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Dynamic Tissue Perfusion Measurement  
– Basics and Applications 

Thomas Scholbach 
Chemnitz Clinics, Chemnitz 

Germany 

1. Introduction 

1.1 Rationale 

Perfusion is a fundamental prerequisite for all living tissues to meet their needs in terms of 

supply of oxygen, nutrients, hormones, messenger substances and other necessary dilutes. 

Dynamic Tissue Perfusion Measurement (DTPM) was developed to quantify the perfusion 

of tissues and organs by means of colour Doppler sonography. Perfusion is perceived as a 

certain amount of blood passing through a defined region of interest (ROI) in a certain 

time.  

Colour Doppler sonography is universally used to visualize blood flow inside tissues. The 
velocity of moving red blood cells is depicted as coloured pixels on the background of 
uncoloured, black and white pixels, which describe parts of tissues without detectable blood 
flow. The colouration differs according to the velocity and direction of flow. A colour scale 
within each image shows the spectrum of reddish and bluish colours used to differentiate 
the direction (reddish hues describe flow which is reversely directed to bluish flow, in most 
cases the machine is set to depict flow towards the transducer in red). In both directions, 
lighter shades describe higher velocities than darker shades. A wall filter is used to exclude 
extremely low velocity signals from imaging, which mostly emanate from vessel wall 
vibrations and do not add to real blood flow. The colour scale or colour bar thus gives a 
visual clue to assign velocity signals from zero to a maximum value to certain vessels inside 
a tissue. At both ends of the colour scale, the maximum flow velocities for red and blue 
colour are depicted. These values are determined by the actual pulse repetition frequency 
and the applied ultrasound frequency. They correspond to the outermost hue on each side 
of the colour bar whereas the minimum flow is determined by the hue next to the black line 
(indicating the wall filter) separating blue and red hues from each other.  

To calculate perfusion in a certain ROI two parameters must be known:  

1. The flow velocity in all vessels within the ROI 
2. The area of all vessel transsections in this ROI 

Both parameters change during the heart cycle. A third prerequisite is thus to take into 
account these rhythmic changes and to refer them to their basic rhythm which is a full heart 
cycle.  
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DTPM makes use of the data offered by any colour Doppler machine, namely the real time 
depiction of rhythmically changing coloured pixels and the colour scale to gauge them. To 
achieve this each hue at the scale is assigned a specific velocity value. This value is 
calculated by the DTPM-software (PixelFlux, Chameleon-Software, Germany [1]) from a 
linear correlation of all colours from zero (the lower end of the scale) to the actual maximum 
value (which is depicted numerically at the outer end of the scale and corresponds to the 
lightest reddish and bluish shades of the scale). The PixelFlux-software also calculates the 
area of all coloured pixels inside the ROI. Thus, each coloured pixel is evaluated by 
assigning a specific velocity and area to it. This is possible only after calibrating the image.  

Distance calibration is also done automatically by use of the DICOM data, which are 
delivered along with the image by the ultrasound machine. A so-called DICOM- header file 
accompanying each image contains non-visible data such as the type of the ultrasound 
machine, the transducer, the preset information, the patient data and the distance calibration 
among many other data.  

The mean flow intensity (Q) inside a ROI with the area (AROI) is then automatically 
calculated by assigning each colour pixel a velocity (v) and area (A) value according to the 
following equation: 

Q [cm/s] = v [cm/s]* A [cm²]/AROI [cm²] 

2. Standardized video acquisition 

An indispensable precondition for reliable measurements is the use of comparable videos in 
terms of the imaging conditions applied to the investigated tissue. Only by keeping the 
fundamental circumstances of data acquisition constant, it is possible to compare the 
measurement results. Such parameters which need to be held constant are colour Doppler 
frequency and gain, type and software of the ultrasound machine, transducer type, 
persistence, wall filter, smoothing, type of the colour scale, preference for spatial versus 
time-resolution and others, depending on the actual configuration of the ultrasound 
machine. These parameters are summarized and stored as a certain preset of the machine 
and must be recalled at the beginning of an ultrasound investigation. This step is a widely 
used practice in order to maintain optimum imaging conditions also in examinations, where 
a measurement of image data is not a priori planned. The prepared preset is then re-
instituted before recording videos for DTPM.  

3. Setting the region of interest (ROI) and Doppler angle correction 

The ROI is that area inside an ultrasound image, where tissue perfusion measurement is 
scheduled. The selection of the ROI depends on the type of tissue, structure of the organ and 
aim of the investigation. The following principles and physical restrictions should be kept in 
mind in defining the ROI. 

In 2D-images, vessels are encoded in colour depending on the angle, which they have with 
the ultrasound wave. This propagation line of waves is oriented perpendicular to the 
transducer surface. The colouration represents the exact velocity value only in vessels 
running straight towards the transducer, i.e. parallel to the course of the sound wave 
propagation line. All other vessels are encoded with colour hues representing velocity 
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values (v) which are a product of the cosine of the Doppler angle (α) and the true velocity 
(vt), according to the Doppler principle:  

fd = 2* fo * vt/c *cos α 

with: fd: Doppler shift, fo: insonation frequency, c: sound velocity 

This means that in many cases the tissue microvasculature colouration shows velocity 
values which are smaller than real. To overcome this, an angle correction for each vessel 
would be necessary. This cannot be done yet in two-dimensional images. With 3D imaging, 
such a correction is already feasible (see below in section “foetus”). In 2D images, thus an 
error occurs with DTPM, which must be kept constant to allow comparisons between 
investigations. This can be achieved under following circumstances:  

1. A chaotic vessel architecture without predominant vessel diameters and Doppler angles 
(type tumour perfusion) (fig. 1) 

2. A regular vessel architecture, which can be reliably retrieved (kidney type). 

In the latter case, the orientation on anatomical landmarks offers a sufficient framework to 
find the vascular patterns, which are typical for a certain organ (fig. 2). An example how to 
choose relevant landmarks is given for the kidney below. 

 

Fig. 1. Example of tumor perfusion measurement. Two concentric ROIs are separately 
investigated. The vessel architecture is irregular or chaotic (center). No specific prevailing 
vessel size or orientation can be stated. Left: comparisons of perfusion intensities in the 
periphery (red column) and the center (green column). Center: Display of the ROIs and false 
color maps with perfusion intensity curves. Right: time course of the relevant perfusion 
parameters (from [2]) 

In both cases, the inevitable error of impossible individual Doppler angle correction for each 
vessel is held constant. Comparisons of different examinations thus become possible. 

For all these considerations, it is crucial to achieve comparable conditions for depicting the 
vessels in a certain ROI. In the kidney the ROI should be placed inside the outer cortex, in a 
layer stretching from the outer border of the medullary pyramids to the renal surface and 
laterally from the watershed of two neighbouring segments to the opposite watershed (see 
chapter: kidney). In the lymph node and thyroid lobes, a longitudinal section trough the 
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centre of the ovoid shaped organ should be used as definite transsection plane. In the bowel 
wall, a longitudinal cut perpendicular to the proximal wall is the best. Tumours should be 
cut centrally in two perpendicular planes.  

 

Fig. 2. Example for regular vessel architecture in a renal transplant – see also figure 3. The 
sub-ROIs are highlighted: P50 – proximal 50% of the outer cortex. D50- distal 50% of the 
outer cortex. False color map and distribution curve of perfusion intensities are displayed 

4. Reading the results 

Figure 3 gives an overview of the most important output features in a typical DTPM 
measurement. In DTPM all data are derived from the basic parameters mean flow velocity, 
mean perfused area and their change during the heart beat with reference to the entire ROI 
[2, 3]. In three-dimensional images, the spatial angle correction adds to the primary 2D 
measurement inside the horizontal plane.  

In addition to mean perfusion intensity, calculation parameters are generated to describe the 
dynamics of perfusion. Examples are Tissue Resistance Index (TRI) and Tissue Pulsatility 
Index (TPI). TRI and TPI may refer to velocity, intensity and perfused area according to the 
following formulas: 

TRI(velocity or intensity or area) = maximum mean velocity or intensity  
or area of the ROI during one heart cycle – minimum mean velocity or intensity  

or area of the ROI during one heart cycle divided by maximum mean  
velocity or intensity or area of the ROI during one heart cycle 
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TPI(velocity or intensity or area) = maximum mean velocity or intensity  
or area of the ROI during one heart cycle – minimum mean velocity or intensity  

or area of the ROI during one heart cycle divided by mean mean velocity  
or intensity or area of the ROI during one heart cycle 

 

Fig. 3. Example of DTPM output. Overview of the most important output features of a DTPM 
measurement. Comparison of the proximal and distal cortical ROIs. False color maps (areas 
shaded in white, red and grey hues), perfusion intensities’ distribution curves and 
additional parameters (upper line). Time curves of the basic perfusion parameters and 
perfusion intensities (below). Comparison of the overall perfusion intensities in both sub-
ROIs (lower line center) 

A dynamic perfusion map is generated to pinpoint the local perfusion in a sub-millimetre 
graded fashion numerically with false colours (fig. 2 and 13). Moreover, the distribution of 
perfusion intensities according to the whole spectrum of occurring intensities, which are 
assigned to one of 33 intensity classes, is calculated and diagrammatically displayed. Thus, 
tissues may be compared according to their content of stronger or weaker perfused areas 
and vessels (fig. 2, fig. 11). This allows insights into the microarchitecture of a tissue’s 
vascular tree and its changes over time, which is helpful in chronic diseases and tumours. 
These intensity distribution curves are further described mathematically with the 
parameters kurtosis and skewness according to their bulging and asymmetry.  

Altogether more than 50 parameters are calculated to describe the tissue perfusion 

numerically. The most important is perfusion intensity to give a general measure of tissue 
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perfusion. Very instructive too is the distribution curve, outlined below the false colour 

map (fig. 11). Here shifts within the microvessel population can be reviewed at a glance. 

This is further underlined with the distribution parameters skewness and kurtosis, which 

describe the shape of this curve numerically. Statistical comparison of microvessel 

arrangement thus becomes feasible, permitting the follow up of slight changes of an 

organ’s chronic vascular changes, which begin in the periphery. Another important 

feature is the false colour map. This map stains the ROI according to the local perfusion 

intensities over the entire length of the colour Doppler sonographic video clip. The 

information added to the anatomical structures displayed by the ultrasound image can be 

helpful in differentiating parts of the tissue with respect to their vascular structures. The 

flow of the hepatic artery can be separated from the same coloured flow of the portal vein 

in this way, which might be welcome in the follow up of liver transplants. Another 

possible application might be the differentiation of local tissue disturbances, as caused by 

tumour infiltration or scarring or inflammation. To perform an automatic angle correction 

of all vessels 3D images are used. Here the spatial angel is calculated from both the angle 

in the frontal and in the sagittal plane. This angle then is applied to calculate true spatially 

angle corrected flow velocities and vessel diameters. Both are distorted in the original 

frontal view and can be corrected for 3D flow calculations in so doing. Another important 

feature is the use of predefined relational sub-ROIs to describe the blood flow on its way 

through the tissue. Gradients of perfusion can be used to quantify the dampening of 

perfusion in the depth of a vascular tree. This can be used to detect the very early loss of 

the tiniest vessels in a tissue, which are often the first to be damaged due to their small 

lumen. So a chronic pathological process can be discovered in the very beginning and 

treatment can be started preventing further damage in stages, where the organ’s 

compensatory capacity is still strong enough to recover.  

5. Differences to existing methods of sonographic perfusion evaluation  

Today RI and PI calculations are the most widely used techniques to quantify flow velocity 

changes [4-10]. They do not allow conclusions as for the perfusion intensity or volume since 

the perfused area of the vessel under investigation is not included in the calculation. Even 

the exact velocities of flow do not need to be measured since the formula refers to two (RI) 

or three (PI) velocities only which are related to each other to define the velocity change 

throughout the heart cycle instead of exact velocities. RI = peak systolic velocity - end 

diastolic velocity / peak systolic velocity and PI = peak systolic velocity - end diastolic 

velocity / mean velocity of the entire heart cycle.  

Contrast enhanced ultrasound (CEUS) can describe the perfusion of larger regions inside 

organs and thus deliver precise images of typical perfusion patterns of e.g. liver tumours or 

renal transplant cortical perfusion [11-13]. External influences are relevant concerning the 

reproducible influx of the contrast enhancer from the injection site to the ROI [14, 15]. The 

perfusion in CEUS is calculated as the velocity of contrast saturation. The pulsatility of 

perfusion is not depicted. CEUS thus delivers two parameters to measure: level of saturation 

and the velocity to reach this level.  

The advantages of dynamic tissue perfusion measurement over conventional resistance 

index measurements and contrast-enhanced sonography (CEUS) are summarized below: 
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Dynamic tissue perfusion 

measurement 

RI measurement Contrast enhanced 

sonography 

Measurement of perfusion 
intensity in all vessels of a 
larger ROI 

Single point measurement 
in colored vessels 

Measurement of contrast 
enhancement in a larger 
ROI  

Measurement of flow 
velocities of all pixels in all 
vessels’ transsection  

Measurement of flow 
velocities only in some 
pixels of a vessel (sample 
volume) 

No flow velocity 
measurement 

Appreciation of heart beat 
specific flow dynamics 

Appreciation of heart beat 
specific flow dynamics 

Loss of heart beat dynamics 
– saturation curves are 
calculated 

All relevant raw data (i.e. 
velocities and areas of 
perfusion) are measured 
directly during complete 
heart cycles 

Only systolic and 
enddiastolic velocities are 
measured 

Perfusion intensity is 
evaluated indirectly from 
contrast enhancer influx 
curves (steepness of influx 
and level of saturation)  

Use of unmodified flow 
data 

Use of unmodified flow 
data 

Contrast enhancer as 
additional source of error 

Non-invasive Non-invasive Injection necessary 

No side effects No side effects Rarely side effects 

No running costs No running costs Additional costs for 
contrast enhancer (about 92 
€ per vial) 

No age limitation No age limitation Not universally licensed for 
paediatric use  

6. Comparison to RI measurements 

Resistance index (RI) measurements are widely used to extract a handy quantitative 
measure from PW (pulsed wave) – Doppler investigations by using to velocity 
measurements, peak systolic (vs) and enddiastolic velocity (vd) from a single site inside a 
vessel according to the equation: RI = vs-vd/vs. Despite its broad use the theoretical basis 
for perfusion quantification remains weak and not surprisingly leads to misleading 
conclusions. A high RI is commonly linked to a high downstream resistance against flow – 
often raising the suspicion of a suppressed perfusion while normal RI measurements are 
referred to as a sign of normal perfusion. Figure 4 clearly demonstrates that this 
fundamental theoretical misconception also might have obvious practical implications. In 
the upper line spectral analysis of three peripheral arterial branches of a renal transplant 
with a stark reduction of peripheral cortical microvessels are shown – averaging to a RI of 
0.66. The same value is calculated in the lower line, which stems from another transplant 
with much better function (serum creatinine 70 vs. 231 µmol/l in the upper line) and 
abundant vascular signals in the outer cortical periphery. A decision based on RI would 
attest both transplants a normal “perfusion”. DTPM brings out the difference clearly (fig. 5): 
Perfusion intensity is eight times higher in the proximal cortex in the transplant with a 
normal function. The insufficient transplant has no peripheral perfusion at all.  
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Fig. 4. Two renal transplants compared: upper line insufficient kidney with serum creatinine 

of 231 µmol/l and normal kidney with a serum creatinine of 70 µmol/l in the lower line. 

Left: RI measurement in three cortical arteries. Right: Color Doppler sonograms. Insufficient 

kidney displays a pronounced loss of peripheral perfusion despite more sensible color 

Doppler setting compared to the kidney below. RI mean values are 0,66 for both transplants 

 

Fig. 5. Same transplants as in fig. 3. DTPM is able to demonstrate a massive difference of 

tissue perfusion in contrary to RI measurements 

Another example for the low power of RI evaluations is figure 6. In a child with acute renal 

insufficiency due to a hemolytic-uraemic syndrome (HUS), two neighbouring cortical 

arteries demonstrate vastly different RIs. Depending on which arteries the investigator 

selects, contradictory conclusions must be drawn from such evaluations. Another seldom-
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considered drawback of RI measurements inside tissues is that thin arteries can only be 

located to interrogate the flow as long as the vessel is still coloured. If perfusion drops 

significantly, colour signals become weak and disappear at all. These vessels, the most 

affected, are excluded from evaluation by RI altogether. This must distort the overall 

evaluation of tissue perfusion if RI measurements are its basis.  

 

Fig. 6. Misleading RI measurements in a kidney af a child affected by haemolytic-ureamic 

syndrome. During the same investigation strikingly different RIs are found in intimate 

neighborhood 

The only way out of this dilemma is a method that takes into account simultaneously all 

flow signals in all vessels inside a larger ROI instead of single vessels, which also takes into 

account non-perfused areas. These are the fundamentals of DTPM, referring all flow signals 

inside an entire ROI thus reflecting properly vessel and flow intensity loss in chronic 

disease. It is just in chronic disease where remaining vessels amidst fibrosed tissue try to 

compensate the loss of neighbouring vessels by dilatation to feed the “thirsting” periphery 

and thus exhibit a lower RI than under normal conditions (fig. 5).  

7. Phantom flow measurements 

A phantom was built to measure the volume flow under externally controlled conditions 

consisting of a Teflon tube with an internal diameter of 2.0 mm that was placed into a water 

basin and fixed in a way that the tube was running straight in a steep angle towards the 

ultrasound transducer that was fixed to a tripod. The tube was perfused with a watery 

homogeneous rice starch solution.  

Colour Doppler videos were recorded under standardized imaging conditions (ultrasound 

device: S2000, Siemens, Germany, linear transducer, colour Doppler frequency 4 MHz, the 

angle of the tube towards the ultrasound propagation line was 36°). The pump rate was 

changed; repeated colour Doppler recordings were made and measured by DTPM.  

Two separate investigators independently performed these PixelFlux-measurements from 

87 datasets (mean values based on altogether 191 recordings) at 22 different pump rates.  

Phantom flow measurements showed an excellent correlation to pump rates (fig. 7) with a 

Pearson correlation coefficient of pump rate and investigator 1 of 0,987 and 0,991 for 

investigator 2. Both investigators measurements correlated with 0,997.  
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Fig. 7. In a perfusion phantom* DTPM measurements of two investigators were compared. 

An excellent correlation in-between both investigators and of both investigators to the 

externally measured flow rate was found. * Homogenized rice starch solution pumped by a 

precision laboratory pump, Flow volumes measured constantly by a laboratory balance 

8. Dynamic tissue perfusion measurement – Applications 

8.1 Kidneys 

Kidneys are abundantly perfused and are second only to the brain with respect to their 

blood supply in the systemic circulation [16, 17]. Perfusion measurement is important to 

detect changes, which precede function loss – the so-called creatinine blind stage of renal 

insufficiency [18]. For reliable kidney perfusion measurements, it is necessary to adjust the 

ROI to the typical anatomical pattern of the renal microvessel architecture. The kidney 

consists of segments, each with an individual blood supply via an interlobar artery. This 

vessel is crossing the inner parenchyma in-between two neighbouring medullary pyramids 

to branch off symmetrically into arcuate arteries from which in a brush-like manner 

interlobular arteries emanate. Such a segment is chosen as the ROI in a way that the feeding 

interlobar artery runs straight towards the transducer.  

The ROI itself is a parallelogram adjusted to the individual kidney’s anatomical landmarks, 

which are as follows: the left upper corner of the parallelogram lies at the renal surface on 

the watershed line between two segments (i.e. where the interlobular arteries from two 

neighbouring segments seem to touch each other). The right upper corner then is fixed at the 

right border of the segment under investigation with the same premises as the first corner. 

The right lower corner then lies on the right watershed line, which is extended to the surface 

of the medullary pyramid and ends at the centre of the outer edge of the pyramid. From  
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there the lower border of the ROI extends to the left pyramid to reach its centre point on its 
outer border. This is the left lower corner of the parallelogram. This way a symmetric 
distribution pattern of all branches of this vascular segment is achieved [19]. This 
parallelogram is divided into horizontal layers (e.g. p50 and d50) encompassing the 
proximal 50% (p50) or distal 50% (d50) of the ROI’s height. Any other layer thickness can be 
chosen to meet the needs of the investigation (for instance 10 layers with the thickness of 
1/10 of the ROI (fig. 13)). These layers thus have a thickness that refers to the overall 
dimensions of the ROI and are therefore relational layers. In thicker cortices, the layers are 
thicker than in thinner cortices. Nevertheless, the layers of different kidneys are comparable 
to each other since they comprise the comparable level of the cortical vascular tree (fig. 8).  

 

Fig. 8. Example of placing of a ROI in a kidney with indication of the anatomical landmarks 
to guide the setting 

Own investigations yielded a decline of renal cortical perfusion with compromised 
creatinine clearance (fig. 9). Normal kidneys display a decline of cortical perfusion intensity 
from central to peripheral cortex (fig. 10) [19]. Inflammation causes a strong hyperperfusion 
(fig. 11). DTPM can help to differentiate the affection of either right or left kidney – helpful 
in children and non-communicating patients. Moreover, the different effects of hydronephrotic 
perfusion loss even in a state of general hyperperfusion due to inflammation can be 
demonstrated (fig. 11). In kidneys with vesico-ureteral reflux, we found a decline of 
perfusion inside the peripheral cortical layers, which corresponded to the reflux degree (low 
grade vs. high-grade reflux) (fig. 12).  

In nutcracker phenomenon, a frequent anatomical variant of the course of the left renal vein 
with sharp narrowing of the vessel between the superior mesenteric artery and the  
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Fig. 9. Constant decline of cortical perfusion with progression of renal insufficiency. Left: 
proximal cortex. Right: distal cortex 
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Fig. 10. Decline of renal cortical perfusion from the inner to the outer cortex 

abdominal aorta, a venous congestion of the left kidney ensues. Its consequences are often 
misinterpreted from conventional imaging alone but are nonetheless often disabling for the 
affected ones. Many patients suffer from chronic and exacerbating abdominal fits of 
cramping pain. The congested kidney is often swollen and less perfused than the right one. 
This can be easily demonstrated by DTPM (fig. 13). Perfusion diminution is a signal of 
insufficient collateral pathways to drain the renal blood from the left side. A treatment with 
aspirin can either alleviate or often abolish pain and functional disturbances of the 
congested organs, which have to deal with the massive venous overflow from the left renal 
vein. Simultaneously with the clinical improvement, a significant increase of left kidney’s 
perfusion can also be measures by DTPM (fig. 14) [20].  
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Date               2007/04/28                                        2007/05/02                                       2007/05/09
Perfusion       1,949 cm/s                                         1,722 cm/s                                        1,254 cm/s

Date               2007/04/28                                         2007/05/02                                     2007/05/09
Perfusion       0,737 cm/s                                          0,570 cm/s                                      0,212 cm/s

Normal left kidney

Hydronephrotic right kidney

 

Fig. 11. Differing response of both kidneys towards an bacterial infection in a patient with a 
right sided hydronephrosis Perfusion intensity in the proximal cortex. MAG3 scintigraphy 
right kidney: 30% of both kidneys’ function. Renal perfusion in a child with a normal kidney 
on the left and a hydronephritc kidney on the other side. Inflammation due to bacterial 
infection causes an initial perfusion increase (2007/04/28). With recovery perfusion drops in 
both kidneys (from 2007/05/02 to 2007/05/09). The decline is more pronounced in the 
hydronephrotic kidney. Perfusion intensity distribution curves differ markedly between 
both kidneys pointing to the damage of the microvasculature in the hydronephrotic kidney 
and a compensatory hyperperfusion trough dilated microvasculature on the left side 
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Fig. 12. Diminished perfusion of kidney in vesico-ureteral reflux compared to healthy ones. 
Compromise of perfusion dependent on degree of reflux 
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perfusion. Left: Sub-millimeter layers show very precisely the potential of DTPM to describe 
microvascular perfusion in an unprecedented subtlety. Right: Heavily depressed perfusion 
of the left kidney in nutcracker phenomenon 
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Fig. 14. Effect of aspirin (acetylsalicylic acid: ASA) onto the perfusion of the left kidney. The 
ratio of left to right kidney perfusion is displayed. After aspirin treatment a significant 
increase of this ratio can be stated. From [21] 
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In a preliminary study, we compared kidneys from children with juvenile diabetes of 
varying duration of disease to kidneys from healthy children with respect to the perfusion 
drop from central to peripheral cortical layers. Even in an early stage of disease, (no child 
had microalbuminuria) a highly significant peripheral perfusion loss could be demonstrated 
in diabetic kidneys (fig. 15).  
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Fig. 15. DTPM discloses a significant reduction of peripheral to central cortical perfusion in 

diabetic children compared to healthy ones. The effect is more pronounced when comparing 

the proximal 20%/distal 50%-ratio (lower diagram) then in proximal 50%/distal 50%-ratio 

(upper diagram) 

9. Renal transplants 

Renal transplants are subject to chronic immunological attacks as well as toxic effects of 
immunosuppressive treatment. Repeated biopsies are today the only way to clarify the 
creeping changes within the renal parenchyma. We conducted a study on 75 renal 
transplant recipients, which had a DTPM immediately before their biopsy. Banff criteria 
were correlated to DTPM results. Some of the very important histological features correlated 
significantly with perfusion changes [21], pointing to the potential of DTPM for renal 
transplant long term follow up. RI values were much less instructive (insignificant 
differences) than DTPM measurements (significant differences) to discriminate varying 
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stages of peritubular inflammation. Varying grades of transplant Polyomavirus infection 
were marked with significant increases of cortical tissue perfusion [21]. In another study, we 
found in children a marked decline of cortical perfusion in allograft cortices beginning 
already one year after transplantation [22] while the pulsatility of cortical perfusion rose 
significantly [23]. Recently, it was shown, that intrinsic donor-derived factors are associated 
with GFR and cortical parenchymal perfusion intensity, measured by DTPM, but not the RI 
of segmental arteries in renal allografts [24]. 

10. Bowel 

A main area of interest for DTPM is chronic inflammatory bowel diseases. In Crohn disease 
as well as in ulcerative colitis inflammatory hyperperfusion of the bowel wall could be 
demonstrated. 

Patients with Crohn disease irrespective of disease activity had higher blood flow intensity 
compared to healthy probands. Mean small bowel wall perfusion intensity was 0.025 cm/s 
in healthy probands whereas in patients with Crohn disease 0.095 cm/s was found [25]. 
Large bowel wall perfusion intensity in healthy probands was distinctively less than in 
patients with Crohn disease (0.012 cm/s vs. 0.082 cm/s, p < 0.001) [25]. Conventional 
evaluation of disease activity by means of activity indices did not clearly distinguish 
patients with high from those with less pronounced inflammatory hyperperfusion. The 
correlation of bowel wall perfusion and PCDAI-values was weak albeit significant (r = 
0.349, p = 0.001) [25]. The individual effect of TNF-alpha antibody treatment can be closely 
followed and treatment regimes can be tailored according to DTPM. Inflammatory activity 
in fistulas can be measured even after closure of the cutaneous orifice. DTPM can also be 
used to locate the focus of an abdominal inflammatory process by comparing the perfusion 
of different structures, which may be involved, but in different extent and activity. So 
lymph nodes, vermiform appendix, cecum and terminal ileum can be evaluated separately 
and clear decisions on the main source of complaints can be made. Unnecessary 
appendectomies can be avoided based on an imaging and perfusion measurements guided 
approach.  

In ulcerative colitis, 14 histological criteria (changes of crypt architecture, depletion of goblet 
cells, Paneth cells distal of the left colon flexure, lymphocyte infiltration, plasma cells, 
eosinophils, unspecific inflammatory infiltrates, granulocytes in the lamina propria and 
lamina epithelialis, crypt abscesses, oedema, erosions or ulcerations, regenerative 
epithelium , fibrosis, increased cryptal distance to muscularis mucosae) of disease activity 
were compared to the local perfusion state of the bowel wall. Scores of neutrophil as well as 
lymphocytic invasion of the wall, crypt abscesses and wall oedema were significantly 
correlated (in oedema inversely) to the local wall perfusion (fig. 16) [26]. DTPM can add 
more differentiated and important numerical data, which make imaging data comparable 
and thus a tool for decision making in a clinical setting. Figure 17 compares histological 
images, colonoscopic photographs, colour Doppler sonographic images and the results of 
DTPM at the site where the images stem from. A convincing differentiation of these three 
bowel segments can be demonstrated by the different perfusion intensities.  

Faingold et al. found a trend to decreased intestinal wall perfusion (0.040±0.015 cm/s vs. 
0.052±0.029 cm/s) in neonates that died due to hypoxic ischemic injury [27]. 
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Fig. 16. Large bowel wall perfusion in ulcerative colitis. In ulcerative colitis an increasing 
score of granulocytic (left) and lymphocytic (right) wall infiltration is reflected by significant 
increase in wall perfusion 
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Fig. 17. Synopsis of DTPM measurements (red columns) histological images, color Doppler 
sonograms and colonoscopic images from three IBD patients and different sites. DTPM 
differentiates better than all other methods between acutely inflamed and resting bowel 
segments in IBD patients 

11. Lymph nodes 

Lymph node perfusion measurement helps to tell inflammatory changes and can provide 
insight into the dynamics of progression or retreat of the underlying process. Normal lymph 
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nodes in the neck have a minute but always detectable perfusion, which can be measured 
accurately. In upper airway infections, lymph nodes do not react with a hyperperfusion 
whereas lymphotropic EBV infection resulted in a marked increase of perfusion (fig. 18) 
[28].  
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Fig. 18. Lymph node perfusion as seen in DTPM: no differences exist between longitudinal 
(long) and transverse (trans) sections of the nodes. Infectious mononucleosis raises cervical 
node perfusion significantly (green symbols) compared to nodes from healthy probands 
(yellow) in contrast to nodes in acute upper airway infections (pink). Insets: left: normal 
node in color Doppler Right: Node in infectious mononucleosis (EBV-infection) 

12. Muscle 

A muscle perfusion measurement is feasible with the demonstration of a marked increase 

during exercise and steep decline afterwards in athletes (fig. 19). The perfusion was 

measured in the M. rectus femoris in a horizontal section before during and after exercise 

along with the measurement of serum lactate and a self-estimation of subjective workload 

(fig. 20). 

In aged patients, an increase of muscle perfusion of the M. biceps brachii was demonstrated 

during an exercise program to foster rehabilitation. 

13. Thyroid 

Reproducibility of thyroid DTPM between two investigators is significant (fig. 21). 

Thyroid perfusion is strongly increased in thyreoiditis (fig. 22). It is not yet clear however, if 
the amount of perfusion is paralleled by conventional laboratory parameters or clinical 
symptoms.  
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Thyroid nodules differed with respect to their distribution of perfusion according to their 

biological behaviour. Comparison of perfusion intensities obtained from peripheral and 

central parts of the nodules revealed that, in non-neoplastic nodules the peripheral flow was 

more intense than the central flow and, on the contrary central flow was more prominent 

than the peripheral flow in neoplastic nodules (p<0.005) [29]. 

           Triceps                                       Quadriceps 

 

         Press-ups           ergometer cycling          wall sitting 
                         auxotonic                                      isometric 

Fig. 19. Significant muscle perfusion increase in 13 athletes – maximal exercise. DTPM 

reflects the perfusion in muscles before, during and after physical exercise in various 

settings. Auxotonic as well as isometric exercises cause a strong perfusion increase. After 

exercise perfusion drops sharply 

 

Fig. 20. Correlation of quadriceps perfusion during ergometer cycling. Exercise induced 

muscle perfusion correlates significantly to duration of exercise and heart rate 
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Fig. 21. Thyroid perfusion in 1142 measurements – low interobserver variation and highly 
significant correlation between both investigators 
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Fig. 22. Example of ample perfusion increase in thyroiditis – color Doppler sonograms and 
corresponding DTPM values are displayed 
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14. Tumours 

Tumour perfusion evaluation by DTPM is also feasible and defined regions such as tumour 
core and periphery, whose size can be predefined, e.g. as concentric regions. This can 
uncover central tumour necrosis or ischemia, which might be relevant for treatment 
decisions. Hypoxia due to ischemia is a factor of chemo- and radioresistance of tumours [30-
32]. Therefore, it might be useful to monitor tumour perfusion in separated shells. 

In a series of metastatic tumours of the neck, a direct correlation of tumour perfusion 
measured by means of DTPM and directly measured tumour oxygenation could be 
demonstrated (fig. 23) [33]. In hypoxic tumours perfusion was significantly lower compared 
to normally oxygenated ones (fig. 24). Moreover, the pulsatility of tumour perfusion 
differed significantly between groups with different stages of metastasis (fig. 25) [33]. These 
results may be interpreted as a change of tumour stroma. The more densely packed the 
stroma is the higher the pulsatility is, since the distension of small vessels is influenced by 
the pressure change during a heart cycle on the one hand but on the other hand by the 
resistance against the widening of a vessel by the surrounding structures and their stiffness.  

 

Fig. 23. Significant correlation between directly measured hypoxic volumes in metastatic 
lymph node tumors of the neck (Eppendorf histiograph) and DTPM (from [2]) 

15. Foetus 

The foetal perfusion has to meet the needs of the rapidly growing organism, to deliver 
oxygen and nutrients in order to permit a normal intrauterine growth. Among other causes 
placental insufficiency is an important reason for disturbed intrauterine growth, resulting in 
intrauterine growth retardation (IUGR) and postnatal complications. The evaluation of foetal 
perfusion today is based in daily practice on the calculation of RI and PI in large arteries, 
mainly the umbilical, the cerebral arteries and the aorta, sometimes supplemented by flow 
pattern evaluations in the venous duct [34, 35]. In the eighties of the last century, first  
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Fig. 24. Oxygenation differences in relation to tumor perfusion. Less perfused metastatic 
lymph nodes in the neck (cut off in DTPM: 0,05 cm/s) have a significantly higher hypoxic 
volume than well perfused nodes (from [2]) 
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Fig. 25. The Tissue Perfusion Pulsatility Index (TPI) falls significantly with increasing  
N-stages of the nodes (from [2]) 

www.intechopen.com



 
Dynamic Tissue Perfusion Measurement – Basics and Applications 

 

315 

attempts tried to quantify the umbilical venous flow volume with the aim to evaluate the 
foetal perfusion in quantitative terms [36, 37]. These studies were not continued because of 
limited reproducibility [38]. Nevertheless, these studies targeted at a parameter – volume 
flow –, which has a much better rationale than the popular and easy to measure RI and PI. 
The early studies were flawed mainly by two limitations, which could not be overcome with 
two-dimensional sonographic techniques. First the angle correction of flow velocity in space 
and second the non-circular shape of the transsection of the umbilical vein (UV).  

Spatial angle correction is but pivotal in this setting, because the UV is continuously 
winding around the umbilical arteries and the whole cord is irregularly bent within the 
amniotic cavity. Two-dimensional images thus may allow an angle correction within the 
frontal plane but this can be vastly misleading. Depending on the sagittal angle the true and 
only relevant spatial angle can differ substantially thus leading to unpredictable errors of 
the volume flow calculation, when unknown. The second source of error was the universal 
assumption, that the UV is a round tube. The investigators tried to depict a straight running 
venous segment with parallel borders to apply the formula for circular area calculation in 
order to multiply this area with the mean flow velocity which was traced with a pulsed-
wave- Doppler instrument in the centre of the vein. 

These sources of error combined in an unpredictable manner and caused the refusal of this 
approach.  

The technique of DTPM combined with the modern three-dimensional imaging techniques 
can resolve all of these imponderabilities. We developed the three-dimensional, spatial 
angle corrected umbilical vein flow volume measurement, which is outlined below. 

 

Fig. 26. Example of a spatially angle corrected fetal volume flow measurement in the 
umbilical vein. A 3D-dataset is shown displaying three perpendicular imaging planes. The 
horizontal plane is used for DTPM (right lower quarter): False color map of the venous flow. 
From these data the flow volume is directly calculated by the PixelFlux-software 
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Fig. 27. DTPM reveals a significant correlation of fetal volume flow and fetal weight. This 

correlation improves significantly with reduction of the spatial angle (specified within each 

diagram) 

                    Perfusion volume [ml/min]                                         Perfusion per weight [ml/g*min] 

 

Fig. 28. A significant reduction of fetal perfusion per gram fetal weight could be demonstrated 

by DTPM in fetuses with intrauterine growth retardation (IUGR) compared to normal children 

To achieve best results the umbilical cord should be recorded in a 3D-colour Doppler sweep so 

that the vein is running in a steep angle towards the transducer. The data block is then 

scanned with a 3D-manipulation software (4Dview, GE) by parallel shifts of the frontal and 

sagittal images to search for a transsection of the UV in the horizontal plane, which is clearly 

cut, has distinct borders and is not taken from a segment of the vein with strong bending (fig. 
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26). In this plane both velocity as displayed by a certain colour hue and shape of the vessel’s 

cross section are distorted by a stretching factor which is equal to the cosine of the spatial angle 

between vessel’s course and the ultrasound waves’ propagation line – the so called Doppler 

angle α. While the area is stretched by the reciprocal of cos α the velocity is virtually reduced 

by the by multiplication with cos α (proof see chapter 18. Addendum on page 27). Therefore, 

direct calculation of true flow volumes directly from measurements within the horizontal 

plane is possible. This is accomplished by the DTPM software PixelFlux. The reproducibility of 

these measurements in a clinical situation lies in the range of around 6 % and less, if 

exclusively data with steep spatial Doppler angles are allowed (own unpublished data). 

A significant correlation of such volume flow measurements with fetal weight could be 

demonstrated (fig. 27) [41] that was the better the steeper the spatial angle could be 

arranged. Moreover, in a preliminary study a significantly diminished flow volume per 

gram fetal weight could be shown (fig. 28). 

16. Miscellaneous 

In animal models, numerous reports underscore the interest in DTPM, especially in the field 

of theriogenology. The functional status of the bovine ovary (evaluated by the plasma 

progesterone concentration during the oestrous cycle) could be better correlated to luteal 

blood flow than to luteal size ([39]. The course of luteal perfusion mirrored progesterone 

levels much more readily than the sheer size of the corpus luteum. The perfusion 

measurement of the ovary in cows could differentiate between varying courses of 

progesterone plasma levels [41]. Perfusion measurements of the follicle, the corpus luteum 

and the uterus yielded differing responses in cows undergoing synchronization of ovulation 

[42]. They helped to explain the effect of human chorionic gonadotropin onto the 

progesterone synthesis and luteal blood flow [43], were useful in monitoring luteal 

perfusion during pregnancy and after embryonic loss [44] and could be used to tackle a 

variety of interactions between hormone production, luteal blood flow and gene expressions 

in luteal tissue [45].  

In another study on the regulation of follicular development in cows DTPM demonstrated 

significant correlation with the follicular NO concentration and Estradiol (E2)/Progesterone 

(P4) ratio in those follicles, which developed to the dominant follicle in the ovary [46]. 

In milking of cows, a significant increase of utter perfusion was measured after 15 – 30 min 

to settle down after 45 min to the basic, pre-milking values. These basic values but differed 

considerably among the animals [47]. 

DTPM helped to describe the periurethral vascularity in women [3], was used to estimate 

the effect of periprostatic vascularity on the effect of HIFU in prostate cancer [48], proved to 

be more sensitive than computer assisted B-mode image analysis in testicular torsion and 

showed clearly a perfusion decline within two hours after torsion [49].  

Perfusion measurements of the basal ganglia using DTPM in neonates with hypoxic 

ischemic encephalopathy (HIE) treated with therapeutic hypothermia demonstrated 

significantly higher perfusion values in neonates that died compared to the survivors 

(0.226± 0.221 cm/s vs. 0.111±0.082 cm/sec; p=0.02) (fig. 29). DTPM values also were higher 

www.intechopen.com



 
Sonography 

 

318 

in nine neonates with MRI showing moderate to severe injury (0.142±0.070 cm/s vs. 

0.072±0.080 cm/s; p=0.04). DTPM opens a window to better understand reperfusion injury 

in HIE [49].  
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Fig. 29. Example of a DTPM of basal ganglia in a newborn. Upper part: false color map of 
the basal ganglia and distribution curve. Lower part: Perfusion intensity course during one 
examination. (Image and measurement courtesy of Dr. Ricardo Faingold, Montreal) 
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17. Summary 

DTPM offers a universally applicable approach to tissue perfusion measurement as far as 
sonographic depiction of tissues is possible. So far, inaccessible details of perfusion intensity, 
perfusion distribution, perfusion gradients within a certain vasculature open a widow to an 
individualized evaluation of the specific pathophysiological situation. Treatment efforts can 
be evaluated according to their effect on perfusion. Besides these intrinsic advantages, the 
technique requires no additional hardware, is non-invasive, needs no specific preparation of 
the patient and thus can be recommended for a broad array of clinical applications. 

18. Addendum: Proof of the congruence of the true flow volume and the flow 
volume calculated from the horizontally projected velocity and area of any 
vessel 

True volume flow calculation becomes feasible with three-dimensional colour Doppler data.  

True volume flow calculation means the exact calculation of the blood flow volume running 

through any vessel which is cut perpendicularly. 

Our method of true volume perfusion measurement in vessels cut by the horizontal plane in 

any spatial angle is described and proven below. 

The spatial angle, which is the angle between the vessel and the ultrasound propagation 
line, influences simultaneously the stretching of the shape of the vessels’ cross-sectional area 
as well as the change of the recorded flow velocity. Figure 30 displays the respective 
situation schematically. The blood vessel (yellow rectangle) runs with the Doppler angle α 
towards the ultrasound propagation line (blue line). The horizontal imaging plane, which is 
calculated during the three-dimensional ultrasound imaging, cuts the vessel. Line a′  is the 
stretched vessel’s diameter as it can be seen in the horizontal plane. Vector b is the original 
flow velocity within the vessel. Due to the Doppler angle α the recorded velocity is 
displayed with the value for vector b’. This means, the color hue of b’ is darker, representing 
a lower velocity as if vector b would be displayed in its appropriate color. This is the well 
known Doppler effect ( )2 costfd fo v c α= ∗ ∗ ∗ , which reduces the recorded velocity 
according to the cosine of α. 

The real flow volume per time (V) of a circular vessel is calculated as 

 4V t a a bπ= ∗ ∗ ∗
f

 (1) 

// 4 a aπ ∗ ∗  calculates the circular area of the perpendicularly cut vessel 

The oblique transsection of a round vessel, a vessel running not perpendicularly towards the 
horizontal plane, results in stretching of the circular vessel’s round cross-sectional area in 
the direction of the projection vector of the spatial angle of this vessel with the horizontal 
plane. This results in an ellipse which longer axis is represented by a′ , the stretched 
projection of a onto the horizontal plane (Fig. 30). The shorter axis is equal to the original 
diameter of the vessel. It remains unstretched since no angulation occurs. 

It is therefore possible to consider the change of diameter a  towards a′ , the long axis of the 
ellipse in order to describe the change of the horizontally projected cross-sectional area of 
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the vessel. The change of the circular area towards the elliptical area is thus equal to the 
stretching factor a a′ .  

The other relevant change is the reduction of the displayed flow velocity compared to the 
original velocity b, the reduction factor is b b′ .  

It is now claimed, that the flow volume V’ per time, which is passing through the horizontal 
plane in direction of the vessel, calculated by multiplying the elliptical area ( )4A a aπ ′= ∗ ∗  
with the flow velocity b’ of the vessel in the horizontal plane is equal to V per time, the flow 
volume passing through the perpendicularly cut vessel in the same time. 

Claim: 

 V V′ =  (2) 

Proof: 

 4V t a a bπ′ ′ ′= ∗ ∗ ∗
if

 (3) 

// 4 a aπ ′∗ ∗  calculates the elliptic area of the horizontally cut vessel 
a : short axis of the ellipse 

a′ : long axis of the ellipse 

The depiction of the horizontally cut vessel shows the velocity b′
if

 and a stretched vessel 
diameter a′ .  

The triangle ABC is rectangular, since the blood vessel is a rectangle, a perpendicularly cut 
circular straight vessel. Doppler angle α is complemented to 90° by the angles DAB and FAC 
since the ultrasound propagation line (blue line running through F) runs perpendicular to 
the transducer’s surface and thus the horizontal imaging plane. Both angles are thus equal 

and named β. Angles FAC and CAB add to 90° since again the ultrasound propagation line 

runs perpendicular to the horizontal imaging plane. Thus angle CAB is α again, the Doppler 
angle. 

 /cosa a α′ =  (4) 

 cosb b α′ = ∗
if f

 (5) 

by inserting (3) and (4) into (2) results (5) 

 4 cos cosV a a bπ α α′ = ∗ ∗ ∗ ∗
f

 (6) 

which is (6) after cancelling cos α 

 4V a a b Vπ′ = ∗ ∗ ∗ =
f

 see (1) (7) 

thus 

 V V′ =  (8) 

q.e.d. 
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This means, that it is possible to calculate the true flow volume of all vessels cut horizontally 
from the depicted flow velocities1 and the pixelwise calculated cross-sectional areas2 directly, 
thus compensating any spatial angle. Both measurements (1 and 2), are carried out 
automatically by the PixelFlux-software, which delivers thus true flow volumes of all vessels 
in any tissue section cut horizontally in three-dimensional color Doppler ultrasound data. 
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Fig. 30. Schematical depiction of a horizontally cut vessel in a 3D-color Doppler sonographic 
dataset 
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