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A Multi-Robot System Architecture  
for Trajectory Control of 

Groups of People 
 

Edgar A. Martinez-Garcia, Akihisa Ohya & Shinichi Yuta 
 
 
 

1. Introduction 
 

How to conduct a group of humans towards a target destination by a team of robots is the 
key-problem discussed in the present context. A suitable multi-robot system (MRS) 
architecture has been investigated and implemented for guiding groups of people. The 
present system can be seen as guiding-tours, nevertheless further than such concept this 
implementation can be though, or it is closer to the model given by several dogs flocking 
herds of sheep, guiding them towards a targeted place. Dogs and sheep have a minimal 
way of explicit communication. Sheep herd’s trajectory is controlled by a team of dogs 
(even one). The dogs do bark and/or approach to the herd if there is any situation 
disordering guidance. The proposed context differs from it, since does not exist any type 
of explicit signal for guidance, and trajectory control is given by a way based on natural 
reactions of angle-velocity motions between humans and robots. An extensive theoretical 
description and experimental results are discussed. Recent progress in robotics and 
artificial intelligence has made possible to build interactive mobile robots that operate 
highly reliably in crowded environments. There exist in the research field community 
several works concerned with guiding-tours, nevertheless tackling different problems 
and/or deploying different architectures. Few successful works concerned with guiding-
tours have been developed (Nourbakhsh et al., 1999; Thrapp et al., 2001; Burgard et al., 
1999). Our context has some differences, such as our system is compounded by a team of 
mobile robots, due to the importance of the task our architecture is centralized and 
deliberative, the MRS controls the people trajectory motion, and communication between 
robots and people is based on motion reactions. Section 2 discusses in the limits and scope 
of this research; section 3 details the architectural framework of the MRS. In section 4 a 
methodology for people localization by the MRS is presented in deeply. The section 5 
briefly describes a proposed strategy for control of the conduction task, while in section 6 
the part of robots motion planning is treated. Finally, section 7 and 8 shows simulation 
results of the proposed methodologies, and the conclusions respectively in each section. 
 

2. Aim of Study 
 

In the present context guided tours are defined as walking or moving from one point to a 
target location by performing certain conduction tasks, essentially involving mechanisms 
to crowd people. Three main issues have been regarded as part of the process of 
conduction: 
 

Source: Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 784, ARS/plV, Germany, July 2005 Edited by: Kordic, V.; Lazinica, A. & Merdan, M.
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1.) Guiding is defined as the conduction of the group of people through the pathway, 
by the Ra easily followed by the group of humans (all conditions are kept in a 
normal status); 

2.) Crowding (group size Control). It is the process of collecting the group together still 
closer than it actually is, while the group keeps striding on the pathway. So, in this 
context an undesirable situation is when the size of the group area (radius rk) 
increases at discrete time k, such that becomes bigger than a desired size or radius 
rref ; 

3.) Interception. Another situation is when a person intents to leave the group, or 
moving away from its scope. It is called interception, because a given robot 
approximates to he/she attempting to yield the person going back the group. 
However, despite this task has been considered, it leads to face other challenging 
problems, but for now it is out of the scope of this chapter. 

 
2.1 Strategy for MRS-based Guidance 
 
The main reason of configuration in Fig. 1 is because only one robot is needed as long as 
for guidance or conduction is concerned. On the other hand, two vehicles are settled at 
back-side to observe the people's behavior and/or crowd the group whether it is necessary 
by means of special guiding tasks.  
 

  
                                      (a)       (b) 

 
Figure 1. (a) Robots’ formation conducting a group of people; (b) The team of robots in formation steering 
the group of people's trajectory 

 
In order to represent the area coverage of a group of people, we established a circular 
model which encompasses all the members together as depicted in Fig.1) and Fig.2. Until 
up now, we have restricted it with a number of people between 2 up to 6 persons in 
hallways of the University of Tsukuba. The CG is expressed by its components (x; z; θ, v, 
w), and the MRS senses a measure of it at location (x; z) and heading angle θ, with lineal 
displacement in XZ-space vk, and angular velocity wk at discrete time k. Thus, CG 
heading angle represents the group's direction towards it is being displaced or will be 
displaced.  
The presented strategy was planned for accomplishing conduction and it can be divided 
as follows: 
1) Stereo vision-based people tracking. 
2) MRS architecture design. 
3) People trajectory control and robots motion planning. 
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The item number 1 will be discussed in latter sections, but for further reference it also was 
presented by the authors in references (Martinez et al., 2003; Martinez-Garcia et al., 2004). 
The item 2 was presented in (Martinez-Garcia et al., 2005). And item 3 is roughly 
discussed in latter sections. 
 

3. Multi-Robot System Architecture 
 

The robots conducts the people by a non-active cooperative modality (Murphy, 2000), 
sharing sensor data, cooperating for tracking and conducting the people without knowing 
on the existence of other robots. The architecture is compounded by a central host and a 
team of 3 self-contained mobile robots mechanically homogeneous, although we may 
think of it, that they can be considered heterogeneous since at least one robot's differences 
(front-side) arise more functional rather than physical (depicted in Fig.3-(b)). Deliberation 
is performed in the central host that remains during the entire mission duration as similar 
architectur presented in (Iocchi et al., 1995) and described in (Cao et al., 1997). A first 
endeavor of this architecture is to share distributed sensory information. It was established 
that a reliable way to share distributed percepts was by (1) performing a separate filtering 
process in each robot; and (2) to carry out with multi-sensor data fusion in the central host 
as depicted in Fig.3-(a). 
 

  
                                   (a)               (b) 

 
Figure 2. (a) MRS architecture; (b) robots platform and configuration 

 
The MRS exploits the stereo vision model; because stereo-based ranging data has several 
favorable points for world sensing in this context. It facilitates: (1) 3D spatial coordinates 
in real-time; (2) object segmentation (Beymer & Konolige, 1999), although, such 
advantages could be obtained by other methods and sensors. Each mobile robot was 
equipped with commercially available stereo vision sensors that provide disparity maps 
(sum of absolute differences), gray scale images (160x120 pixels) in real-time acquired by 
an IEEE 1394 bus communication. Each laptop on-board is 900MHz Pentium-III running 
under Linux. The Fig. 3-(a) depicts the configuration of the robots required for sensing a 
person (including gray level image and disparity map obtained from experiments). The 
disparity map represents a matching of the ranged environment by levels of gray. The 
farther a point is from the sensor, the more darken the pixel becomes. The center of the 
sensor was fitted approximately at 100cm height. In addition, the stereo parameters were 
established a priori by choosing and changing such settings manually until they met our 
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needs. In earlier experiments world was measured within an empty area of approximately 
800x700cm with a human standing at 200cm away from the sensor for evaluating stereo 
parameters, sensor’s accuracy, measuring timing and sensory info analysis. A first 
complication in using this model was high rate of noise due to stereo occlusion, and light 
conditions.  
The experimental results are depicted in Fig. 3-(b) that shows the top and side views of 
sensor data plotting, robot’s sensor at (0, 100, 0). 
 

  
                                       (a)                (b) 

 
Figure 3. (a) Robot configuration, gray level image and disparity map; (b) ranged data, top and side views 

 
Furthermore, the multi-robot communication system is based on functions for spreading 
messages and a group-communication philosophy (Fig.4-(a)), as similar architecture 
presented in (Iocchi et al., 2003). Each laptop on-board has wireless technology via 
IEEE802.11b. Experimental results on the MRS trade-offs such as sensory info and robots 
pose sharing are shown in table 1, real needs include transferring messages of about 1kb, 
nevertheless transactions were performed with 100kb. See (Martinez-Garcia et al, 2005) for 
further details on the communication architecture. In addition, another issue that depends 
on the MRS communication architecture is during the guiding-task performance robots 
localization, which is a critical issue for the team of robots. 
 

Experiments Ra to the central-host Rb to the central-host Rc to the central-host 
1 8 9 7 
2 10 8 9 

 
Table 1. Time (ms) spent in a round trip for 100 kbytes 

 
Self-localization is accomplished in a cooperative framework, where robots do share a 
relative Common Cartesian Coordinate System (CCCS). The CCCS development and its 
usage were presented by the authors in (Martinez-Garcia et al., 2005; Yoshida et al., 2003). 
The CCCS facilitates the problem of robots localization by sharing a relative system among 
robots without any world map in advance. The CCCS is an architectural framework 
embedded in each robotic platform (Yoshida et al., 2003). The method is based on 
matching measurements arising from ultrasonic range sonar and odometers. The 3 mobile 
robots get their pose respect to the objects in the world; if there are differences, the robots 
self-correct such measurements. Nevertheless, since CCCS is unable to self-correct error 
pose in navigation time, only Ra deploys a special pose estimator system (Watanabe & 
Yuta, 1990) aimed to correct positional errors. Measurements arising from CCCS and the 
pose estimator are combined into the central host, which have a global model of the world 
to overcome the problem of localization and navigation of the robots. The sequence of 
steps for such process is described in Fig.4-(b). 
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                          (a)                                        (b) 

 
Figure 4. (a) MRS architecture; (b) robots' relative Cartesian system and world representation in the central 
host 

 

4. Multiple People Localization  
 

In this section, the methodology for multi-human localization is discussed in detail, 
theoretical foundation and experimental results are shown. Firstly, a team of mobile robots 
was deployed to localize all the humans in a target-group. A team of robots overcome in 
great extent the problem of partial occlusion generated by the members themselves. In Fig. 
5, the configuration of an experiment is depicted; Basically, for the purpose of evaluation 
the environment was set a priori within 2 rows of people, 3 and 2 people at front and back 
respectively, between Ra (front) and Rb, Rc (left, right also respectively).  
 

 
Figure 5. Experiment configuration with 5 people, and 3 mobile robots 

 
From this experimental configuration, the Fig.6 depicts gray level images arising from 
each robot (from one stereo camera). Actually they do provide their fields of view, at their 
given geometrical positions, which can be matched with the robots’ position at depiction 
of Fig.6.  
 

 
Figure 6. Image views from a) Rb, b) Ra and c) Rc 
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In Fig. 6, from any given location, humans are difficult to perceive totally due to multi-
human occlusion. In the case of Ra (Fig. 6-b), it can only sense partial regions from people 
at the back, and Rb and Rc barely perceive 3 or 4 persons. From the stereo images a ranged 
world model was obtained, and sensor data (3D) have been plotted in Fig. 7. It shows the 
sensor readings top view for each of the 3 robots. All plots have been arranged into a 
common coordinate system.  
 

 
 
Figure 7. Sensors reading top view, a) Rb, b) Ra and c) RC 

 
As depicted in Fig. 7, due to noise generation, there is uncertainty in sensor data 
representing the humans.  
 
4.1 Data Processing 
 

A methodology for sensor data filtering, and human localization have been developed, 
mainly organized by 5 general stages: 

1.) Environment sensing (previously introduced) 
2.) Filtering:  

a) Zones discrimination 
b) Noise reduction 
c) Quantization filtering 

3.) Distributed multi-sensor data fusion 
4.) Clustering based segmentation 
5.) People localization 

Data filtering is considered as an essential part as a preamble for multi-sensor data fusion 
and people segmentation process. Filtering essentially, is compounded by 3 main parts: 2-
(a) zones discrimination, 2-(b) noise reduction and 2-(c) a routine of data quantization 
working as a spatial filtering. In multi-sensor data fusion (3), the information is arranged 
onto a common coordinate system to construct a short-term world model. In addition, we 
have implemented a segmentation method relaying on a clustering algorithm (4). 
Eventually, people are detected and localized (5). 
 
4.2 Zones Discrimination 
 

A first important regarding in the present strategy for filtering involves a spatial modality, 
which deals with an early elimination of unnecessary spaces. It has been called zones 
discrimination process because filtering relays on 2 thresholds. Both thresholds exhibit a 
couple of heights of the human body (shoulders and keens). Discrimination is applied to 
points falling out such thresholds; meanwhile, points between them (20 and 40 cm) are 
considered information with high likelihood to be within the set of points of ranged 
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people. In general, it was assumed about 170cm as a statistical average for people's height. 
Let us consider a set called RAW of vectors rawi, such that RAW={raw1, raw2,..,rawn}, and 

each vector rawi ∈ ℜ3, thus rawi ={rawi
x, rawi

y,..,rawi
z} corresponding to the 3 spatial 

components. Likewise, let's establish that V is a subset, such that V ⊂ RAW. Thus, our 
model for point discrimination is expressed in by V={rawi / th1<=rawi<=th2}. Where, the 
set RAW represents the raw sensor data, V is the set with the points of interest evaluated 
by rawi

y. The range is delimited by th1,2 representing knees and shoulders, and points 
which were ranged out are floor, ceiling and even mismatched points are zones from 
which sensor generates a considerable large amount of points, and are not useful for our 
purpose. It can be noticed the difference of quantity and points remaining after the 
discrimination process. By preserving the points between shoulders and knees, their 
quantity was approximately 15% of the total being still useful for later processing, while 
about 85% was removed (see results in Fig.8). 
 

 
 
Figure 8. Top view, results of point discrimination, a) Rb, b) Ra, and c) Rc 

 
4.3 Noise Reduction 
 

Noise reduction is an essential task to avoid undesired nosy regions, and keeping a 
suitable world model, as sensory data is not a perfect noiseless data model. It was 
implemented a noise reduction spatial filtering for dealing with noisy areas defined as 
small 3D spaces containing poor density and low uniformity distribution of sensor data, 
which were about less than 15 3D-points in a volume of 10x10x120cm (XZY) for one robot. 
Humans on the other side keep a high density and a uniform distribution of points. A 
suitable solution to tackle this problem was by implementing a 3D spatial filtering 
window with a threshold of point’s number. The filtering window slides over X and Z 
directions over the ground plane. The filtering discriminates sets of points if their number 
in the cell, is lower than the threshold. This process is represented by the set V={v1,v2,...,vm}. 
Thus, defining the space D={D1, D2,..,Dp}, from where each subspace is defined by 
Dk={dj

1,d
j
2,..,d

j
l} containing a number l of points (dji)l

i=1 to be evaluated in expression (1), 
the filtering-window in process state is called the jth cell, such that its upper left 
coordinates are given by (xj,zj) and size by fwin. Thus, results are then evaluated by (2) into 
the set H. Regarding a number of points called l and restricted by a threshold thn, the 
action of filtering is given by (3), 
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Where H ⊂ V, such that H={H1,H2,..,Hp} and Hj={hj
1,hj

2,..,hj
l} for hji ∈ ℜ3. Likewise, the 

filtering area was given by fwin=10cm and threshold equal to 20 points for the present 
experiments. The results from each robot are plotted in figure 9-a), b), c). With this 
algorithm in all experiments, data were still reduced about 27% less (from the resulted 
after zones discrimination), remaining approximately 73% for latter processing (although 
it was depending on the cell size). 
 

 
 
Figure 9. Results of noise reduction process. a) Rb, b) Ra and c) Rc 

 
The people who were partially or completely occluded by other people hardly might 
appear in the sensory model after noise reduction, due to poor density of points.  
 
4.4 Quantization Filtering 
 

The purpose of quantization is a reduction of points that decreases considerably more the 
burden of computation, and projects 3D points into a 2D model, as the latter is enough to 
represent humans’ position. Moreover, this task aims to project objects’ within a lower 
density of points. The principle of this algorithm is a quantization of points in the XZ 
space, performing a filtering through a small square cell. Regardless the number of points 
within the cell, if it keeps at least one point, then only the central value of the actual cell 
will represent such cell-area. It was found that it did not affect the final occupancy data 
representation on the XZ space, because of the small size of the cell. Thus, our model is 

given by two sets of vectors in ℜ3, where H is the set of vectors of the filtered data from (3), 
and C is a new set, which its space XZ is divided by a new size of cells represented by 
hwin. Where C={C1, C2,..,Cq} and Ck={k, k,..,k}, and Ck contains the kth cell index as many 
times as the number of points in such cell. For points reduction, XZ space will be split and 
referenced by cell addresses as expression (3), whereby hi

x is transformed by 

((hi
x)/(hwin)+1)>0 ∀ Z being Z the set of integers. Then transforming the space H into a C 

space, 
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Thus, the set of points in each cell are defined in the domain of the set Ck, additionally let's 
define the center of the cell Hk by (xk+hwin/2) and (zk+hwin/2), where every cell origin is 
given by (ak,bk) in cm. In Fig. 11-b), each cell has a determined number of points, and those 
points are labeled or referenced with their respective number of cell given by (3). The 
sense of this technique is for representing the content of a cell, instead of considering all 
the points in it, as in Fig. 11-c). From here, as depicted in Fig. 11-d), only one 2D point is 
considered, and it will appear at every non-empty cell.  
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Figure 10. Point reduction process 

 
Eventually, the process of data reduction is calculated, resulting the set W={W1,W2,..,Wq}. 
The mechanism of point reduction was by the expression (4) which not only converts cell 
dimension data into the original XZ-space points, but also calculates the central cell-value. 
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The space is basically a grid where each unique cell contains a different number of xz-
points, such that by considering the C space it resulted more suitable to compute small 
number of cells with points having a same label, than a large number of points addressed 
by an XZ coordinate (H domain), see figure 10-a). In general, the rate of 2D points was 
highly reduced as well as time computation for latter data processing. Its significance 
comes from the fact that once data fusion is performed the total number of points (from 
the team of robots) will generate a certain huge burden for segmentation performance. 
Results of point quantization are depicted in Fig. 11.  
 

 
 
Figure 11. Point reduction results, robots a) Rb, b) Ra and c) Rc 

 
The number of 3D points was reduced over 15,000 from the original ones (raw data) only 
in Ra. Practically, by means of this process nearly 93% of the data was still removed 
without lose 2D occupancy of ranged objects (people and furniture). Thus, for the purpose 
of data fusion about 7% of the points in each robot have resulted. Now on, these results 
can be more advantageous, and segmentation can be more likely attained. 
 
4.5 Data Fusion, Segmentation and People Localization 
 

The aim of multi-sensor fusion in the proposed method is to yield a global model of the 
world by sharing local sensory data arising from each robot’s location. The way of data 
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association is by setting onto a common coordinate system the sensory information filtered 
by each robot. Multi-sensor data fusion makes possible to reconstruct objects that do not 
exist in the data model of a determined robot’s sensory info. In addition, a sensor-sensor 
calibration was required for attaining accurate data fusion. To overcome the problem of 
dynamic distributed sensor data calibration, 4 main parts (among other very particular 
details) were implemented in the architecture:  

1.) Multi-robot positions (attained by the CCCS). 
2.) Sensor data calibration (correction of Cartesian errors in sensors fixation). 
3.) Synchronized sensing. (same spatial-temporal sensor data is fused). 
4.) Transformation of sensor data (for representation in a common world coordinates). 

Once data fusion process has been carried out, clustering based segmentation is then 
performed as a preamble to typify the nature of the objects. Multi-sensor data fusion is 
carried out in the central host at every discrete time tk. Further than improve the state of a 
world model at every updating, it has only a short-term purpose and its time of life is 
limited to less than the updating time. Thus, the points in wi=(wi

x, w
i
y, w

i
z) were translated 

by (5) according to their positions (xr, zr) and heading angles θR by, 
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Global coordinates were computed in (ωi
x, ωi

z) as a previous step for data fusion process. 
Now on, the set K holds a model representation of the environment which is the result of 

data fusion given by the following expression K=[ω]a ∪[ω]b ∪ [ω]c.  Finally, such 
expression determines the space K which represents the short-term world model (see 
results in Fig.12-(a)). This data model is now a key-issue for the process detailed in next 
section.  
How to determine what set of points are representing a unique object was established by 
grouping 2D points which their unique common feature is a distance that differentiates 
what group of near points belongs to a particular object. The purpose of any clustering 

technique is to evolve a K x r partition matrix of data set S(S=s1,s2,..,sr) in ℜN, representing 
its partitioning into a number of sub-clusters, say k, of clusters (Bandyopadhyay & Maulik, 
2000). The method for segmentation is based upon a threshold distance between two 
points in the set K. If two points are close enough, then those given points are labeled as 
part of a same subgroup. A determined point in process of clustering is compared with the 
rest in the total set.  
The end of such process ends up with a group of clusters representing the objects in the 
area surrounded by the team of robots. The method presented in this context has three 
main bases as core for segmenting: 
 
1. Unclassified point vs. unclassified point 
When 2 points p=(px,py,pz) and q=(qx,qy,qz) have not been labeled yet, and are close 

enough that an distance d between them is shorter than the established threshold dth (d ≤ 
dth), then both points are classified as part of the same sub-cluster S1, represented in 
expression (6) as, 
 

qpSdqzpzqxpx th ∪=⇒≤−+− 12 22 )()(  (6)
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2. Unclassified point vs. classified point 

When a point p ∈ ℜ3, which is non-classified yet and is close enough to the point si in sub-

cluster S1 that the distance between them is such that d ≤ dth, then set and point will be 
classified as part of the same sub-cluster, in S2 represented by the subset of the equation (7). 
 

122 21211 )()(, SpSdspspS th

i
zz

i
xx ∪=⇒≤−+−≠ φ  (7)

 
3. Classified point vs. classified point 
When 2 sub-clusters of points S1 and S2, which are already pre-classified and are close 

enough that at least a point of both groups (S1 and S2) are close enough that d ≤ dth, then set 
S1 and set S2 will be classified as part of the same sub-cluster, in S3 represented by the 
subset of the equation (8). 
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In situations like the previously explained once the points has been totally labeled, the set 
K is partitioned in rth subgroups of vectors called Sk={sk1, sk2,..,skr}, where each of such 
points has in common a label value. Now let's say that the distance threshold was denoted 
by dth=15cm. Segmented objects are classified by a determined numeric label generated 
and assigned automatically during the process as depicted in Fig.12-(b). 
 

   
                        (a)           (b)                   (c) 

 
Figure 12. (a) Multi-sensor data fusion; (b) segmentation results; and (c) multi-people localization results 

 
In Fig. 12-(b), only 6 clusters of points were found by performing the algorithm. Noting 
that clusters 5th and cluster 7th, the former one represents a section of a furniture, which at 
the time of the experiment it was in the field of view of Rb. Likewise, cluster 7th, is a small 
fragment of bit of noise associated with a part of data people. In spite of that, cluster 7th is 
considered as noise because in any possible manner it does not have enough size-feature 
as humans, such as the number of points, height, width and depth. A similar consideration 
was taken for the cluster 5th, because it is not as tall enough as a human. Basically size 
constraints were established a priori to differentiate humans from other objects, for this 
process we regarded some parameters such as clusters’ center of gravity (x,z), number of 
points, maximum and minimum values of the XZ-space as height of each object. Fig. 12-(c) 
shows how humans have been successfully localized; each circle expresses humans’ 
positions. Their scopes surround the highest concentration of ranged points close to their 
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center of gravity. Basically human’s positions were represented by their center of gravity. 

For depiction of humans’ scope the clusters’ standard deviation σd was deployed as radius 

d for drawing the circles. For the subfigure 12-(c), circles were plotted with radius of 3σd. 
Similar works with distributed networked systems for multi-people tracking but different 
contexts were presented by (Nakazawa et al., 1998; Tsutsui et al., 2001). 
 

5. Strategy for People Trajectory Control 
 

Localizing every human in a group is an approach that allows an estimation of the people 
group’s center of gravity (CG). In such estimation, a noisy computation of CG is regarded 
for several causes such as missing the measurement of a human due to temporal members’ 
occlusion, or bad light conditions and so forth. A strategy for improving the observation of 
the CG is a critical issue to yield trajectory control. A proposed framework for controlling 
the trajectory of the group's CG is presented in Fig.13. 
 

 
 
Figure 13. Block diagram of the vision-based feedback control 

 
The CG observation is easily accomplished by calculating it after multi-people localization. 
CG estimation is a filtered version of the CG carried out by a traditional extended Kalman 
filter. The trajectory control system provides a way for steering the CG leading to track a 
desired pathway. Eventually a motion model allows predicting into discrete time k+1 a 
desired CG position. 
 
5.1 Trajectory Control Model 
 

A principle in the proposed method is that the team of robots must steer the GC towards a 
desired pathway. The equation (10) expresses a model of the CG angular acceleration (αk), 
it yields a trajectory tracking while moving from the actual GC location towards the 
tracking-line having a distance ∆x between to be reached. Nevertheless, the robots team 
can not explicitly control such αk, but can in some extent affect the CG heading angle θ at 
navigation time. The equation also requires the CG's angular velocity wk feed at every 
cycle. In this context the equation (9) models a lineal feedback control. 
 

kkkk wkkxk 321 −−∆−= θα  (9) 

 
The gain is established by the constants k1, k2 and k3 and were determined by trial and 
error for the robots. The steps for calculating a desired CG's location at time k+1 is by 
correlating the previous equation value αk with the set of equations that model the 
kinematics of motion of the CG (not the control). The fig.14-(a) shows a depiction of the 
kinematical parameters regarded for its control already discussed. CG is a dynamic 
particle surrounded by a circular scope, which is defined by the magnitude of the 
crowding (members of the group). For its control every member’s dynamic status is 
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averaged in its CG’s behavior. 
 

   
                                    (a)                                (b)                  (c) 

 
Figure 14 (a) Feed-back control model; (b) Motion model; and (c) Control and trajectory generation 

 
5.2 Group’s Motion Model 
 

As depicted in Fig.14-(b) regardless the actual kinematical tendency at time k of the CG, 
there exist need to determine a desired future position value at k+1 to properly yield 
control over x and z coordinates for the CG’s trajectory. A proposed motion model for the 
CG correlates a set of simple equations for getting regarding a new pose Pk+1 at certain 
desired velocity. A projection of the group's angular velocity wk+1 is given by the 
equation (10), involving a measurement of the actual wk and αk. The result from equation 
(10) allows to correlate a prediction of the current angle θk into next discrete time θk+1 by 
(11) as 

tww kkk ∆+=+ α1  (10)

twkkk ∆+= ++ 11 θθ  (11)

Basically, the previous scalar results become fundamental to obtain lineal results in 
velocity and distance of the CG as vector representations yielded by expressions (12) and 
(13).  
They exhibit a more representative condition of the CG’s motion behavior. Certainly, 
lineal velocity and distance vectors in R2 ( x, z components). Being γ the gain that provides 

a control behavior to the vector velocity v on how fast it is stabilized in (12). A desired 
velocity vref is a constant value established a priori. Eventually, the model for predicting a 
next desired position of the CG is yielded by equation (13) as,  
 

)(1 krefk
x

k vvvv
rrr

−+=+ γ  (12) 

tvPP k
x

kk ∆+= ++ 11

rrr
 (13) 

 
Thus, angular velocity, heading angle, velocity and position vectors are the variables that 
define the proposed CG motion model. In fact the group of people kinematics is seen and 
analyzed throughout its CG considered as a self-driven particle.  
The Fig.15 shows the results obtained by merging the control and the motion model for 
the CG. In the simulation the CG started at 100 cm away from the tracking line heading 
towards 60° with a sequence of Gaussian noise a long with the trajectory generation data. 
The sampling time was established in 0.125 sg, CG displacement over time was 
vx=0.1m/sg, vz=0.5m/s and angular velocity wk=10°/s. Likewise for this simulation results 
k1=3.66, k2=2.5 and k3=-7.54. Besides in the plotting the angle control, x-velocity and z-
velocity behaviors are depicted. 
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Figure 15. Results of the trajectory control merged with the motion model results 

 
5.3 Center of Gravity Estimation 
 

One of the major important issues for the mechanism to control the CG is the 
measurement of it, which yields noisy observations. A proposed solution is the 
implementation of a traditional version of the Extended Kalman Filter (EKF) (Kalman, 
1996 ;Meybeck, 1979; Welch & Bishop, 2002) that resulted to be suitable enough to 
overcome the problem of noise filtering and to get present and future estimations of the 
CG kinematics. The state n-vector of the process xk = (x, z, θ, v, w) at discrete time k defines 
the group's pose (x,z), lineal and angular velocities v,w respectively. The observation of the 
system, which relates the sensory information is expressed in zk=(x;z) as in equation (14) 
and Kalman gain K in (15). 

kkk uxHz +=  (14) 
1)( −+= k

T
k

T
kk RHHPHPK  (15) 

Likewise, the present implementation also included the variable H[2x5] stationary over time 
matrix noiseless connection between the vectors xk and zk, and the uk that correlated a 
Gaussian white sequence. 

)ˆ(ˆ kkkkk xHzKxx −+=
r

 (16) 

kkkk HPKPP −=ˆ  (17)

It was possible to write an update equation for the new estimate xk+1, combining the old 
estimate xk with the measurement data zk. Additionally, a subsequent part of estimation 
process suggests also the update covariance matrix over time. Basically, the projection of 
estimate xk+1 and the vector state error covariance matrix.  

kkk qxx +Φ=+ ˆ
1  (18) 

2
1 )ˆ(ˆ)(ˆ tAPAtPAAPP w

T
kk

T
kk ∆Σ++∆++=+  (19)

Also the EKF equations express the projection into k+1 of previous estimate xk, and it 
relates the state transition matrix of the process Ф (also non-stationary), and projection 
into k+1 of the covariance is involved. Fig.16 depicts the results obtained from merging the 
EKF with the trajectory control and motion models.  
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Figure 16. Kalman filter with trajectory control simulating cg’s behavior 

 
The observations of the CG are symbolized by a cross character, at less than 90 cm away 
from the tracking-line heading 10° (observations include Gaussian noise), and sampling 
time was set to 0.10 sg for 350 discrete samples and an angular velocity w=10°/sg. 
 

7. Robots Motion Planning 
 

The basic principle relays on the fact that a single robot (Ra) is suitable enough to provide 
guidance (not control). Meanwhile the rest of the robots at back are purposed to share 
observations and controlling the size of the people dispersion. Figure 17-(a) depicts a 
circular model encompassing the group and its model for to determine a desired size rk+1 
is given by the expression (20). The main element for affecting the crowd dynamics relays 
on changing the actual radius rk until reaching a desired radius rref (established a priori) by 
deploying the robots at certain positions and speeds. If the condition rk is rk > rref exists, the 
process of crowding is performed (the smaller the rk, the more the crowding). In this 
strategy the team of robots gets closer or farther from the CG, forcing the people to modify 
their inter-space. Once the trajectory control yields the next desired CG, the radius is 
measured and a robots motion plan takes is performed 
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The Ri (i={a,b,c}) poses are determined based on the CG location as depicted in Fig.17-(b), 

according to the angles given by δi. ∆s is the distance required for the field of view of the 
sensors settled as a constant. Moreover, the heading angle for the team of robots is already 
given by the Kalman filter equations leading towards the desired pathway. 
 

  
                                              (a)                   (b) 

 
Figure 17. (a) Group’s size control model and parameters; (b) configuration of robots' formation 

 
Since the team of robot must reach certain position at k+1 for yielding control of the 
group’s size, the change of speeds are given by the equation (21), where Ri is the vector 
pose of robot i at every discrete time interval ∆t. 
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7. Simulation of People Group under Trajectory Control  
 

In reference (Kirkland & Maciejewski, 2003), an attempt to simulate crowd dynamics by 
pedestrians affected by the presence and introduction of mobile robots was presented. 
Such context considers a large number of pedestrians and few robots in order to study and 
understand its impact and effect in wide areas people behavior. That reference as the 
present work is considering the usage of the Social Force Model (SFM) originally 
introduced by (Helbing & Molnar, 1995). However, in the present work, the model 
proposed by Helbing has a different application as we attempt to adapt the model to 
simulate a reduced number of pedestrian behaving as a group following the leader robot 
Ra and affected by the presence of robots Rb and Rc. It is suggested that the motion of 
pedestrians can be described as if they would be subject to social forces. The 
corresponding SFM can be applied to several behaviors. It describes the acceleration 
towards a desired velocity of motion; it also terms reflecting that a pedestrian keeps a 
certain distance from other pedestrians and borders; and a term modeling attractive effects. 
The equations of the SFM involve: (1) A model for the desired direction of each pedestrian; 
(2) models repulsive effects (avoid obstacles and/or other member of the group); (3) 
models attractive effects (pursuing Ra, a chatting with other members); and (4) models 
some random variations of the behavior. Until this stage we have obtained experimental 
results in laboratory with the team of robots and sensors data. However, a simulation 
model can give us good approaches to prove the effectiveness of the proposed trajectory 
control model, and the verification of the methodology and strategy. Moreover simulation 
let us confirmation of the proposed people trajectory control with the robots motion 
planning. Finally, a human motion modeling can be generated. The algorithm that was 
implemented for simulation is described as following: 
1) An initially random location of the members. 
2) Members pursuit to Ra's orthogonal line respect to Ra’s heading angle. 
3) The CG observation and group size (rk) is provided. 
4) Estimation of the CG (filtering) is yielded. 
5) With the CG estimation a next desired (controlled) position is obtained by merging of 
the trajectory control and CG motion model. 
6) The next desired radius is determined (the farthest member is the actual maximum 
radius). 
7) Robots move towards their angles depending on CG’s position and heading. 
8) Again from step 2). 
With this algorithm, figure 11 depicts the simulation results for the conduction task, by 
merging all the models proposed in this paper. 

 
Figure 18. Simulation results of the guiding-task. Merging of the Kalman filtering, the CG-trajectory control 
model, the CG-prediction motion model and the robots motion plan 
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8. Conclusions and Future Work 
 

It has been considered that an important issue of this research work relies on the regarding 
of this modality for people conduction. A given contribution has been the methodology 
for conduction, its strategy for accomplishing the task-goal and the implementation of the 
system itself. It has been considered that most important issues featuring the present 
architecture are synthesized as: 

1.) A framework for people trajectory control model. 
2.) Guidance is mainly constrained by being of implicit communication type. 
3.) Motions reactions are the means of interaction for trajectory control between robots 

and people. 
4.) Non-active cooperation modality is given by the robots in this architecture. 

Furthermore, there are some important points of the guiding situation style, which were 
regarded as the basis for the MRS architecture. Likewise, some of the functionalities and 
part of the strategy for accomplishing conduction tasks that still deserve further 
considerations for investigation. For mentioning some of them; while conduction, people’s 
assumptions are tied to the fact that they follow Ra, and/or just follow the crowd towards 
Ra’s direction (specifying that direction for navigation is determined by Ra). The 
philosophy for attaining conduction is leader-based robots' formation, and several robots 
surround the group of people (it does not happened in other related work). Part of what 
affect psychologically the target-group people during the conduction task is that they walk 
feeling of being observed and the approach of back's robots. The team of robots affects the 
group’s crowd dynamics depending on positions and speeds. Besides, summing up in the 
scope of this work a multi-robot system architecture purposed to guide a group of people, 
a vision-based multi-people tracking by team of robots, a trajectory control model and a 
robots motion planning system were discussed. In the present context the approach has 
been to depict results of successful multiple people localization. We discussed in detail a 
method by deploying a MRS within a centralized architecture, since it has resulted enough 
for a task-oriented approach. The content of this paper is a critical part as a preamble to 
accomplish real experiments for interaction with different social groups of people aimed to 
provide guiding-tours. A methodology for processing and sharing distributed sensor data 
and multi-sensor data fusion was detailed with experimental results by deploying a team 
of 3 mobile robots, as well as evaluating robustness and reliability of the methods. 
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