We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



4

Generic Software Frameworks for
GC-MS Based Metabolomics

Nils Hoffmann and Jens Stoye
Genome Informatics, Faculty of Technology, Bielefeld University
Germany

1. Introduction

Metabolomics has seen a rapid development of new technologies, methodologies, and
data analysis procedures during the past decade. The development of fast gas- and
liquid-chromatography devices coupled to sensitive mass-spectrometers, supplemented by
the unprecedented precision of nuclear magnetic resonance for structure elucidation of
small molecules, together with the public availability of database resources associated to
metabolites and metabolic pathways, has enabled researchers to approach the metabolome
of organisms in a high-throughput fashion. Other "omics" technologies have a longer history
in high-throughput, such as next generation sequencing for genomics, RNA microarrays for
transcriptomics, and mass spectrometry methods for proteomics. All of these together give
researchers a unique opportunity to study and combine multi-omics aspects, forming the
discipline of "Systems Biology" in order to study organisms at multiple scales simultaneously.

Like all other "omics" technologies, metabolomics data acquisition is becoming more reliable
and less costly, while at the same time throughput is increased. Modern time-of-flight (TOF)
mass spectrometers are capable of acquiring full scan mass spectra at a rate of 500Hz from 50
to 750 m/z and with a mass accuracy <5 ppm with external calibration (Neumann & Bocker,
2010). At the opposite extreme of machinery, Fourier-transform ion-cyclotron-resonance
(FTICR) mass spectrometers coupled to liquid chromatography for sample separation reach
an unprecedented mass accuracy of <1 ppm m/z and very high mass resolution (Miura
et al., 2010). These features are key requirements for successful and unique identification of
metabolites. Coupled to chromatographic separation devices, these machines create datasets
ranging in size from a few hundred megabytes to several gigabytes per run. While this is not
a severe limitation for small scale experiments, it may pose a significant burden on projects
that aim at studying the metabolome or specific metabolites of a large number of specimens
and replicates, for example in medical research studies or in routine diagnostics applications
tailored to the metabolome of a specific species (Wishart et al., 2009).

Thus, there is a need for sophisticated methods that can treat these datasets efficiently in terms
of computational resources and which are able to extract, process, and compare the relevant
information from these datasets. Many such methods have been published, however there is
a high degree of fragmentation concerning the availability and accessibility of these methods,
which makes it hard to integrate them into a lab’s workflow.

The aim of this work is to discuss the necessary and desirable features of a software framework
for metabolomics data preprocessing based on gas-chromatography (GC) and comprehensive
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74 Metabolomics

two-dimensional gas-chromatography (GCxGC) coupled to single-dimension detectors
(flame/photo ionization, FID/PID) or multi-dimension detectors (mass spectrometry, MS).
We compare the features of publicly available Open Source frameworks that usually have
a steep learning curve for end-users and bioinformaticians alike, owing to their inherent
complexity. Many users will thus be appaled by the effort it takes to get used to a framework.
Thus, the main audience of this work are bioinformaticians and users willing to invest some
time in learning to use and/or program in these frameworks in order to set up a lab specific
analytical platform. For a review of LC-MS based metabolomics data preprocessing consider
(Castillo, Mattila, Miettinen, OreS$i¢ & Hyotyldinen, 2011).

Before we actually compare the capabilities of these different frameworks, we will first define
a typical workflow for automatic data processing of metabolomics experiments and will
discuss available methods within each of the workflow’s steps.

We will concentrate on frameworks available under an Open Source license, thus allowing
researchers to examine their actual implementation details. This distinguishes these
frameworks from applications that are only provided on explicit request, under limited terms
of use, or that are not published together with their source code (Lommen, 2009; Stein, 1999),
which is still often the case in metabolomics and may hamper comparability and reuse of
existing solutions. Additionally, all frameworks compared in this work are available for
all major operating systems such as Microsoft Windows, Linux, and Apple Mac OSx as
standalone applications or libraries.

Web-based methods are not compared within this work as they most often require a complex
infrastructure to be set up and maintained. However, we will give a short overview of recent
publications on this topic and provide short links to the parts of the metabolomics pipeline
that we discuss in the following section. A survey of web-based methods is provided by
Tohge & Fernie (2009). More recent web-based applications for metabolomics include the
retention time alignment methods Warp2D (Ahmad et al., 2011) and ChromA (Hoffmann &
Stoye, 2009), which are applicable to GC-MS or LC-MS data, and Chromaligner (Wang et al.,
2010), which aligns GC and LC data with single-dimension detectors like FID.

Tools for statistical analysis of multiple sample groups and with different phenotypes have
been reported by Kastenmdiiller et al. (2011). However, other tools aim to integrate a
more complete metabolomics workflow including preprocessing, peakfinding, alignment and
statistical analysis combined with pathway mapping information like MetaboAnalyst (Xia &
Wishart, 2011), MetabolomeExpress (Carroll et al., 2010), or MeltDB (Neuweger et al., 2008).
These larger web-based frameworks integrate other functionality for time-course analysis (Xia
et al., 2011), pathway mapping (Neuweger et al., 2009; Xia & Wishart, 2010a) and metabolite
set enrichment analysis (Kankainen et al., 2011; Xia & Wishart, 2010b).

In the Application section, we will exemplarily describe two pipelines for metabolomics
analyses based on our own Open Source framework Maltcms: ChromA, which is applicable
to GC-MS, and ChromA4D, which is applicable to data from comprehensive GCxGC-MS
experiments. We show how to set up, configure and execute each pipeline using instructional
datasets. These two workflows include the typical steps of raw-data preprocessing in
metabolomics, including peak-finding and integration, peak-matching among multiple
replicate groups and tentative identification using mass-spectral databases, as well as
visualizations of raw and processed data. We will describe the individual steps of the
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workflows of the two application pipelines to give the reader a thorough understanding of
the methods used by ChromA and ChromA4D.

Finally, we discuss the current state of the presented Open Source frameworks and give an
outlook into the future of software frameworks and data standards for metabolomics.

2. A typical workflow for a metabolomics experiment

Metabolomics can be defined as the study of the metabolic state of an organism or its response
to direct or indirect perturbation. In order to find differences between two or more states,
for example before treatment with a drug and after, and among one or multiple specimens,
the actual hypothesis for the experiment needs to be defined. Based on this hypothesis, a
design for the structure of the experiments and their subsequent analysis can be derived.
This involves, among many necessary biological or medical considerations, the choice of
sample extraction procedures and preparation methods, as well as the choice of the analytical
methods used for downstream sample analysis.

Preprocessing of the data from those experiments begins after the samples have been acquired
using the chosen analytical method, such as GC-MS or LC-MS. Owing to the increasing
amount of data produced by high-throughput metabolomics experiments, with large sample
numbers and high-accuracy/high-speed analytical devices, it is a key requirement that the
resulting data is processed with very high level of automation. It is then that the following
typical workflow is applied in some variation, as illustrated in Figure 1.

Statistical Evaluation

Alignment

l Preprocessing l I:l,> l Peak Detection I

Fig. 1. A typical workflow for a metabolomics experiment. Steps shown in orange (solid
border) are usually handled within the bioinformatics domain, while the steps shown in
green (dashed border) often involve co-work with scientists from other disciplines.

2.1 Data acquisition and conversion

The most common formats exported from GC-MS and LC-MS machines today are NetCDF
(Rew & Davis, 1990), based on the specifications in the ASTM/AIA standard ANDI-MS
(Matthews, 2000), mzXML (Oliver et al., 2004), mzData (Orchard et al., 2005), and more
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recently as the successor to the latter two, mzML (Deutsch, 2008; Martens et al., 2010). All of
these formats include well-defined data structures for meta-information necessary to interpret
data in the right context, such as detector type, chromatographic protocol, detector potential
and other details about the separation and acquisition of the data. Furthermore, they explicitly
model chromatograms and mass spectra, with varying degrees of detail.

NetCDF is the oldest and probably most widely used format today. It is routinely
exported even by older machinery, which offers backwards compatibility to those. It is
a general-purpose binary format, with a header that describes the structure of the data
contained in the file, grouped into variables and indexed by dimensions. In recent years,
efforts were made to establish open formats for data exchange based on a defined grammar
in extensible markup language (XML) with extendable controlled vocabularies, to allow
new technologies to be easily incorporated into the file format without breaking backwards
compatibility. Additionally, XML formats are human readable which narrows the technology
gap. mzXML was the first approach to establish such a format. It has been superseded
by mzData and, more recently, mzML was designed as a super-set of both, incorporating
extensibility through the use of an indexed controlled vocabulary. This allows mzML to be
adapted to technologies like GCxGC-MS without having to change its definition, although
its origins are in the proteomics domain. One drawback of XML-based formats is often
claimed to be their considerably larger space requirements when compared to the supposedly
more compact binary data representations. Recent advances in mzML approach this issue by
compressing spectral data using gzip compression.

The data is continuously stored in a vendor-dependent native format during sample
processing on a GC-MS machine. Along with the mass spectral information, like ion mass (or
equivalents) and abundance, the acquisition time of each mass spectrum is recorded. Usually,
the vendor software includes methods for data conversion into one of the aforementioned
formats. However, especially when a high degreee of automation is desired, it may be
beneficial to directly access the data in their native format. This avoids the need to run
the vendor’s proprietary software manually for every data conversion task. Both the
ProteoWizard framework (Kessner et al., 2008) and the Trans Proteomic Pipeline (Deutsch
et al., 2010) include multiple vendor-specific libraries for that use case.

2.2 Preprocessing

Raw mass specrometry data is usually represented in sparse formats, only recording those
masses whose intensities exceed a user-defined threshold. This thresholding is usually
applied within the vendor’s proprietary software and may lead to artificial gaps within the
data. Thus, the first step in preprocessing involves the binning of mass spectra over time
into bins of defined size in the m/z dimension, followed by interpolation of missing values.
After binning, the data is stored as a rectangular array of values, with the first dimension
representing time, the second dimension representing the approximate bin mass values, and
the third dimension representing the intensity corresponding to each measured ion. This
process is also often described as resampling (Lange et al., 2007).

Depending on various instrumental parameters, the raw exported data may require additional
processing. The most commonly reported methods for smoothing are the Savitzky-Golay
filter (Savitzky & Golay, 1964), LOESS regression (Smith et al., 2006) and variants of local
averaging, for example by a windowed moving average filter. These methods can also be
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applied to interpolate values where gaps are present in the original data. The top-hat filter
(Bertsch et al., 2008; Lange et al., 2007) is used to remove a varying baseline from the signal.
More refined methods use signal decomposition and reconstruction methods, such as Fourier
transform and continuous wavelet transform (CWT) (Du et al., 2006; Fredriksson et al., 2009;
Tautenhahn et al., 2008) in order to remove noise and baseline contributions from the signal
and simultaneously find peaks.

2.3 Peak detection

Often the process of peak detection is decoupled from the actual preprocessing of the data.
XCMS (Smith et al., 2006), for example, uses a Gaussian second derivative peak model with
a fixed kernel width and signal-to-noise threshold to find peaks along the chromatographic
domain of each ion bin. Other methods extend this approach to use a multi-scale continuous
wavelet transform using such a kernel over various widths, tracking the response of the
transformed signal in order to locate peak apex positions in scale-space before estimating
the true peak widths based on the kernel scale with maximum response (Fredriksson et al.,
2009; Tautenhahn et al., 2008). However, these methods usually allow only a small number of
co-eluting peaks in different mass-bins, since they were initially designed to work with LC-MS
data mainly, where only one parent ion and a limited number of accompanying adduct ions
are expected. In GC-MS, electron-ionization creates rich fragmentation mass spectra, which
pose additional challenges to deconvolution of co-eluting ions and subsequent association
to peak groups. Even though its source code is not publicly available, the method used by
AMDIS (Stein, 1999) has seen wide practical application and is well accepted as a reference by
the metabolomics and analytical chemistry communities.

2.4 Alignment

The alignment problem in metabolomics and proteomics stems from the analytical
methods used. These produce sampled sensor readings acquired over time in fixed or
programmed intervals, usually called chromatograms. The sensor readings can be one- or
multidimensional. In the first case, detectors like ultra violet and visible light absorbance
detectors (UV/VIS) or flame ionization detectors (FID) measure the signal response as
one-dimensional features, e.g. as the absorbance spectrum or electrical potential, respectively.
Multi-dimensional detectors like mass spectrometers record a large number of features
simultaneously, e.g. mass and ion count. The task is then to find corresponding and
non-corresponding features between different sample acquisitions. This correspondence
problem is a term used by Aberg et al. (2009) which describes the actual purpose of alignment,
namely to find true correspondences between related analytical signals over a number of
sample acquisitions. For GC-MS- and LC-MS-based data, a number of different methods have
been developed, some of which are described in more detail by Castillo, Gopalacharyulu,
Yetukuri & OreSi¢ (2011) and Aberg et al. (2009). Here, we will concentrate on those methods
that have been reported to be applicable to GC-MS. In principle, alignment algorithms can
be classified into two main categories: peak- and signal-based methods. Methods of the first
type start with a defined set of peaks, which are present in most or all samples that are to be
aligned before determining the best correspondences of the peaks between samples in order to
then derive a time correction function. Krebs et al. (2006) locate landmark peaks in the TIC and
then select pairs of those peaks with a high correlation between their mass spectra in order to
fit an interpolating spline between a reference chromatogram and the to-be-aligned one. The
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method of Robinson et al. (2007) is inspired by multiple sequence alignment algorithms and
uses dynamic programming to progressively align peak lists without requiring an explicit
reference chromatogram. Other methods, like that of Chae et al. (2008) perform piecewise,
block-oriented matching of peaks, either on the TIC, on selected masses, or on the complete
mass spectra. Time correction is applied after the peak assignments between the reference
chromatogram and the others have been calculated. Signal-based methods include recent
variants of correlation optimized warping (Smilde & Horvatovich, 2008), parametric time
warping (Christin et al., 2010) and dynamic time warping (Christin et al., 2010; Clifford et al.,
2009; Hoffmann & Stoye, 2009; Prince & Marcotte, 2006) and usually consider the complete
chromatogram for comparison. However, attempts are made to reduce the computational
burden associated with a complete pairwise comparison of mass spectra by partitioning the
chromatograms into similar regions (Hoffmann & Stoye, 2009), or by selecting a representative
subset of mass traces (Christin et al., 2010). Another distinction in alignment algorithms is the
requirement of an explicit reference for alignment. Some methods apply clustering techniques
to select one chromatogram that is most similar to all others (Hoffmann & Stoye, 2009; Smilde
& Horvatovich, 2008), while other methods choose such a reference based on the number of
features contained in a chromatogram (Lange et al., 2007) or by manual user choice (Chae
et al., 2008; Clifford et al., 2009). For high-throughput applications, alignments should be fast
to calculate and reference selection should be automatic. Thus, a sampling method for time
correction has recently been reported by Pluskal et al. (2010) for LC-MS. A comparison of these
methods is given in the same publication.

2.5 Statistical evaluation

After peaks have been located and integrated for all samples, and their correspondence has
been established, peak report tables can be generated, containing peak information for each
sample and peak, with associated corrected retention times and peak areas. Additionally,
peaks may have been putatively identified by searching against a database, such as the GMD
(Hummel et al., 2007) or the NIST mass-spectral database (Babushok et al., 2007).

These peak tables can then be analyzed with further methods, in order to detect e.g. systematic
differences between different sample groups. Prior to such an analysis, the peak areas need
to be normalized. This is usually done by using a spiked-in compound which is not expected
to occur naturally as a reference. The normalization compound is supposed to have the same
concentration in all samples. The compound’s peak area can then be used to normalize all
peak areas of a sample with respect to it (Doebbe et al., 2010).

Different experimental designs allow to analyze correlations of metabolite levels for the same
subjects under different conditions (paired), or within and between groups of subjects. For
simple paired settings, multiple t-tests with corrections for multiple testing can be applied
(Berk et al., 2011), while for comparisons between groups of subjects, Fisher’s F-Statistic
(Pierce et al., 2006) and various analysis of variance (ANOVA), principal component analysis
(PCA) and partial least squares (PLS) methods are applied (Kastenmidiller et al., 2011; Wiklund
et al., 2008; Xia et al., 2011).

2.6 Evaluation of hypothesis

Finally, after peak areas have been normalized and differences have been found between
sample groups, the actual results need to be put into context and be interpreted in their
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biological context. This task is usually not handled by the frameworks described in this
chapter. Many web-based analysis tools allow to put the data into a larger context,
by providing name- or id-based mapping of the experimentally determined metabolite
concentrations onto biochemical pathways like MetaboAnalyst (Xia & Wishart, 2011),
MetabolomeExpress (Carroll et al., 2010), or MeltDB (Neuweger et al., 2008). The latter allows
association of the metabolomics data with other results for the same subjects under study or
with results from other "omics" experiments on the same target subjects, but this is beyond
the scope of the frameworks presented herein.

3. Frameworks for GC-MS analysis

A number of Open Source frameworks have been developed for LC-MS based proteomics
frameworks like OpenMS (Bertsch et al., 2008), ProteoWizard (Kessner et al., 2008), and
most notably the TransProteomicPipeline (Deutsch et al.,, 2010). Even though many of
the steps required for proteomics apply similarily to metabolomics applications, there are
still some essential differences due to the different analytical setups and technologies (e.g.
matrix assisted laser desorption ionization mass spectrometry, MALDI-MS) used in the two
fields. XCMS (Smith et al., 2006) was among the first frameworks to offer support for data
preprocessing in LC-MS based metabolomics. Later, MZmine?2 (Pluskal et al., 2010) offered an
alternative with a user-friendly interface and easy extendability. Lately, Scheltema et al. (2011)
published their PeakML format and mzMatch framework also for LC-MS applications. As
of now, there seem to be only a few frameworks available for GC-MS based metabolomics
that offer similar methods, namely PyMS (Callaghan et al., 2010; Isaac et al., 2009) and
Maltcms/ChromA (Hoffmann & Stoye, 2009; Maltcms, 2011) . These will be presented in more
detail in this section. A compact overview of the Open Source frameworks discussed herein
is given in Table 1. A detailed feature comparison can be found in Table 2.

3.1 XCMS

XCMS (Smith et al., 2006) is a very mature framework and has seen constant development
during the last five years. It is mainly designed for LC-MS applications, however its binning,
peak finding and alignment are also applicable to GC-MS data. XCMS is implemented in
the GNU R programming language, the de-facto standard for Open Source statistics. Since
GNU R is an interpreted scripting language, it is easy to write custom scripts that realize
additional functionality of the typical GC-MS workflow described above. XCMS is part of
the Bioconductor package collection, which offers many computational methods for various
"omics" technologies. Further statistical methods are available from GNU R.

XCMS supports input in NetCDF, mzXML, mzData and, more recently, mzML format. This
allows XCMS to be used with virtually any chromatography-mass spectrometry data, since
vendor software supports conversion to at least one of those formats. XCMS uses the xcmsRaw
object as its primary tabular data structure for each binned data file. The xcmsSet object is then
used to represent peaks and peak groups and is used by its peak alignment and diffreport
features.

The peak finding methods in XCMS are quite different from each other. For data with normal
or low mass resolution and accuracy, the matched filter peak finder (Smith et al., 2006)
is usually sensitive enough. It uses a Gaussian peak template function with user defined
width and signal-to-noise critera to locate peaks on individual binned extracted ion current
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(EIC) traces over the complete time range of the binned chromatogram. The other method,
CentWave (Tautenhahn et al., 2008) is based on a continuous wavelet transform on areas of
interest within the raw data matrix. Both peak finding methods report peak boundaries and
integrated areas for raw data and for the data reconstructed from the peak finder’s signal
response values.

Initially designed for LC-MS, XCMS does not have a method to group co-eluting peaks into
peak groups, as is a requirement in GC-MS methods using electron ionization. However,
CAMERA (Tautenhahn et al., 2007) shows how XCMS can be used as a basis in order to create
a derived application, in this case for ion annotation between samples.

Peak alignment in XCMS is performed using local LOESS regression between peak groups
with very similar m/z and retention time behaviour and good support within each sample
group. This allows a simultaneous alignment and retention time correction of all peaks. The
other available method is based on the Obi-Warp dynamic time warping (Prince & Marcotte,
2006) algorithm and is capable of correcting large non-linear retention time distortions. It uses
the peak set with the highest number of features as alignment reference, which is comparable
to the approach used by Lange et al. (2007). However, it is much more computationally
demanding then the LOESS-based alignment.

XCMS's diffreport generates a summary report of significant analyte differences between two
sample sets. It uses Welch’s two-sample t-statistic to calculate p-values for each analyte group.
ANOVA may be used for more than two sample sets.

A number of different visualizations are also available, both for raw and processed data. These
include TIC plots, EIC plots, analyte group plots for grouped features, and chromatogram (rt,
m/z, intensity) surface plots.

XCMS can use GNU R’s Rmpi infrastructure to execute arbitary function calls, such as profile
generation and peak finding, in parallel on a local cluster of computers.

3.2 PyMS

PyMS (Callaghan et al., 2010; Isaac et al., 2009) is a programming framework for GC-MS
metabolomics based on the Python programming language. It can therefore use a large
number of scientific libraries which are accessible via the SciPy and NumPy packages (SciPy,
2011). Since Python is a scripting language, it allows to do rapid prototyping, comparable to
GNU R. However, Python’s syntax may be more familiar for programmers with a background
in object-oriented programming languages.

The downloadable version of PyMS currently only supports NetCDF among the more recent
open data exchange formats. Nonetheless, it is the only framework in this comparison with
support for the JCAMP GC-MS file format.

PyMS provides dedicated data structures for chromatograms, allowing efficient access to
EICs, mass spectra, and peak data.

In order to find peaks, PyMS also builds a rectangular profile matrix with the dimensions
time, m/z and intensity. Through the use of slightly shifted binning boundaries, they
reduce the chance of false assignments of ion signals to neighboring bins, when binning is
performed with unit precision (bin width of 1 m/z). PyMS offers the moving average and
the Savitzky-Golay (Savitzky & Golay, 1964) filters for signal smoothing of EICs within the
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profile matrix. Baseline correction can be performed by the top-hat filter (Lange et al., 2007).
The actual peak finding is based on the method described by Biller & Biemann (1974) and
involves the matching of local peak maxima co-eluting within a defined window. Peaks are
integrated for all co-eluting masses, starting from a peak apex to both sides and ending if the
increase in area falls below a given threshold.

Peak alignment in PyMS is realized by the method introduced by Robinson et al. (2007). It
is related to progressive multiple sequence alignment methods and is based on a generic
dynamic programming algorithm for peak lists. It proceeds by first aligning peak lists within
sample groups, before aligning the aligned peak lists of different groups, until all groups have
been aligned.

Visualizations of chromatogram TICs, EICs, peaks and mass spectra are available and are
displayed to the user in an interactive plot panel.

For high-throughput applications, PyMS can be used together with MPI to parallelize tasks
within a local cluster of computers.

3.3 Maltcms

The framework Maltcms allows to set up and configure individual processing components
for various types of computational analyses of metabolomics data. The framework is
implemented in JAVA and is modular using the service provider pattern for maximal
decoupling of interface and implementation, so that it can be extended in functionality at
runtime.

Maltcms can read data from files in NetCDF, mzXML, mzData or mzML format. It uses a
pipeline paradigm to model the typical preprocessing workflow in metabolomics, where each
processing step can define dependencies on previous steps. This allows automatic pipeline
validation and ensures that a user can not define an invalid pipeline. The workflow itself is
serialized to XML format, keeping track of all resources created during pipeline execution.
Using a custom post-processor, users can define which results of the pipeline should be
archived.

Maltcms uses a generalization of the ANDI-MS data schema internally and a data provider
interface with corresponding implementations to perform the mapping from any proprietary
data format to an internal data object model. This allows efficient access to individual mass
spectra and other data available in the raw-data files. Additionally, developers need no special
knowledge of any supported file format, since all data can be accessed generically. Results
from previous processing steps are referenced in the data model to allow both shadowing of
data, e.g. creating a processing result variable with the same name as an already existing
variable, and aggregation of processing results. Thus, all previous processing results are
transparently accessible for downstream elements of a processing pipeline, unless they have
been shadowed.

Primary storage of processing results is performed on a per-chromatogram basis in the binary
NetCDF file format. Since metabolomics experiments create large amounts of data, a focus is
put on efficient data structures, data access, and scalability of the framework.
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Embedding Maltcms in existing workflows or interfacing with other software is also possible,
as alignments, peak-lists and other feature data can be exported as comma separated value
files or in specific xml-based formats, which are well-defined by custom schemas.

To exploit the potential of modern multi-core CPUs and distributed computing networks,
Maltcms supports multi-threaded execution on a local machine or within a grid of connected
computers using an OpenGrid infrastructure (e.g. Oracle Grid Engine or Globus Toolkit
(Foster, 2005)) or a manually connected network of machines via remote method invocation
(RMI).

The framework is accompanied by many libraries for different purposes, such as the
JFreeChart library for 2D-plotting or, for BLAS compatible linear algebra, math and statistics
implementations, the Colt and commons-math libraries. Building upon the base library Cross,
which defines the commonly available interfaces and default implementations, Maltcms
provides the domain dependent data structures and specializations for processing of
chromatographic data.

Name Version Analytical method Software license Programming language
XCMS 1.26.1* LC-MS/GC-MS GNU GPL v2 GNU R 2.13/C++
PyMS r371 GC-MS GNU GPL v2 Python 2.5
Maltcms/ChromA 1.1 GC-MS GNU L-GPLv3 JAVA 6

Table 1. Overview of available Open Source software frameworks for GC-MS based
metabolomics. a: Part of Bioconductor 2.8

Feature (GC-MS pipeline) XCMS PyMS ChromA

Data formats A,B,C,D A E A,B,C,D
Signal preprocessing MM SG, TH MA, MM, TH
Peak detection MEF, CWT BB MAX

Multiple peak alignment LOESS, DTW PROGDP DTW, CLIQUE
Visualization TIC, EIC, SURF TIC, EIC TIC, EIC, SURF
DB search no (LC-MS only) no MSP
Normalization no no RP, EV
Statistical evaluation TT no FT

Table 2. Feature comparison of Open Source software frameworks for preprocessing of
GC-MS based metabolomics data. Keys to abbreviations: Data formats A: NetCDF, B:
mzXML, C: mzData, D: mzML, E: JCAMP GC-MS. Signal preprocessing MM: moving
median, SG: Savitzky-Golay filter, TH: top-hat filter, MA: moving average. Peak detection
MF: matched Gaussian filter, CWT: continuous wavelet transform, BB: Biller-Biemann, MAX:
TIC local maxima. Multiple peak alignment LOESS: LOESS regression, DTW: dynamic time
warping, PROGDP: progressive using dynamic programming, CLIQUE: progressive
clique-based. Visualization (of unaligned and aligned data) TIC: plots of total ion
chromatogram /peaks, EIC: plots of extracted ion chromatograms/peaks, SURF: surface
plots of profile matrix (rt x m/z x I). DB search MSP: msp-format, compatible with AMDIS
and GMD format. Normalization RP: reference peak area, EV: external value, e.g. dry
weight. Statistical evaluation TT: groupwise t-test, multiple testing correction, FT: F-test,
between group vs. within group variance
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3.3.1 ChromA

ChromA is a configuration of Maltcms that includes preprocessing, in the form of mass
binning, time-scale alignment and annotation of signal peaks found within the data, as
well as visualizations of unaligned and aligned data from GC-MS and LC-MS experiments.
The user may supply mandatory alignment anchors as CSV files to the pipeline and a
database location for tentative metabolite identification. Further downstream processing can
be performed either on the retention time-corrected chromatograms in NetCDF format, or on
the corresponding peak tables in either CSV format or XML format.

Peaks can either be imported from other tools, by providing them in CSV format to ChromA,
giving at least the scan index of each peak in a file per row. Alternatively, ChromA has a fast
peak finder that locates peaks based on derivatives of the smoothed and baseline-corrected
TIC, using a moving average filter followed by top-hat filter baseline-substraction, with a
predefined minimum peak-width. Peak alignment is based on a star-wise or tree-based
application of an enhanced variant of pairwise dynamic time warping (DTW) (Hoffmann &
Stoye, 2009). To reduce both runtime and space requirements, conserved signals throughout
the data are identified, constraining the search space of DTW to a precomputed closed
polygon. The alignment anchors can be augmented or overwritten by user-defined anchors,
such as previously identified compounds, characteristic mass or MS/MS identifications.
Then, the candidates are paired by means of a bidirectional best-hits (BBH) criterion, which
can compare different aspects of the candidates for similarity. Paired anchors are extended to
k-cliques with configurable k, which help to determine the conservation or absence of signals
across measurements, especially with respect to replicate groups. Tentative identification
of peaks against a database using their mass spectra is possible using the MetaboliteDB
module. This module provides access to mass-spectral databases in msp-compatible format,
for example the Golm Metabolite Database or the NIST EI-MS database.

ChromA visualizes alignment results including paired anchors in birds-eye view or as a
simultaneous overlay plot of the TIC. Additionally, absolute and relative differential charts
are provided, which allow easy spotting of quantitative differences.

Peak tables are exported in CSV format, including peak apex positions, area under curve, peak
intensity and possibly tentative database identifications. Additionally, information about the
matched and aligned peak groups is saved in CSV format.

4. Frameworks for GCxGC-MS analysis

The automatic and routine analysis of comprehensive GCxGC-MS data is yet to be established.
GCxGC-MS couples a second chromatographic column to the first one, thereby achieving a
much higher peak capacity and thus a better separation of closely co-eluting analytes (Castillo,
Mattila, Miettinen, OreSi¢ & Hyotyldinen, 2011). Usually, for a one-hour run, the raw data
file size exceeds a few Gigabytes. Quite a number of algorithms have been published on
alignment of peaks in such four-dimensional (first column retention time, second column
retention time, mass, and intensity values) data (Kim et al., 2011; Oh et al., 2008; Pierce et al.,
2005; Vial et al., 2009; Zhang, 2010), however only a few methods are available for a more
complete typical preprocessing workflow. A compact overview of the available frameworks,
their licenses and programming languages is given in Table 3. Table 4 gives a more detailed
feature matrix of these frameworks. The remainder of this section gives a concise overview
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of the frameworks Guineu (Castillo, Mattila, Miettinen, Ores$i¢ & Hyotyldinen, 2011) and
ChromA4D (Maltcms, 2011).

Name Version Supported methods Software license Programming language
Guineu 082 GCxGC-MS (LC-MS) GNUGPLv2  JAVA 6
Maltcms/ChromA4D 1.1 GCxGC-MS GNU L-GPL v3 JAVA 6

Table 3. Feature comparison of Open Source software frameworks for GCxGC-MS based
metabolomics

4.1 Guineu

Guineu is a recently published graphical user interface and application for the comparative
analysis of GCxGC-MS data (Castillo, Mattila, Miettinen, Ores$i¢ & Hyotyldinen, 2011). It
currently reads LECO ChromaTOF software’s peak list output after smoothing, baseline
correction, peak finding, deconvolution, database search and retention index (RI) calculation
have been performed within ChromaTOF.

The peak lists are aligned pairwise using the score alignment algorithm, which requires
user-defined retention time windows for both separation dimensions. Additionally, the
one-dimensional retention index (RI) of each peak is used within the score calculation. Finally,

Feature (GCxGC-MS pipeline) Guineu ChromA4D

Data formats G AH

Signal preprocessing no MA, MM, TH, CV

Peak detection no MAX-SRG

Multiple peak alignment SCORE CLIQUE

Visualization STATS STATS, TIC, EIC, TIC2D
DB search GMD, PUBCHEM, KEGG MSP (GMD)
Normalization RP RP, EV

Statistical evaluation CV, FLT, TT, PCA, CDA, SP, ANOVA FT

Table 4. Feature comparison of Open Source software frameworks for preprocessing of
GCxGC-MS based metabolomics data. Key to abbreviations: Data formats A: NetCDF, G:
ChromaTOF peak lists, H: CSV peak lists. Signal preprocessing MA: moving average, MM:
moving median, TH: top-hat filter, CV: coefficient of variation threshold. Peak detection
MAX-SRG: TIC local maxima, seeded region growing based on ms similarity. Multiple peak
alignment SCORE: parallel iterative score-based, CLIQUE: progressive
clique-based.Visualization (of unaligned and aligned data) TIC: plots of total ion
chromatogram /peaks, EIC: plots of extracted ion chromatograms/peaks, SURF: surface
plots of profile matrix (rt x m/z x I), STATS: visualization of statistical values. DB search
GMD: Golm metabolite database webservice, PUBCHEM: pubchem database webservice,
KEGG: kegg metabolite database, MSP: msp-format, compatible with AMDIS and GMD
format. Normalization RP: reference peak area, EV: external value, e.g. dry weight.
Statistical evaluation CV: coefficient of variation, FLT: fold-test, TT: groupwise t-test, PCA:
principal components analysis, CDA: curvilinear distance analysis, SP: Sammon’s projection,
ANOVA: analysis of variance, FT: F-test, between group vs. within group variance.
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a threshold for mass spectral similarity is needed in order to create putative peak groups.
Additional peak lists are added incrementally to an already aligned path, based on the
individual peaks’ score against those peaks that are already contained within the path.

Guineu provides different filters to remove peaks by name, group occurrence count, or other
features from the ChromaTOF peak table. In order to identify compound classes, the Golm
metabolite database (GMD) substructure search is used. Peak areas can be extracted from
ChromaTOF using the TIC, or using extracted, informative or unique masses. Peak area
normalization is available relative to multiple user-defined standard compounds.

After peak list processing, Guineu produces an output table containing information for
all aligned peaks, containing information on the original analyte annotation as given by
ChromaTOF, peak areas, average retention times in both dimensions together with the average
RI and further chemical information on the functional group and substructure prediction as
given by the GMD. It is also possible to link the peak data to KEGG and Pubchem via the CAS
annotation, if it is available for the reported analyte.

For statistical analysis of the peak data, Guineu provides fold change- and t-tests, principal
component analysis (PCA), analysis of variance (ANOVA) and other methods.

Guineu'’s statistical analysis methods provide different plots of the data sets, e.g. for showing
the principal components of variation within the data sets after analysis with PCA.

4.2 ChromA4D

For the comparison of comprehensive two-dimensional gas chromatography-mass
spectrometry (GCxGC-MS) data, ChromA4D accepts NetCDF files as input. Additionally,
the user needs to provide the total runtime on the second orthogonal column (modulation
time) to calculate the second retention dimension information from the raw data files. For
tentative metabolite identification, the location of a database can be given by the user.
ChromA4D reports the located peaks, their respective integrated TIC areas, their best
matching corresponding peaks in other chromatograms, as well as a tentative identification
for each peak. Furthermore, all peaks are exported together with their mass spectra to MSP
format, which allows for downstream processing and re-analysis with AMDIS and other
tools. The exported MSP files may be used to define a custom database of reference spectra
for subsequent analyses.

Peak areas are found by a modified seeded region growing algorithm. All local maxima of the
TIC representation that exceed a threshold are selected as initial seeds. Then, the peak area
is determined by using the distance of the seed mass spectrum to all neighbor mass spectra
as a measure of the peak’s coherence. The area is extended until the distance exceeds a given
threshold. No information about the expected peak shape is needed. The peak integration
is based on the sum of TICs of the peak area. An identification of the area’s average or apex
mass spectrum or the seed mass spectrum is again possible using the MetaboliteDB module.

To represent the similarities and differences between different chromatograms, bidirectional
best hits are used to find co-occurring peaks. These are located by using a distance that
exponentially penalizes differences in the first and second retention times of the peaks to be
compared. To avoid a full computation of all pairs of peaks, only those peaks within a defined
window of retention times based on the standard deviation of the exponential time penalty
function are evaluated.
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ChromA4D’s visualizations represent aligned chromatograms as color overlay images, similar
to those used in differential proteomics. This allows a direct visual comparison of signals
present in one sample, but not present in another sample.

ChromA4D creates peak report tables in CSV format, which include peak apex positions in
both chromatographic dimensions, area under curve, peak intensity and possibly tentative
database identifications. Additionally, information about the matched and aligned peak
groups is saved in CSV format.

5. Application examples

The following examples for GC-MS and GCxGC-MS are based on the Maltcms framework,
using the ChromA and ChromA4D configurations described in the previous sections. In order
to run them, the recent version of Maltcms needs to be downloaded and unzipped to a local
folder on a computer. Additionally, Maltcms requires a JAVA runtime environment version 6
or newer to be installed. If these requirements are met, one needs to start a command prompt
and change to the folder containing the unzipped Maltcms.

5.1 An example workflow for GC-MS

The experiment used to illustrate an example workflow for one-dimensional GC-MS consists
of two samples of standard compounds, which contain mainly sugars, amino acids,
other organic acids and nucleosides, measured after manual (MD) and after automatic
derivatization (AD) with the derivatization protocol and substances given below. Group
AD consists of a sample of n-alkanes standard and two replicates of mix1, namely mix1-1
and mix1-2. We will show how ChromA can be used to find and integrate peaks, as well as
compare and align the peaks between the samples, and finally how the alignment results can
be used for quality control.

5.1.1 Sample preparation

20 uL of each sample were incubated with 60 pL methoxylamine hydrochloride
(Sigma Aldrich) in pyridine (20 mg/ml) for 90 min at 60°C before 100 uL of N-
Methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA) (Macherey & Nagel) were added for
60 min at 37°C.

5.1.2 Acquisition and data processing

The samples were acquired on an Agilent GC 7890N with MSD 5975C triple axis detector. An
Agilent HP5ms column with a length of 30 m, a diameter of 0.25 mm, and a film thickness
of 0.25 ym (Agilent, Santa Clara CA, USA) was used for the gas-chromatographic separation,
followed by a deactivated restriction capillary with 50 cm length and a diameter of 0.18 mm.
Per sample, 1 uL was injected onto the column in pulsed splitless mode (30 psi for 2 min).
The flow rate was set to 1.5 mL/min of Helium. The linear temperature ramp started at 50 °C
for 2 min until it reached its maximum of 325 °C at a rate of 10 °C/min. The raw data were
exported to NetCDF format using the Agilent ChemStation software v.B.04.01 (Agilent, Santa
Clara CA, USA) with default parameters and without additional preprocessing applied.

A sample containing n-alkanes was measured as an external standard for manual (MD) and
automatic derivatization (AD) in order to be able to later determine retention indices for
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Fig. 2. TIC overlay plots of the raw GC-MS data sets.
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the other samples. The acquired data were exported to ANDI-MS (NetCDF) format before
ChromA was applied. The default ChromA pipeline chroma . properties was run from the
unzipped Maltcms directory with the following command (issued on a single line of input):

> java —-Xmx1G —-jar maltcms.jar —-i ../data/ -o ../output/ -f %.CDF \
—-c cfg/chroma.properties

—1i points to the directory containing the input data, —o points to the directory where output
should be placed, - f can be a comma separated list of filenames or, as in this case, a wildcard
expression, matching all files in the input directory having a file name ending with .CDF.
The final argument indicated by -c is the path to the configuration file used for definition
of the pipeline and its commands. An overlay of the raw TICs of the samples is depicted in
Figure 2(a). The default ChromA pipeline configuration creates a profile matrix with nominal
mass bin width. Then, the TIC peaks are located separately within each sample data file and
are integrated (Figure 2(b)). The peak apex mass spectra are then used in the next step in
order to build a multiple peak alignment between all peaks of all samples by finding large
cliques, or clusters of peaks exhibiting similar retention time behaviour and having highly
similar mass spectra. This coarse alignment could already be used to calculate a polynomial
fit, correcting retention time shift for all peaks. However, the ChromA pipeline uses the
peak clusters in order to constrain a dynamic time warping (DTW) alignment in the next
step, which is calculated between all pairs of samples. The resulting distances are used to
determine the reference sample with the lowest sum of distances to all remaining samples.
Those are then aligned to the reference using the warp map obtained from the pairwise
DTW calculations. The pairwise DTW distances can easily be used for a hierarchical cluster
analysis. Similar samples should be grouped into the same cluster, while dissimilar samples
should be grouped into different clusters. Figure 3 shows the results of applying a complete
linkage clustering algorithm provided by GNU R to the pairwise distance matrix. It is clearly
visible that the samples are grouped correctly, without incorporation of any external group
assignment. Thus, this method can be used for quality control of multiple sample acquisitions,
when the clustering results are compared against a pre-defined number of sample groups.

5.2 An example workflow for GCxGC-MS

The instructional samples presented in this section were preprocessed according to the
protocol given by Doebbe et al. (2010). The description of the protocol has been adapted
from that reference where necessary.

5.2.1 Sample preparation

The samples were incubated with 100 ul methoxylamine hydrochloride (Sigma
Aldrich) in pyridine (20 mg/ml) for 90 min at 37°C while stirring. N-
Methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA) (Macherey & Nagel) was then
added and incubated for another 30 min at 37°C with constant stirring,.

5.2.2 Acquisition and data processing

The sample acquisition was performed on a LECO Pegasus 4D TOF-MS (LECO, St. Joseph,
MI, USA). The Pegasus 4D system was equipped with an Agilent 6890 gas chromatograph
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Fig. 3. Clustering of GC-MS samples based on pairwise DTW similarities transformed to
distances. The samples are clearly separated into two clusters, one containing the n-alkane
standard samples, the other one containing the mix1 samples.

(Agilent, Santa Clara, CA, USA). The inlet temperature was set to 275°C. An Rtx-5ms (Restek,
Bellefonte, PA, USA) capillary column was used with a length of 30 m, 0.25 mm diameter
and 0.25 ym film thickness as the primary column. The secondary column was a BPX-50
(SGE, Ringwood, Victoria, Australia) capillary column with a length of 2 m, a diameter of
0.1 mm and 0.1 ym film thickness. The temperature program of the primary oven was set to
the following conditions: 70°C for 2 min, 4°C/min to 180°C, 2°C/min to 230°C, 4°C/min
to 325°C hold 3 min. This program resulted in a total runtime of about 70 min for each
sample. The secondary oven was programmed with an offset of 15°C to the primary oven
temperature. The thermal modulator was set 30°C relative to the primary oven and to a
modulation time of 5 seconds with a hot pulse time of 0.4 seconds. The mass spectrometer ion
source temperature was set to 200°C and the ionization was performed at -70eV. The detector
voltage was set to 1600V and the stored mass range was 50-750 m/z with an acquisition rate
of 200 spectra/second.

www.intechopen.com



W oo uadoyoalul MMM

(a) 2D-TIC plot before filters were applied. Long tailing peaks are (b) 2D-TIC plot after application

visible within the vertical dimension. Additionally, high frequency window size 3 for smoothing of hig
noise is present in the raw exported data, which is barely visible at application of a top hat filter with ¢
this resolution. removal in order to reduce false po:

Fig. 4. Visualizations of Standard-Mix1-1 before and after signal filtering with the ChromA4D proces



W oo uadoyoalul MMM

(a) 2D-TIC plot of Standard-Mix1-1 after peak finding and (b) Differential plot of the two Stand.

integration with seeded region growing based on the cosine mass alignment based on vertical TIC sli
spectral similarity with a fusion threshold of 0.99. Peak areas were similar amounts of total ion intensi
limited to contain at most 100 points. shows a surplus in Standard-Mix1-1, -

Standard-Mix1-2.

Fig. 5. Visualizations of Standard-Mix1-1 after peak finding and of Standard-Mix1-1 and Standard-M



92 Metabolomics

The raw acquired samples in LECO’s proprietary ELU format were exported to NetCDF
format using the LECO ChromaTOF®) software v.4.22 (LECO, St. Joseph, MI, USA). Initial
attempts to export the full, raw data failed with a crash beyond a NetCDF file size of 4GBytes.
Thus, we resampled the data with ChromaTOF to 100 Hz (resampling factor 2) and exported
with automatic signal smoothing and baseline offset correction value of 1 which resulted
in file sizes around 3GBytes per sample. The samples presented in this section are named
"Standard-Mix1-1" and "Standard-Mix1-2" and were measured on different days (Nov. 29th,
2008 and Dec. 12th, 2008).

The default ChromA4D pipeline for peak finding was called from within the unzipped
Maltcms directory (issued on a single line of input):

> java —-Xmx2G —Jjar maltcms.jar —-i ../data/ -o ../output/ \
-f *x.cdf -c cfg/4Dpeakfinding.properties

The pipeline first preprocesses the data by applying a median filter followed by a top hat
filter in order to remove high- and low-frequency noise contributions (Figures 4(a) and 4(b)).
ChromA4D then uses a variant of seeded region growing in order to extend peak seeds, which
are found as local maxima of the 2D-TIC. These initial seeds are then extended until the mass
spectral similarity of the seed and the next evaluated candidate drops below a user-defined
threshold, or until the peak area reaches its maximum, pre-defined size (Figure 5(a)). After
peak area integration, the pipeline clusters peaks between samples based on their mass
spectral similarity and retention time behaviour in both dimensions to form peak cliques
(not shown) as multiple peak alignments, which are then exported into CSV format for
further downstream processing. Another possible application shown in Figure 5(b) is the
visualization of pairwise GCxGC-MS alignments using DTW on the vertical 2D-TIC slices,
which can be useful for qualitative comparisons.

6. Summary and outlook

The present state of Open Source frameworks for metabolomics is very diverse. A number
of tools have seen steady development and improvement over the last years, such as
XCMS, MZmine, and PyMS, while others are still being developed, such as mzMatch,
Guineu, and Maltcms. There is currently no framework available that covers every aspect
of metabolomics data preprocessing. Most of the frameworks concentrate on one or a
few analytical technologies with the largest distinction being between GC-MS and LC-MS.
GCxGC-MS raw data processing is currently only handled by Maltcms” ChromA4D pipeline,
while Guineu processes peak lists exported from LECO’s ChromaTOF software and offers
statistical methods for sample comparison together with a user-friendly graphical interface.

We showed two instructive examples on setting up and running the basic processing pipelines
ChromA and ChromA4D for GC-MS and GCxGC-MS raw data. The general structure of
these pipelines would be slightly different for each of the Open Source frameworks presented
in this chapter, however, the basic concepts behind the processing steps are the same for all
tools. Since metabolomics is an evolving field of research, no framework captures all possible
use-cases, but it will be interesting to see which frameworks will be flexible and extendable
enough to be adapted to new requirements in the near future.
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In order to combine experiments from multiple "omics" experiments, another level of
abstraction on top of local or web-service based tools for data processing, fusion, and
integration of metabolomics experiments is a necessary future requirement. Generic workflow
systems like Taverna (Hull et al., 2006) or Conveyor (Linke et al., 2011) offer integration
of such resources, augmented with graphical editors for point-and-click user interaction.
However, due to their generic nature these systems are far away from being as user-friendly
as applications designed for a specific data analysis task and require some expert knowledge
when assembling task-specific processing graphs.

One point that requires further attention is the definition and controlled evolution of peak
data formats for metabolomics, along with other formats for easier exchange of secondary
data between applications and frameworks. A first step in this direction has been taken
by Scheltema et al. (2011) by defining the PeakML format. However, it is important that
such formats are curated and evolved, possibly by a larger non-profit organization like the
HUPO within its proteomics standards initiative HUPO PSI. Primary data is already acessible
in a variety of different, defined formats, the most recent addition being mzML (Martens
et al., 2010) which is curated by the PSI. Such standardization attempts can however only be
successful and gain the required momentum if also the manufacturers of analytical machinery
support the formats with their proprietary software within a short time frame after the
specification and see a benefit in offering such functionality due to the expressed demand
of scientists working in the field as in case of NetCDF, mzData, or mzML.
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