosts, and the blood components are significantly influenced as a result. 

Blood amino-acid contents are included in such components (referred to as a blood amino-
acid profile).  It is well known that in the process of feeding, exercising, sleeping, and other 
activities, the blood amino-acid profile temporarily fluctuates, but within a few hours 
returns to the normal level through intrinsic homeostatic mechanisms.  By contrast, disease-
mediated disturbances in the local amino-acid metabolisms may result in formation of a 
disease-specific change in the blood amino-acid profile.  Based on these findings and 
discussions, we have introduced the AminoIndex® Cancer Screening (AICS) system as a 
tool for providing new biomarkers to enable the early detection of various cancers. 

4.2 Tumor-specific blood amino-acid profile 

In order to explain the effects on PFAA profiles by the various tumors, we propose the 
following simple idea consisting of “three components”.  As shown in Figure 10, these three 
components are as follows: a) Metabolic changes in the tumor-bearing organs; b) Metabolic 
changes in response to the inflammatory reactions; and c) Metabolic changes in various 
remote healthy organs.  In patients with tumors, these three metabolic changes may be 
evoked simultaneously and their overall effects may be reflected in the tumor-specific blood 
amino-acid profile.  Yet, it is highly unlikely that they contribute evenly to such formation of 
the tumor-specific blood amino-acid profile during the entire course of the tumor 
development.  It seems more reasonable that these three components contribute 
individually and differently to the formation of the tumor-specific blood amino-acid profile 
in the early, the mid and the late (cachexia) stages. 

Fig. 10. Scheme for mechanisms underlying tumor-specific metabolic changes 

In tumor-bearing hosts, “metabolic changes in tumor-bearing organs”, “metabolic changes 
in response to inflammations” and “metabolic changes in remote organs” are all evoked 
simultaneously, leading to formation of the tumor-specific amino-acid profile. 
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4.3 Metabolic changes in the tumor-bearing organs 

It has been shown that cancer cells, which can proliferate extraordinarily faster than 

healthy normal cells, obtain the biological energy required to proliferate by switching to 

aerobic glycolysis from oxidative phosphorylation (Matthew et al, 2009)(known as 

“Warburg effect”): several intermediates obtained from the glycolysis pathway might be 

more easily utilized in nucleotide synthesis and glucose might be used as a carbon 

source in fatty acid generation (Dang, 2010).  At the same time, glutaminolysis was 

found to be stimulated profoundly, meaning that cancer cell energy generation is highly 

dependent on glutamine content (Wise & Thompson, 2010). A change in the amino-acid 

metabolism has been documented even in several noncancerous areas of the tumor-

bearing organs.  Douvlis has proposed the possibility that many normal tissues show 

their own specific pattern of the amino-acid absorption but such normal-cell functions 

may be impaired by amino acids abnormally excreted from neighboring tumor cells 

(Douvlis, 1999).  

4.4 Metabolic changes in response to inflammation 

Tumor-associated persistent inflammatory responses are regarded as one of the causative 

factors for changes in amino-acid metabolism.  In addition, inflammation-mediated 

proliferation of immune competent cells and synthesis of various inflammatory proteins 

including cytokines and chemokines are also involved (Fox et al, 2005).  In almost all of the 

solid tumors, a variety of inflammatory responses are shown to be evoked in the tumor-

surrounding tissues (Mantovani et al, 2008).  The tumor-associated inflammation is 

characterized by a mixture of the anti-tumor inflammatory response, which directs tumor-

cell killing, and the tumor-induced inflammation, which stimulates tumor-cell proliferation 

and promotes neovascularization (Schetter et al, 2010).  Therefore, such tumor-associated 

metabolic changes can be substantially different from those observed in other inflammatory 

processes seen in pneumonia and colitis.  In addition, these tumor-associated inflammations 

can induce immunocompetent-cell proliferation and antibody production both in tumorous 

tissues, regional lymph nodes, and the bone marrows, leading to further changes in 

metabolism (Youn & Gabrilovich, 2010). 

4.5 Metabolic changes in various remote normal organs 

With an increase in amino-acid demands closely associated with elevated synthesis of 

nucleotides and proteins in tumor cells, the amounts of amino acids recruited from other 

tissues and organs are increased by means of enhancing whole body protein turnover, 

elevating hepatic nonessential amino-acid biosynthesis, and stimulating proteolysis in 

skeletal muscles accompanied by reduced protein synthesis (Rossi Fanelli et al, 1995).  It is 

well known that in liver and skeletal muscles, tumor-induced negative nitrogen balance can 

promote intracellular production and extracellular release of glutamine (Medina et al, 1992).  

In addition, it was reported that in a chronic inflammatory process, the amino-acid 

metabolism could be influenced even in many remote organs: For instance, absorption of 

blood cysteine and methionine were both elevated immediately after glutathione synthesis 

was increased in the liver (Mercier et al, 2002). 
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5. Future expectations 

Although the applications of “AminoIndex technology” are still limited, the foundations for 
their use for diagnostic purposes are in progress as described above. Studies with clinical 
data indicate that even with individual variability, the “AminoIndex technology” can be 
used to separate certain disease and physiological states. We believe that the amino acids are 
a convenient metabolomic subset to use as a model for the development of metabolomics 
based diagnostics, and that in the near future, other metabolites could be added to the 
current analytical platform as practical issues such as stability are solved. At the same time, 
the universality of the findings must be examined and it should be studied whether the data 
set we have obtained for the Japanese population is applicable to other populations. We 
believe that there is a great potential to use metabolome based markers in preliminary 
diagnostic screening for multiple diseases in which a single measurement of a metabolomic 
subset can lead to multiple diagnoses. One further advantage of the focused metabolomics 
multiple metabolite marker approach is that since the biomarkers are generated from a 
combination of already measured markers, new markers can be generated against any 
measured target parameter. This means that if a focused metabolomic subset data is 
obtained at the beginning of a treatment or an experiment, the generation of predictive 
markers can be attempted with the outcome of the treatment or experiment as the target 
parameter. We believe this would be of great use in tailor-made medicine and nutrition, as it 
may be possible to discriminate populations for which certain pharmaceutical or nutritional 
interventions would be useful or not.  
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