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1. Introduction 

Severe sepsis and septic shock continue to plague intensive care units, leading to significant 
morbidity and mortality (Vincent et al., 2007). During the pathogenesis of sepsis, patients 
often develop multiple organ failure (MOF), which is believed to be the main cause of death 
(Vincent et al., 2007), indicating that either treatment or prevention of MOF could have 
profound therapeutic implications. However, despite extensive research in this field, the 
mechanisms and cellular pathophysiology involved in the transition of sepsis to MOF 
remain unclear, likely due to their immense complexity and cross-talk between signalling 
pathways.  
This chapter aims to highlight the current knowledge regarding the pathophysiology of 
sepsis-induced organ dysfunction and failure, specifically outlining the current state of 
knowledge regarding septic-induced dysfunction of the lung, liver, kidney, cardiovascular 
system and brain For each of these organ systems, we will identify the major cell types 
prone to damage and briefly describe the key molecular pathways thought to contribute to 
this phenomenon, thereby ascertaining possible novel therapeutic targets. 

2. LPS-TLR4 signalling pathway 

Septic shock is initiated by a complex set of pathophysiological responses to the invasion of 
foreign microbial pathogens in the body. The most common organisms isolated during 
septic shock are gram-negative bacteria, which contain large quantities of 
lipopolysaccharide (LPS) in their cellular membranes (Legrand et al., 2010). LPS and its 
interaction with the Toll-like receptor 4 (TLR-4), is believed to be the major trigger of the 
septic signalling cascade (Salomao et al., 2008). To briefly describe this important cellular 
interaction; LPS, in association with LPS-binding protein and the receptor CD14, forms a 
complex with TLR-4 (Salomao et al., 2008). This complex then recruits the Toll-IL-1 
resistance (TIR)-domain-containing adaptor molecules to the cytosolic surface of TLR-4. The 
four known adaptor proteins include 1) myeloid differentiation factor 88 (MyD88), 2) 
MyD88 adaptor-like protein, 3) TIR-domain-containing adaptor molecule 1 (TRIF) and 4) 
TRIF-related adaptor molecule. Depending on which of these adaptor molecules are 
involved, LPS-TLR4 signalling can be categorized as either early MyD88-dependent 
responses or delayed MyD88-independent responses. Of these, the more commonly 
characterized MyD88-dependent pathway initiates the phosphorylation of various 
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signalling kinases, induces the nuclear translocation of the transcription factor NF-κB and 
ultimately the up-regulation of inflammatory cytokines and mediators (Salomao et al., 2008; 
Baumgarten et al., 2006). In general, these cytokines (including tumor necrosis factor (TNF), 
interlukin-1 (IL-1), IL-6, IL-8) and inflammatory mediators (coagulation factors, 
complement, nitric oxide, ROS) can induce cellular dysfunction and apoptosis resulting  
in tissue injury and organ failure (Baumgarten et al., 2006; Rittirsch et al., 2008; Cunningham 
et al., 2004). Other micro-organisms, such as gram-positive bacteria, viruses and fungi,  
can also induce a strong inflammatory reaction; however, this is often induced through 
modified signalling mechanisms, such as the TLR-2 pathway (Salomao et al., 2008; Legrand 
et al., 2010). 
This chapter will attempt to review the mechanisms and pathophysiology involved in the 

cellular injury and tissue dysfunction of the main organ systems affected during severe 

sepsis and septic shock. Moreover, this manuscript will highlight target molecules that are 

unique or of particular importance to the development of organ injury, to outline current 

evidence regarding the development and application of novel therapeutic targets in the 

clinical treatment of septic shock. 

3. Lung 

3.1 Pathophysiology 

The lung is often the first organ to undergo dysfunction during sepsis, due to its early 

involvement in the inflammatory process, leading to the culmination of acute lung injury 

(ALI) or acute respiratory distress syndrome  (ARDS) (Bellingan, 2002). The development of 

ARDS significantly worsens patient outcome, with associated mortality rate rising to 

between 30-60% (Ware & Matthay, 2000). This process is believed to be initiated by 

activation of resident alveolar macrophages, which produce inflammatory mediators 

causing the activated leukocytes of the circulation to be recruited towards the lung 

(Abraham & Singer, 2007). This army of phagocytes invades the pulmonary interstitium 

causing the breakdown of endothelial and epithelial barriers thereby leading to significant 

tissue edema (Bhatia & Moochhala, 2004). This plague of leukocytes both responds and 

contributes to inflammation by producing various cytokines, reactive oxygen species (ROS), 

protein kinases, and transcription factors which perpetuate the influx of more leukocytes, 

causes direct injury to lung tissue and provokes cellular apoptosis (Bhatia & Moochhala, 

2004; Abraham & Singer, 2007; Marshall, 2001). The consequence of these cellular alterations 

is the formation of hyaline membranes, fibrin deposition, surfactant alterations and 

impaired gas exchange, leading to the therapeutic requirement of mechanical ventilation 

support (Abraham & Singer, 2007). As if this damage was not enough, mechanical 

ventilation itself, while being a necessary life-saving intervention, can act as a “secondary 

hit”, causing additional injury known as ventilator-induced lung injury (VILI), which occurs 

due to excessive stretch of pulmonary alveoli (Vlahakis & Hubmayr, 2005). 

3.2 Major cell types involved 

The major cell types involved include alveolar macrophages that initiate the pulmonary 

inflammatory response, leukocytes, including neutrophils and monocytes that are recruited 

to the lung, pulmonary endothelial and epithelial cells (both type I and type II) that regulate 

the barriers of the lung, and fibroblasts that are involved in injury-repair processes. 
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3.3 Key molecular pathways and possible therapeutic targets 
3.3.1 TLR-4 and inflammation 

As described above, TLR-4 signalling plays role in the septic response of most organs, but 
has been intensely studied in the specific context of ALI and ARDS (Bhatia & Moochhala, 
2004). TLR-4 signalling is known to activate either directly or indirectly through MyD88 the 

nuclear translocation of NFκB, which in turn stimulates the production of a vast array of 
inflammatory proteases and cytokines (Salomao et al., 2008). The central role of TLR in the 
septic response is further supported by genetic studies that demonstrate that polymorphic 
variations in TLR-4 can predispose patients to gram-negative bacteremia and septic shock 

(Agnese et al., 2002; Lorenz et al., 2002). The importance of downstream NFκB signalling has 
also been emphasized by the clinical observation that in neutrophils from patients with 

septic-induced ARDS the amount of NFκB activity is associated with fewer ventilator-free 
days (Yang et al., 2003) and decreased survival (Bohrer et al., 1997). Of the cytokines 

stimulated by TLR-4, TNFα and IL-1β are believed to be the major mediators of septic shock 
(Bhatia & Moochhala, 2004). Both of these mediators are release in the very early stages of 
the inflammatory response, appearing within 30-90 minutes, and in turn activate a second 
level of the inflammatory cascade including other cytokines, lipid mediators and reactive 

oxygen species (Bhatia & Moochhala, 2004). The specific role TNFα is highlighted by several 

studies which report that the ratio of TNFα to its receptor TNFR is significantly correlated 
with increased organ dysfunction and patient mortality (Pellegrini et al., 1996), and genetic 
polymorphisms in TNF both increase the amount of circulating TNF and worsen patient 
outcome (Stuber et al., 1996). Furthermore, there is currently a prospective, randomized, 
double-blind, multi-center, phase II clinical trial underway testing the efficacy of an anti-
TNF antibody (ALT-836) versus placebo in the prevention of septic-induced ALI/ARDS, 
with the primary outcomes being patient safety and ventilator-free days (clinicaltrials.gov 

NCT00879606). In addition to TNFα and IL-1β, other cytokines and inflammatory mediators 
thought to play an important role in the pathogenesis of ARDS during septic shock include, 
but is not limited to, IL-6, IL-8, IL-10, IL-4, granulocyte colony-stimulating factor (G-CSF), 
inter-cellular adhesion molecule-1 (ICAM-1), complement component 5a (C5a) and various 
pro-coagulation molecules (Bhatia & Moochhala, 2004; Bozza et al., 2007). 

3.3.2 The RAGE axis 

The receptor for advanced glycation end-products, or RAGE, is an inflammation 

perpetuating receptor with a diverse range of ligands, for which there is compelling 

evidence for its role in the development of systemic inflammation and ALI (Creagh-Brown 

et al., 2010).  While RAGE is expressed at low levels in all cells, it has a uniquely high 

constitutive expression in the lung (Buckley & Ehrhardt, 2010), which is further up-

regulated upon activation by its various ligands (Schmidt et al., 2000), including S100 

proteins, high mobility group proteins and advanced glycation end-products. RAGE 

signalling has been described to involve NFκB, mitogen-activated protein kinases (MAPK), 

and phosphoinositide 3-kinases (PI3K) which in turn lead to increased production of 

inflammatory cytokines, proteases and oxidative stress (Creagh-Brown et al., 2010). 

Interestingly, genetic ablation or inhibition of RAGE has consistently shown to increase 

survival in several different animal models of severe sepsis and septic shock (Creagh-Brown 

et al., 2010), and has additionally been reported to decrease septic-induced lung injury even 

when blocked therapeutically up to 24hrs following the initiation of sepsis (Lutterloh et al., 
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2007).  In accordance, similar results are found regarding the RAGE ligand HMGB1, which 

is known to be a late mediator of sepsis released from injured and stressed cells (Creagh-

Brown et al., 2010). Similar to RAGE, inhibition of HMGB1 during sepsis has also been 

shown to decrease lung injury and improve survival (Sawa et al., 2006; Yang et al., 2008). In 

clinical studies, patients with ALI have been observed to have increased soluble RAGE 

(sRAGE) in bronchioalveolar lavage fluid (BAL), and sRAGE levels correlated in severity of 

illness, ALI and mortality (Calfee et al., 2008; Uchida et al., 2006). Furthermore, ALI patients 

also display increased levels of various RAGE ligands (Creagh-Brown et al., 2010). While the 

benefits of RAGE inhibition have not been tested in the context of septic shock or ARDS, it is 

currently being assessed in the treatment of Alzheimer’s dementia (clinicaltrials.gov 

NCT00566397), which will provide valuable information regarding patient safety, which 

could assist in establishing future trails in the treatment of septic shock. 

3.3.3 Phosphoinositide 3-kinase gamma (PI3Kγ) 

Various phosphorylation molecules have been shown to significantly contribute to lung 
injury during the pathogenesis of severe sepsis and septic shock. In 2001, Yum et al. first 

showed that specific loss of PI3Kγ induced protection against acute lung injury in an 
experimental model of LPS-induced sepsis (Yum et al., 2001). While this paper was later 
challenged by a contradictory study using a model of E.coli (Ong et al., 2005), these original 
findings have since been confirmed in an extensive study by Martin et al. (Martin et al., 
2010). In this most recent study, both the genetic and pharmacological blockade of the 

kinase activity of PI3Kγ activity was shown to decrease lung inflammation, edema, and 
neutrophil invasion, and improve survival, even when pharmacological inhibition occurred 
up to 9 hours following the initiation of sepsis (Martin et al., 2010). Furthermore, this study 
demonstrated that these effects are likely due to decreased GRK2 phosphorylation and 
consequent maintenance of the receptor CXCR2 expression on neutrophils (Martin et al., 
2010). This, in turn, improves neutrophil recruitment to the origin of infection during severe 
sepsis, allowing for improved bacterial control and decreased decompartmentalization of 

the infection into the systemic circulation (Martin et al., 2010). Moreover, PI3Kγ is known to 
lie upstream to other phosphorylation molecules including Akt (or PKB), MAP kinases and 

NFκB, which have each been identified as contributors to lung injury during severe sepsis 
and septic shock (Martin & Ranieri, 2011). 

3.3.4 Fas 

Apoptosis, or programmed-cell death, occurs frequently in tissues under stress or injury as 
an attempt to limit necrosis; however in several disease pathologies including severe sepsis 
and septic shock, high levels of apoptosis can in itself be destructive (Wheeler, 2009).  
Apoptosis occurs through two distinct pathways; the intrinsic pathway involving 
mitochondrial signalling and the extrinsic pathway involving activation of cell surface death 
receptors (Wheeler, 2009). Fas is a type of death receptor for which there is compelling 
evidence for its fundamental role in pulmonary epithelial cells in the pathogenesis of septic-
induced ALI and ARDS (Chopra et al., 2009). In patients with ALI or ARDS, high levels of 
soluble Fas and its ligand (FasL) in BAL fluid correlate with increased mortality (Albertine 
et al., 2002; Matute-Bello et al., 1999). This role is supported by the fact that mice deficient in 
either Fas or FasL are protected from lung injury (Neff et al., 2005). More recent studies have 
shown that silencing the expression of Fas or the related Fas-associated death domain 
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(FADD) decreases lung apoptosis, injury and inflammation during sepsis (Perl et al., 2007; 
Matsuda et al., 2009). In addition this apoptotic pathway appears to be particularly 
dominant in this context, since silencing Fas, but not caspase-8 of the intrinsic pathway, in 
lung epithelial cells ameliorated pulmonary apoptosis, inflammation and neutrophil influx 
in a model of hemorrhage shock and sepsis (Perl et al., 2005). Moreover, in pulmonary 
epithelium, Fas can directly induce the production and release of inflammatory mediators, 
which further perpetuates the cycle of destruction (Perl et al., 2007). Together these data 
make Fas a potential therapeutic target that should be further explored in future studies. 

3.3.5 Activated protein C (APC) 

Activated protein C (APC) is a plasma serum protease that plays a central role in 
endogenous anti-coagulation. The PROWESS study, published in 2001, demonstrated the 
clinical significance of this molecule in the pathogenesis of sepsis, since administration of 
human recombinant APC (rhAPC) was found to significantly reduce mortality in patients 
with severe sepsis (Bernard et al., 2001). The specific role of APC in septic-induced ALI or 
ARDS has also been explored since protein C levels are documented to be decreased in ALI 
patients of both septic or non-septic origin, and that these reduced levels correlated with 
poor clinical outcome (Shorr et al., 2006; Matthay & Ware, 2004). These clinical finding are 
supported by studies in sheep, demonstrating that treatment with rhAPC in endotoxin or 
peritoneal-induced sepsis can reduce lung edema and injury (Waerhaug et al., 2008; Wang et 
al., 2007). Although APC is known for its anti-coagulative effects, these alone can not 
account for the improved clinical outcome in septic patients, since targeting of either 
activated factor X, anti-thrombin or tissue factor inhibitors has failed to produce a 
comparative protection (Sarangi et al., 2010). As such, APC has also been described to 
induce several cytoprotective effects which likely contribute to its success in the treatment of 
sepsis. These mechanisms include: 1) decreasing apoptosis (Mosnier et al., 2007), 2) the 
ability to bind to nuclear ribonucleoproteins, thereby facilitating the clearance of nuclear 
material from injured and necrotic tissue (Jean-Baptiste, 2007), 3) mediating the protection of 
the endothelial barrier, which prevents the destructive massive infiltration of neutrophils 
(Rittirsch et al., 2008), 4) a number anti-inflammatory effects including the decrease of tissue 

factor and thrombin, which in turn can induce inflammation, and the blockade of NFκB, 
which subsequently decreases the direct up-regulation of cytokines (Sarangi et al., 2010). 
Future studies, including the current multi-centered, phase III clinical trial PROWESS 
SHOCK (clinicaltrials.gov NCT00604214), are likely to further investigate and clarify the 
various mechanisms involved in APC-induced ALI protection during sepsis.  

4. Liver 

4.1 Pathophysiology 

The liver is the largest solid organ in the body, comprising 2-5% of the body weight of a 
normal adult. Its function is believed to play a major role in the development of multiple 
organ dysfunction syndrome due to its central control of metabolism and host defence 
mechanisms (Van Amersfoort et al., 2003); however it remains one of the most poorly 
characterized and understood organs involved in MOF. During septic shock the evolution of 
liver dysfunction can be divided in two phases. The early phase involves hepatocyte 

dysfunction induced by gut-derived norepinephrine, which activates α2-adrenoceptors, 

which stimulate Kupffer cells to enhance TNF-α release and depresses hepatocellular 
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function in the absence of hepatic blood flow alterations (Yang et al., 2001). In contrast, the 
late phase results mainly from a decreased hepatic perfusion, which mechanistically has 
been linked with increased coagulation, inflammation and derangement of endothelial nitric 
oxide synthase (eNOS) signalling (Dhainaut et al., 2001; Mookerjee, 2011). In addition, 
Kupffer cells can play either a protective or destructive role in the septic response of the 
liver, in that they are important in the removal and detoxification of LPS, while they can also 
initiate an exaggerated inflammatory response which can cause further liver damage (Van 
Amersfoort et al., 2003). Specifically, excessive inflammatory mediators can induce 
endothelial damage causing barrier breakdown and permeability, and are thought to be the 
driving force behind increased intra-hepatic resistance (Dhainaut et al., 2001; Mookerjee, 
2011). Furthermore, the development of hyperlipidemia in response to sepsis is believed to 
result from pathomorphological changes in sinusoidal endothelial cells (Cheluvappa et al., 
2010). Moreover, recent animal studies have shown that liver injury and dysfunction during 
sepsis is associated with G1 cell cycle arrest of hepatocytes and that hepatic function 
recovery was furthermore accompanied by cell cycle progression (Yang et al., 2011). Overall, 
these cellular defects result in loss of metabolic function, hypoglycaemia, lactic acidosis and 
coagulopathy. 

4.2 Major cell types involved  

In the pathogenesis of septic-induced liver dysfunction several hepatic cell types have been 
shown to be involved. This includes the parenchymal cells or hepatocytes, which are the 
main structural cell type of the liver comprising about 60% of the liver. These cells are 
highly metabolically active regulating lipids, bile and glucose. In addition, endothelial cells, 
which line the many sinusoids, and Kupffer cells, which are the resident macrophages of the 
liver, are also known to be significantly involved in the progression of sepsis to MOF. 
Moreover, circulating neutrophils which are recruited to the liver due to the high 
production of inflammatory cytokines have also been shown to contribute to this pathology.  

4.3 Key molecular pathways and possible therapeutic targets 
4.3.1 Tumor necrosis factor 

While several inflammatory cytokines including IL-6 and IL-1β have been implicated in the 

pathogenesis of liver dysfunction during sepsis, there is overwhelming evidence for a 

predominant role of TNF-α in this process.  TNF-α is produced in large quantities primarily 

by Kupffer cells during the very early phase of hepatocyte dysfunction, following α2-

adrenergic stimulation (Yang et al., 2001; Fong et al., 1990). These high levels of TNF-α are 

shown to induce a variety of effects including the production of acute phase proteins 

(APPs), which serve several physiological function of the immune response (Dhainaut et al., 

2001). However, the high up-regulation of APPs has also been associated with the 

development of liver failure (Ananian et al., 2005). Both TNF-α and their induced APPs also 

enhance pro-coagulant activity of vascular endothelial cells (Bevilacqua et al., 1986), which 

in turn can decrease hepatic perfusion, leading to further injury, as well as further ignite the 

inflammatory cascade (Dhainaut et al., 2001). TNF-α also up-regulates the expression 

adhesion molecules facilitating an excessive recruitment of activated neutrophils, which 

through the production of destructive proteases and reactive oxygen species, amplifies the 

damage to hepatocytes and endothelial cells (Zhang et al., 1994; Malmros et al., 1994; 

Holman, Jr. & Saba, 1988). 

www.intechopen.com



 
Cellular Mechanisms of MOF During Severe Sepsis and Septic Shock 

 

173 

4.3.2 Thrombin/ anti-thrombin 

Coagulation, resulting from an imbalance between pro- and anti-thrombin in the liver, 
occurs within the early phases of sepsis and significantly contributes to patient mortality 
(Stearns-Kurosawa et al., 2011). In vivo animal studies have described that microthrombi 
develop in the hepatic microcirculation with five minutes of an endotoxin challenge (Asaka 
et al., 1996). Furthermore, if the endotoxin dose is sublethal, clot lysis occurs with a few hours 
and hepatic architecture is conserved, while if endotoxin exposure continues, there develops 
clot accumulation, hypoperfusion, coagulation necrosis and irreversible tissue injury (Asaka et 
al., 1996). In addition, many studies have demonstrated that coagulation can further activate 
the inflammatory cascade, and visa versa, leading to a positive-feedback interaction (Stearns-
Kurosawa et al., 2011; Jagneaux et al., 2004; Dhainaut et al., 2001). Novel treatments targeting 
thrombin activity during sepsis has been shown to decrease serum bilirubin concentrations 
and prevent liver dysfunction (Nitescu et al., 2007; Inthorn et al., 1997); however its overall role 
in reducing septic mortality is still unclear (Wiedermann et al., 2006).  

4.3.3 Activated protein C (APC) 

Protein C is a zymogenic protein that is produced by the liver and later converted to the 
active serine proteinase, which degrades Factors Va and VIIIa of the coagulation cascade, 
thereby preventing excessive thrombin formation (Stearns-Kurosawa et al., 2011). During 
septic shock the synthesis of protein C is significantly decreased due to hepatocyte 
dysfunction, which correlates with disease severity and poor patient prognosis (Stearns-
Kurosawa et al., 2011). Apart from coagulation, APC has also been described to possess 
several cytoprotective effects including the ability to degrade damaging histones, anti-
inflammatory and anti-apoptotic activities and stabilization of endothelial barriers (Mosnier 
et al., 2007; Xu et al., 2009), which can each limit hepatic injury. In addition, treatment of 
septic patients with rhAPC can decrease liver dysfunction (Rinaldi et al., 2008), which in 
animal experiments has been shown to result from an ability of APC to attenuate leukocyte 
trafficking into the liver (Huynh et al., 2010).  

4.3.4 Complement system 

The complement system is a family of proteins produced mainly by the liver that at normal 
physiological levels assist phagocytic cell to clear invading pathogens (Ward & Gao, 2009). 
However, during the pathogenesis of sepsis, the liver is stimulated to produce exceedingly 
high concentrations of complement factors, such as C5a, which in large quantities produce 
an array of detrimental effects (Ward & Gao, 2009). These include the up-regulation of tissue 
factor leading to intensified coagulation, the induction of neutrophil paralysis that causes 
uncontrolled bacterial expansion, as well as increased inflammation and apoptosis, which 
all contribute to the development of MOF (Ward & Gao, 2009). Furthermore, several organs, 
including the liver, increase the expression of the C5a receptor during sepsis, which if 
blocked by an antagonist has been shown to improve organ function and survival in various 
animal models (Guo & Ward, 2006; Riedemann et al., 2002).  

5. Kidney 

5.1 Pathophysiology 

Acute kidney injury (AKI), a complex disorder with clinical manifestations ranging from a 
minimal elevation in serum creatinine to anuric renal failure, and is a frequent and serious 
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complication of sepsis in intensive care unit (ICU) patients (Lafrance & Miller, 2010). 
Moreover, there is strong evidence that septic AKI, accounting for 50% or more of cases of 
AKI in ICUs, is associated with a very high mortality (Uchino et al., 2005). Despite extensive 
research and progress in several other fields, the incidence, as well as mortality of septic 
AKI, remains at unacceptable levels (Silvester et al., 2001). A possible explanation of failure 
in the treatment of septic AKI is the relative lack of histopathologic information and reliance 
on creatinine measurements for assessment of kidney function, both leading to an 
incomplete understanding of the pathogenesis of this condition (Wan et al., 2008). AKI has 
been traditionally thought to be induced by ischemia secondary to decreased cardiac output 
and hypotension, which in turn leads to renal vasoconstriction and exacerbate the ischemia. 
Most of our understanding regarding renal blood flow (RBF) during sepsis relies on animal 
models. Across these studies, the heterogeneous nature of animals used, methods of 
inducing sepsis, and observed changes in RBF that vary from unchanged, decreased, and 
markedly increased all translate to uncertainty regarding their applicability to humans 
(Langenberg et al., 2007; Bagshaw et al., 2007). The characteristic pattern of RBF in human 
sepsis is for the most part largely unknown because RBF cannot be measured continuously 
in humans, and even its intermittent measurement requires a high level of invasiveness 
(Langenberg et al., 2007; Licari et al., 2007). Only a small study with limited patients has 
measured RBF in patients with sepsis, and reported that RBF was either preserved or 
increased in these patients (Bradley et al., 1976) However, recent findings suggest that, 
although hemodynamic factors may play a role in the loss of glomerular filtration, they do not 
necessary involve renal ischemia. In addition, other mechanisms including immunologic, toxic 
and inflammatory factors seem to affect the microvasculature and the tubular cell function. 
Apoptosis induced by LPS or cytokines, for instance, has emerged as a possible cause of loss of 
function of both endothelial and epithelial tubular cells (Humphrey et al., 1991). 

5.2 Major cell types involved 

The major cell types involved in the development of septic AKI includes all the cells forming 
the functional unit of the nephron.  Tubular epithelium, podocytes, endothelium, and 
mesangial cells have been found to be directly affected by exposure to LPS , as well as 
susceptible to the inflammatory state induced by sustained bacterial infection.   

5.3 Key molecular pathways and possible therapeutic targets 
5.3.1 Apoptosis pathway 

LPS can directly cause apoptosis of tubular cells through the Fas-mediated and caspase-
mediated pathways and increased plasma levels of soluble Fas has been described in septic 
patients (Jo et al., 2002). Additionally, experimental models of sepsis have shown that 
increased caspase activation is associated with the presence of AKI (Guo et al., 2004).  
In recent studies it has been demonstrated that plasma of septic patients can induce 
apoptosis of tubular cells and that the amount of this cell death correlates with the extent of 
proteinuria, which in turn is related with the severity of the septic process, with the 
impairment of renal function and with patient outcome (Cantaluppi et al., 2008). The 
extrinsic pathway is not the sole mechanism responsible for sepsis induced apoptosis in the 
kidney. As a matter of fact, it has been found that also the intrinsic pathway is activated  
in endothelial and tubular cells exposed to LPS (Mariano et al., 2008; Cantaluppi et al., 2008). 
This mechanism involves the oligomerization of the pro-apoptotic members of the Bcl-2 
family proteins, such as Bax, which translocates to the mitochondria and forms pores in  
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the outer mitochondrial membrane that allow the release of cytochrome C from the 
mitochondria. Cytosol cytochrome C binds to the adaptor protein apoptosis protease 
activating factor (APAF-1) and this complex binds to pro-caspase 9, forming the 
apoptosome. This in turn results in the auto-activation of caspase-9 (Mariano et al., 2008; 
Cantaluppi et al., 2008). One of the proposed mechanisms of protection induced by  
APC treatment in septic patients could also be due to its anti-apoptotic effects. Recent 
studies demonstrated that recombinant human APC directly modulates patterns of 
endothelial gene expression clustering into cell survival pathway and modulate several 
genes, including Bcl-2. Moreover, it normalizes Bax/Bcl-2 ratio and reduces caspase-3 
signalling. Also the decrease in sepsis-AKI found in patients treated with the aggressive 
insulin therapy could be due by his powerful anti-apoptotic effect. Conversely, it has been 
demonstrated that high glucose concentration induces oxidative-stress-mediated apoptosis 
in tubular cells (Allen et al., 2003). 

5.3.2 Permeability molecules 

Proteinuria found in AKI patients is usually in the nephrotic range with a mixed glomerular 
and tubular pattern (Schiavon et al., 1988), suggesting a simultaneous defect of tubular 
reabsorption and an increase of glomerular permeability. Megalin is an endocytic receptor 
that regulates the physiological reabsorption of glomerular-filtered low molecular weight 
proteins (Christensen & Birn, 2001). It has been shown that plasma derived from septic 
patients decreases the expression of megalin, suggesting that the impaired expression of this 
molecule may contribute to proteinuria resulting in a failure of tubular handling of filtered 
proteins (Mariano et al., 2008; Cantaluppi et al., 2008). Physiological tubular handling of 
electrolytes is based on the maintenance of cell polarity and on the integrity of tight junction 
protein expression (Lee et al., 2006). After challenge of tubular cells with septic plasmas, it 
has been observed a marked decrease of ZO-1 expression with a simultaneous alteration of 
trans-electrical resistance (TER) (Cantaluppi et al., 2008). These functional changes may alter 
the ability of tubular cells to maintain compositionally distinct fluid-filled compartments 
with precise electrolyte concentrations. Moreover, albumin diffusion across podocytes 
increases in the presence of septic plasma and this phenomenon is associated with decreased 
expression of nephrin, a slit diaphragm protein known to modulate glomerular permeability 
(Cantaluppi et al., 2008). Another molecule playing an important role in the correct 
organization and function of podocytes is nestin, able to stably link the intermediate 
filaments to other cytoskeleton proteins (Chen et al., 2006). The alterations in nephrin and 
cytoskeleton distribution may also account for the altered cell polarity and albumin 

transport across the podocyte monolayer observed after challenge with septic AKI plasma 
(Mariano et al., 2008; Cantaluppi et al., 2008).  

6. Cardiovascular 

6.1 Pathophysiology 

The worsening of sepsis toward septic shock is characterized by hypotension refractory to 
fluid resuscitation. An important component of this process is the development of 
progressive cardiac and hemodynamic dysfunction. Traditionally, these disturbances have 
been described in a biphasic spectrum: early hyperdynamic shock characterized by 
increased cardiac output, decreased systemic vascular resistance (SVR) and warm, perfused 
skin, followed by cold hypodynamic shock, during which SVR increases to compensate for 
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worsened cardiac output, resulting in tissue hypoperfusion, cool skin and eventual organ 
failure (Hoesel et al., 2007). However, it is now generally accepted that, after adequate 
volume resuscitation, patients develop a hyperdynamic circulatory state associated with 
high cardiac output, decreased systemic vascular resistance, and biventricular dilatation 
(Hunter & Doddi, 2010). Experimental models of sepsis showed clear evidence of 
myocardial contractile disturbance both in vivo and in vitro. These disturbances are present 
even in early hyperdynamic shock, when aggressive volume replacement and adaptive left 
ventricular dilatation can combine to preserve cardiac output (Grocott-Mason & Shah, 1998). 
What exactly triggers septic cardiomyopathy is still unknown. Cardiac dysfunction in sepsis 
is characterized by decreased contractility, impaired ventricular response to fluid therapy, 
and in some patients ventricular dilatation (Bouhemad et al., 2009). The hemodynamic 
instability is mainly due to dysfunction of vascular autoregulatory mechanisms in 
microcirculation and subsequently enhanced perfusion of large arteriovenous shunts 
(Matsuda & Hattori, 2007). 

6.2 Major cell types involved 

The pathophysiology of cardiovascular dysfunction during sepsis involves a highly 

complex, integrated response that includes activation of number of cell types, inflammatory 

mediators and the hemostatic system. Central to this process is alterations in vascular 

endothelial, smooth muscle cells and cardiomyocyte function. 

6.3 Key molecular pathways and possible therapeutic targets 
6.3.1 Nitric oxide (NO) 

NO is produced by all types of cardiac and endothelial cells and has a multitude of 
cardiovascular effects both in healthy and disease states. Effects of NO relevant to sepsis-

induced cardiovascular dysfunction include vasodilation, depression of mitochondrial 
respiration, and further release of pro-inflammatory cytokines (Massion et al., 2003). NO is 

produced from conversion of L-arginine to L-citrulline by nitric oxide synthase (NOS). In 
mammals, NOS has three isoforms: neuronal (nNOS/ NOS1), inducible (iNOS/ NOS2) and 

constitutive (cNOS/ NOS3). Current evidence suggests that early myocardial dysfunction in 
sepsis may occur through the over-production of NO and resultant cyclic guanosine 

monophosphate (cGMP) through cNOS activation in cardiac cells. Activation of iNOS and 
resultant nitric oxide may be more important in late sepsis-induced cardiovascular 

dysfunction. Peroxynitrite, a by-product of nitric oxide, has also been proposed as an 
important modulator of prolonged myocardial depression (Pacher et al., 2007). As a 

reflection of the complexity of the role of NO is in sepsis-induced myocardial depression, 
myocardial over-expression of cNOS has been shown to attenuate myocardial depression in 

sepsis models utilizing genetically modified mice (Fraccarollo et al., 2008). Unfortunately, 
initial attempts to block nitric oxide production as a therapeutic target have failed, likely 

due to vascular and other actions of NO in sepsis. 

6.3.2 Contractility pathway 

The concept of circulating myocardial depressant factors was first proposed by Parrillo et al. 
In this study the authors found myocardial depression in isolated myocytes exposed to 
serum obtained from septic patients with clinical manifestations of sepsis-induced 
myocardial dysfunction. Septic shock patients during the acute phase showed a significant 
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lower extent of shortening compared with other patient groups including septic shock 
patients in the recovery phase (Parrillo et al., 1985). There was also a correlation between in 
vitro depression of contractility and in vivo myocardial depression measured by left 

ventricular ejection fraction. Further studies have identified cytokines such as TNF-α, IL-1-β, 
and IL-6 as circulating causative factors of myocardial depression in sepsis. Lysozyme c has 
been shown to have cardiac depressant actions in animal models of sepsis (Mink et al., 
2008). Furthermore, competitive inhibition of lysozyme c in these animal models was 
observed to be protective and prevented sepsis-induced myocardial dysfunction. Early 
studies suggest a potential role for endothelin-1 (ET-1) in the development of sepsis-induced 
myocardial depression (Konrad et al., 2004; Schuetz et al., 2007). Moreover calcium is 
thought to play an important role in the myocardial depression. Current evidence suggests 
that reductions in cytosolic calcium levels during sepsis lead to reduced contractility 
(Rudiger & Singer, 2007). Calcium signalling and metabolism are linked to mitochondrial 
function, which is also altered in sepsis.  

7. Brain 

7.1 Pathophysiology 

Several studies have demonstrated that sepsis survivors present long-term cognitive 

impairment, including alteration in memory, attention, concentration and/or global loss of 

cognitive function (Heyland et al., 2000; Hopkins et al., 1999; Hough & Curtis, 2005). Most 

investigations have tried to understand the pathogenetic mechanisms of sepsis 

encephalopathy (SE) using animals or cell cultures (Jacob et al., 2011) due to obvious 

limitations in humans. Although these studies have expanded the understanding of central 

nervous system (CNS) cellular response to endotoxin or cytokines, the way in which these 

mechanisms relate to clinical brain injury remains obscure. It is important to note that the 

reciprocal interaction between the CNS and the immune response is considered one of the 

main components of the host response during sepsis. The brain mediates via the autonomic 

nervous system and neurohormones the growth and proliferation of most if not all tissues 

involved in immunity, and all immune cells have membrane or cytosolic receptors for a 

number of neuromediators. The systemic inflammatory response to infection results in brain 

activation, which subsequently generates an appropriate anti-inflammatory response. 

However, excess in pro-inflammatory mediators entering the brain can cause cerebral 

damage. In turn, dysfunction of the autonomic nervous and neuroendocrine systems may 

alter immunity in a vicious circle resulting in metabolic derangements and organ failure 

(Streck et al., 2008). 

7.2 Major cell types involved 

The anatomical substrate of the blood brain barrier (BBB) is the cerebral microvascular 

endothelium, which together with astrocytes, pericytes, neurons and the extracellular 

matrix, constitute a "neurovascular unit" that is essential for the health and function of the 

CNS. All the cell types forming the BBB are immunologically active and can be influenced 

by systemic inflammatory reactions and responses, such as those resulting from sepsis. 

Inflammatory mediators released by leukocytes in sepsis have profound effects on 

endothelial cells and astrocytes; damage to these cells results in impaired neuronal 

function. 
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7.3 Key molecular pathways and possible therapeutic targets 
7.3.1 Oxidative stress 

One important factor that can lead to cognitive impairment due to SE is oxidative stress. 
Studies on oxidative stress showed cerebral damage caused by active species of oxygen in 
some regions of the brain after sepsis induced by CLP. It has been demonstrated that, 
differently from other organs involved in septic response, CNS oxidative stress is restricted 
to earlier times after sepsis induction (Barichello et al., 2006). It has also been demonstrated 
an increase in superoxide dismutase activity without a proportional increase in catalase 
activity with a consequent increase in the relation of superoxide dismutase/catalase. Based 
on this evidence, the same authors also measured oxidative stress parameters in brains of 
rats after CLP and treated with antioxidants NAC (N-acetylcysteine) and/or DFX 
(deferoxamine) in the first hours after surgery. Ten and thirty days after CLP, behavior tests 
involving step down inhibitory avoidance, continuous multiple-trials step-down inhibitory 
avoidance and habituation to an open-field were conducted. It has been found that 
antioxidant treatment could significantly attenuate late cognitive deficits in sepsis survivors 
from CLP. In addition, the combined use of antioxidants attenuated oxidative damage in the 
hippocampus in early periods after sepsis induction. These results suggested a role of early 
CNS oxidative damage in the development of long-term cognitive deficits. In addition the 
authors demonstrated a new role to antioxidant treatment in an animal model of sepsis 
(Barichello et al., 2007). 

7.3.2 Inflammation 

Inflammation is being considered an important biological event that might increase the risk 
of major depressive episodes much like more traditional psychosocial factors. In this 
context, it is possible that pro-inflammatory cytokines, which are peripherally produced 
during the septic response, could contribute to the development of long-term cognitive 
dysfunction and behavioural symptoms related to sickness behaviour. When the activation 
of the peripheral immune system continues such as during systemic infections, the immune 
signalling to the brain may lead to an exacerbation of sickness and the development of 
symptoms of depression (Dantzer et al., 2008). Many studies suggest that these phenomena 
account for increased prevalence of clinical depression in critically ill people (Dantzer et al., 
2008). Some studies also link pro-inflammatory cytokines and neuronal death. However, the 
mechanisms underlying pro-inflammatory cytokines and neuronal death are still poorly 
understood (Glass et al., 2010). 

7.3.3 Blood Brain Barrier (BBB) 

The BBB is established through specialized tight junctions of the endothelial cells, which are 
induced and maintained through interactions between astrocytes, pericytes and endothelial 
cells (Abbott et al., 2006). BBB dysfunction is found in patients and rodent models of sepsis 
and causes increased infiltration of inflammatory cells and increased exposure of the brain 
to toxins (Nishioku et al., 2009). The BBB impairment may be caused by disruption of the 
normal interaction between endothelial cells, astrocytes and pericytes leading to increased 
pineocytosis and disruption of tight junctions. Additionally, neuroinflammation with LPS 
exposure may also facilitate active directed transport of cytokines across the BBB (Nishioku 
et al., 2009). In sepsis, leukocytes are activated, adhere to the blood vessel and move into the 
tissue, a process mediated by adhesion molecules such as intercellular adhesion molecule 
(ICAM). The expression of ICAM is increased in septic encephalopathy, whereas platelet 
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endothelial cell adhesion molecule (PECAM) remains unaltered (Hofer et al., 2008). One of 

the key inflammatory mediators is TNF-α, which is also produced intrinsically in the brain 
where it regulates aquaporin 4 (AQP4) and alters transport of water into the brain resulting 
in edema (Alexander et al., 2008). 

7.3.4 Complement activation 

It has been shown that the complement cascade, especially C5a generated by complement 

activation, is an integral part of the central hub of the inflammatory response in sepsis 

(Rittirsch et al., 2008). It also induces apoptosis in the adrenomedullary cells, which are 

responsible for the bulk of endogenous catecholamines (Flierl et al., 2008). The cross talk 

between the complement cascade and coagulation, which is generally activated during 

sepsis, could further amplify complement activation in sepsis (Rittirsch et al., 2008). In 

addition to complement activation, glial activation induces the expression of Toll-like 

receptor 2 (TLR-2), IL-1β, IL-6 and indoleamine 2, 3 dioxygenase (IDO) that could be 

prevented by the microglial inhibitor minocycline, modulating sickness (Henry et al., 2008). 

Both blocking C5a or its receptor, and inhibiting the alternative complement pathway, 

attenuates neuronal death in experimental traumatic brain injury (Sewell et al., 2004; 

Leinhase et al., 2007). 

8. Conclusion 

In summary, since MOF in the late stages of septic shock is the major contributor to patient 

death, further understanding of the cellular mechanisms involved in the development and 

progression of MOF is imperative to identify novel treatment strategies.  
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