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1. Introduction 

Oxytocin and vasopressin are important modulators of diverse social and anxiety-related 
behaviors (Insel, 2010). The enzyme that regulates the function of both peptides, called 
oxytocinase (OX) or vasopressinase, is also involved in cognitive functions (Stragier et al., 
2008; Banegas et al., 2010). Normotensive male Wistar rats exhibited a marked left 
predominance of OX in the medial prefrontal cortex (mPFC), an area implicated in cognitive 
functions and reward-related mechanisms in the rat brain and characterized by its 
asymmetrical organization. Brain dopamine (DA) content as well as the functions in which 
this neurotransmitter is involved, are asymmetrically organized in physiologic conditions 
(reviewed by Ramírez et al., 2004). Therefore, Parkinson’s disease (PD) represents a 
disruption of this bilateral pattern of brain DA. Indeed, the disease normally begins 
unilaterally in the early stages. Animals with hemi-parkinsonism, induced by unilateral 
nigrostratal lesions using 6-hydroxydopamine (6-OHDA), showed several behavioral 
abnormalities, not only linked to a disruption of the normal bilateral distribution of brain 
DA, but probably also by the alteration of other factors such as the disruption of the striking 
basal left predominance of OX observed in both the left and right sham controls. The 
bilateral distribution in lesioned animals was altered differently depending on the injured 
hemisphere. These results may reflect changes in the levels of oxytocin and vasopressin in 
the mPFC and consequently in the functions in which they are involved and might account, 
in part, for the cognitive abnormalities observed in hemi-parkinsonism (Henderson et al., 
2003). The spontaneously hypertensive rat (SHR), is a recognised model for studies of 
hypertension. This strain of rat also display major symptoms of the attention-
deficit/hyperactivity disorder (ADHD) such as deficits in attention, impulsivity and 
hyperactivity when compared to Wistar-Kyoto rats (Russell, 2007). Indeed, SHR have been 
shown to have also disturbances in the dopaminergic system (Russell, 2007). The aim of this 
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study was to analyze OX in the left and right mPFC of SHR with left or right hemi-
parkinsonism, induced by intrastriatal injections of 6-OHDA, and compared with sham 
controls. The results dramatically differed from those obtained in Wistar normotensive rats. 
SHR demonstrated a slighter basal left predominance of OX, only significant in left sham 
controls. The bilateral distribution in lesioned animals was differently altered depending on 
the injured hemisphere but in a way dissimilar to the one observed in Wistar. Thus, the 
hemi-parkinsonism induced in animals with cognitive and behavioral abnormalities such as 
ADHD induces a different brain bilateral response in OX than the one observed in Wistar. 
These results suggest that the cognitive consequences of hemi-parkinsonism differed 
between both Wistar and SHR rats. It is proposed that increased OX in mPFC is related to 
decreased cognitive process. 

1.1 Brain asymmetry and cognitive functions 

The brain asymmetry, understood as an anatomical, functional or neurochemical difference 
between the two hemispheres, is a dynamic phenomenon, modulated by both exogenous 
and endogenous factors. Increasing evidences suggest that under the anatomical and 
functional asymmetries underlie neurochemical brain lateralizations. However, the link 
between these three aspects of the brain asymmetry concept as well its own physiological 
meaning is not yet well understood (Ramírez et al., 2004). In addition, the impairment of 
cognitive functions, such as occurs during aging, is linked to vascular dementia (Vallesi et 
al., 2010; Xu et al., 2008). This is also related to some brain disorders, such as PD or ADHD, 
both characterized by disruptions in the specific physiological bilateral organization of the 
brain (Ramírez et al., 2004; Banegas et al., 2010; Shaw et al., 2009). Analyzing how brain 
bilaterality changes in specific conditions may help us to understand its meaning and its 
importance in physiology and pathology.  

1.2 Brain asymmetry and dopamine function 

Numerous studies of the DA content in the striatum in relationship with the rotation 
(circling behaviour) that the rats exhibited spontaneously and after drug induction 
(Zimmerberg et al., 1974; Glick et al., 1974; Shapiro et al., 1986) were performed to attempt to 
relate a neurochemical asymmetry with a lateralized function in physiologic conditions. 
Zimmerberg et al. (1974) demonstrated that DA levels in the striatum were significantly 
higher in the contralateral side to which the rats choose in a T-maze test. The concentration 
of DA between the two hemispheres differed by 15%. However, when high doses of 
amphetamine were administrated to the animals, this bilateral difference was increased up 
to 25% (Glick et al., 1974). For these and later studies, the model of rotational behaviour in 
rodents was used and revised by Shapiro et al. in 1986. The animals with 6-OHDA-induced 
unilateral lesions of the substantia nigra exhibited a circling behavior in response to several 
drugs. It was postulated that animals rotated mainly contralaterally to the side containing a 
higher content of DA or a higher number of activate postsynaptic DA receptors. Xu et al., 
(2005) compared, by quantitative autoradiography, the changes in DA receptor binding in 
the left and right striatum in rats after unilateral DA depletion. In comparison with control 
levels, DA D1-like receptor binding in the dorsal striatum was reduced 2 weeks after 
unilateral lesions of the substantia nigra (SN) with 6-OHDA. Remarkably, D1-like receptor 
binding was decreased in the ipsilateral striatum following unilateral lesions of either the 
left or right SN. Also, the left and right striatum responded similarly to unilateral SN 
lesions, as there were no significant differences in the percent decrease in D1-like binding in 
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the two striata. In contrast, D2-like receptor binding was significantly increased in the dorsal 
striatum following an ipsilateral SN lesion. Furthermore, the up-regulation of D2-like 
receptors in the right striatum was significantly greater than that in the left striatum after an 
ipsilateral lesion. The authors speculated that the asymmetrical up-regulation of striatal D2 

receptors after DA depletion may contribute to the lateralization of the nigrostriatal system 
observed in some pathological conditions. 

1.3 Parkinson’s disease, brain asymmetry and cognitive functions 

Parkinson’s disease is the second most common neurodegenerative disorder (Dorsey et al., 
2007). Despite the intensive efforts, progresses in the fight against this disease are slow and 
new strategies for early diagnosis and treatment to prevent its progression are required 
(George et al., 2009). A deep knowledge of its pathophysiology is essential to achieve this 
goal. Although symmetric at the later stages, the damage observed in PD begins 
asymmetrically (Djaldetti et al., 2006). Therefore, there exist in PD a disruption of the 
physiologic bilateral distribution of DA content as well as a bilateral disturbance of other 
neurochemical factors (Banegas et al., 2010). Animal models of PD, such as the experimental 
hemiparkinsonism after unilateral intrastriatal injections of 6-OHDA, could simulate the 
initial phase of PD. In the early stages, PD patients exhibit cognitive and behavioral 
impairments unrelated to the motor symptoms, and involving frontal lobe dysfunction 
(Brück et al., 2004; Farina et al., 1994; Zgaljardic et al., 2006). They are the result of damage of 
a specific hemisphere (Cubo et al., 2010). In addition, hemiparkinsonism has been associated 
with asymmetrical cognitive changes (Huber et al., 1992; Piacentini et al., 2010). Studies in 
animals with induced hemi-parkinsonism have reported several behavioral abnormalities 
(Henderson et al., 2003). The mPFC, a part of the mesocorticolimbic system, is involved in 
cognitive functions and reward-related mechanisms in the rat brain (Tzschentke, 2000). 
Interestingly, the mesocortical dopamine system, particularly the mPFC, is characterized by 
its asymmetric organization (Sullivan, 2004). 

1.4 Vascular damage, cognitive impairment and brain asymmetry 

Cerebral capillary damage occurs not only in neurodegenerative disorders such as in 

Alzheimer’s disease and PD but also in hypertension. Thus, it was hypothesized that 

ultrastructural abnormalities of cerebral capillaries were related to decreased cerebral blood 

flow that favors neurodegenerative mechanisms leading to the development of dementia 

(Farkas et al., 2000). Clearly, hypertension is involved in the development of vascular 

cognitive impairment and vascular dementia (Amenta et al., 2003). Indeed, an impairment 

of cognitive functions was described in elderly hypertensive individuals (Vinyoles et al., 

2008) as well as in childhood (Adams et al., 2010). The SHR is a recognized animal model of 

cognitive decline associated with hypertension (Diana, 2002). These animals present 

abnormal dopaminergic transmission and altered neuronal dendrite morphology of the 

mPFC (Sánchez et al., 2011). Therefore, there exists a connection between hypertension, 

vascular dementia, cognitive impairment and a modification of the basal brain asymmetry 

(Xu et al., 2008; Vallesi et al., 2010; Bergerbest et al., 2009). 
In the ADHD, characterized by impaired sustained attention, impulsivity and hyperactivity, 
a disruption of the physiological cortical asymmetry has been implicated in its pathogenesis 
(Shaw et al., 2009). The SHR, largely used as a model for hypertension, also display major 
symptoms of the ADHD (Russel, 2007) when compared with normotensive rats. Indeed, 
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SHR have also disturbances in the dopaminergic system. Therefore, it could be 
hypothesized that their brain bilateral functioning for cognitive processes may differ from 
the brain bilateral behaviour of normotensive rats. 

1.5 Oxytocin, oxytocinase, cognitive functions and brain asymmetry 

It was proposed that systems other than the dopaminergic pathway may also be involved in 
the behavioral abnormalities observed in PD (Lang & Obeso, 2004; Banegas et al., 2010). 
Oxytocin and vasopressin as well as the enzyme that regulates their functions, called 
oxytocinase (OX) or vasopressinase are involved in cognitive functions. Normotensive male 
Wistar rats exhibit a marked left predominance of OX in the mPFC, an area implicated in 
cognitive functions and reward-related mechanisms in the rat brain and characterized by its 
asymmetrical organization as already mentioned (Sullivan, 2004). Changes in this basal 
pattern of bilateral organization may cause disorders in brain function (Ramírez et al., 2004). 
Normotensive animals with hemi-parkinsonism induced by unilateral nigrostratal lesions 
using 6-OHDA showed several behavioral abnormalities and a disruption of the striking 
basal left predominance of OX as observed in both the left and right sham controls. The 
bilateral distribution in lesioned animals was altered differently depending on the injured 
hemisphere. These results may reflect changes in the levels of oxytocin and vasopressin in 
the mPFC and consequently, in their functions. This could account, in part, for the cognitive 
abnormalities observed in hemi-parkinsonism (Banegas et al., 2010). 
Therefore, considering that background, it was indicated to analyze OX in the left and right 
mPFC of SHR with left or right hemi-parkinsonism, induced by intrastriatal injections of 6-
OHDA, and compare its activity in sham SHR controls. These results will be discussed with 
those obtained previously in normotensive rats using the same protocol (Banegas et al., 
2010). This approach should give precious indications on the behavior of brain bilaterality in 
two strains of rat that clearly differ in their cognitive status. 

2. Materials and methods 

2.1 Animals 

Three-month-old male SHR (systolic blood pressure: 164.1 ± 4.2 mmHg; n=40) weighing 250 
g at the beginning of the study were used for both sham and lesioned groups. During the 
experimental period, food and water were available ad libitum. The animals were housed 
under standard conditions of light (12 h of light from 7.00 h to 19.00 h and 12 h of dark from 
19.00 h to 7.00 h) and temperature (22° C).  

2.2 Surgical procedure 

Degeneration of the left or right nigrostriatal dopaminergic pathway was accomplished via 
neurochemical lesions induced with the catecholaminergic toxin 6-OHDA (Jolicoeur and 
Rivest, 1992). All animals were anesthetized with 2 ml/kg body weight equithensin (42.5 

g/L chloralhydrate dissolved in 19.76 mL ethanol, 9.72 g/L Nembutal, 0.396 L/L 
propylenglycol and 21.3 g/L magnesium sulfate in distilled water) and placed in a 
stereotaxic instrument (David Kopf Instruments, Palo Alto, CA, USA). A 2 mm burr hole 
was drilled through the skull at horizontal coordinates approximating the position of the 
striatum (AP 0 mm, L or R 3 mm and H –5 mm) according to the atlas by Paxinos and 

Watson (1998). Infusion of 4 L of 6-OHDA (8 mg dissolved in 1 mL of cold saline with 
0.02% ascorbic acid to inhibit oxidation) was administered into the left or right striatum 

www.intechopen.com



Bilateral Distribution of Oxytocinase Activity in the Medial 
Prefrontal Cortex of Spontaneously Hypertensive Rats with Experimental Hemiparkinsonism 

 

281 

(Jolicoeur & Rivest, 1992). The control rats were operated the same manner but they 

received 4 l of saline with 0.02% ascorbic acid.  

2.3 Motor behaviour in experimental hemiparkinsonism 

Normal rats exhibit a spontaneous turning behaviour, the levels of DA being higher in the 

contralateral striatum than the side of the turning preference (Glick, 1983). Therefore, 

animals with experimental hemiparkinsonism turn ipsilaterally to the side of lesion. This 

turning behavior was amplified after amphetamine administration that increases dopamine 

in the synaptic cleft. Assessment of the ipsilateral rotational behavior allowed us to verify 

the efficacy of the 6-OHDA-induced lesions. Four weeks post-surgery and three days before 

sacrifice, animals were given D-amphetamine sulfate (5 mg/kg s.c.) to enhance the turning 

behaviour (Robinson et al., 1994) while placed in a 30 cm diameter bowl. Number of turns 

was determined in 6 periods of 10 min. during 1 h. Sufficiently rotating animals were 

included in lesion group. Sham-lesioned rats underwent the same surgery and rotational 

testing but did not demonstrate sufficient rotational behaviour to qualify as parkinsonian 

models. Most animals exceeded the 100 % of turns from mean of control and were 

considered with hemiparkinson. Lesioned animals that did not presented turning behaviour 

but exhibited rigidity after D-amphetamine injection also were considered with 

hemiparkinson. Compared with sham controls, a marked ipsilateral rotational behavior was 

observed in left- and right-lesioned animals (Banegas et al., 2009) (figure 1). 
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Fig. 1. Turning behaviour in the groups studied.  

Turning behaviour in lesioned left (LL) or lesioned right (LR) and sham left (SL) or sham right (SR) 
spontaneously hypertensive rats (H). Number of turns were determined individually in 6 periods of 10 
min during 1 h. Values represent mean ± SEM (n=10) of the cumulative turns recorded in the 6 periods 
(modified from Banegas et al., 2009 with permission).  a Differences between the same side of lesioned 
vs sham animals.  a p<0.001  

2.4 Collection and treatment of tissue samples 

The surgical procedure, sacrifice and sample collection were performed under anesthesia 

between 9.00 h and 11.00 h. Four weeks after receiving the injections, the animals were 

sacrificed and mPFC samples were obtained from each group as previously described 

(Banegas et al, 2005a). Briefly, the animals were perfused with saline transcardially under 

equithensin anaesthesia (2 ml/kg body weight). The brain was quickly removed (less than 
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60 s) and cooled in dry ice. Left and right brain samples were dissected according to the 

stereotaxic atlas of Paxinos & Watson (1998). The selected area of mPFC was between 12,70 

mm and 11,70 mm anterior to the interaural line. All samples were collected the same day 

and frozen for assays. Tissue samples were homogenized in 400 μl of 10 mM HCl-Tris buffer 

(pH 7,4) and ultracentrifugated at 100,000 x g for 30 min. at 4 ºC. The pellets were re-

homogenized in HCl-Tris buffer (pH 7,4) plus 1% Triton-X-100 to solubilize membrane 

proteins. After centrifugation (100,000 x g, 30 min., 4 ºC the supernatants were shaked in an 

orbital rotor during 2 h. at 4 ºC with the polymeric adsorbent Bio-Beads SM-2 (100 mg/ml) 

in order to remove the detergent from the sample (Alba et al., 1995). The bio-beads were 

removed and the supernatants were used to measure in triplicate membrane-bound 

aminopeptidase activities and protein content. Left or right 6-OHDA-lesioned animals were 

compared with their corresponding left or right sham-operated animals in which the DA 

pathways were intact. Because bilateral injuries usually lead to the death of rats due to the 

occurrence of marked aphagia and adipsia (Ungerstedt, 1971), such control animals were 

not available.  

2.5 Procedures for enzymatic assays 

Membrane-bound oxytocinase activity was measured fluorometrically using L-Cys-β-

naphthylamide as previously described (Banegas et al., 2005a). Proteins were quantified in 

triplicate by the method of Bradford (1976) using BSA as a standard. Specific OX was 

expressed as nanomoles of L-Cys-β-naphthylamide hydrolyzed per minute per milligram of 

protein. Fluorogenic assays were linear with respect to the time of hydrolysis and protein 

content.  

2.6 Experimental groups 

Oxytocinase activity levels were measured in mPFC of the following groups (n = 10 for all 

groups):  

a. Simulated lesion of the left hemisphere with saline (sham left, SL)  
b. Simulated lesion of the right hemisphere with saline (sham right, SR)  
c. Lesion of left hemisphere with 6-OHDA (lesion left, LL)  
d. Lesion of right hemisphere with 6-OHDA (lesion right, LR) 
All experimental procedures involving animals, including their use and care, were in 
accordance with the European Communities Council Directive 86/609/EEC.  

2.7 Statistical analysis 

We used a one-way analysis of variance (ANOVA) to analyze differences between groups. 

Post-hoc comparisons were made using the paired Student’s t test; p-values below 0.05 were 

considered significant.  

3. Results 

Results of the present research are represented in figures 2 and 3. There was an asymmetry 

of OX in the mPFC of left controls (SL) showing a significant left predominance (41% higher; 

p<0.01). The right controls (SR) showed a tendency for left predominance (15% higher) 

without reaching statistical significance. After left lesion (LL), there was an increased left 
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predominance (75% higher; p<0.001), whereas the OX predominance shifted slightly to the 

right hemisphere in right lesioned animals (LR) (19% higher; p<0.05) (fig. 2). 

Compared with the same side of sham animals, the LL produced a significant increase in OX 

in the left mPFC (48% higher; p<0.01) and no modification in the right side. The LR 

decreased OX in the left mPFC (32% lower; p<0.01) but did not modify OX activity in the 

right side compared to the control. 

The percentage differences ([(high/low)-1] x 100) between the left and right values of OX in 

mPFC for each animal in the four groups are shown in figure 3. In SL and SR, although with 

low level of percentage, most animals were left predominant. The differences ranged from 

11% to 113% higher OX activity in the left mPFC of eight SL animals (p<0.01) and from 4% 

to 56% in seven SR animals (without significant differences between mean values). In LL 

animals, the level of percentage for left OX predominance increased slightly, ranging from 

18% to 185% (higher) in eight animals (p<0.001). The SHR from the LR group shifted slightly 

to the right predominance (p<0.05) with seven animals right predominance ranging from 

3% to 77%.  

The present results are indicative of an influence of DA depletion on the bilateral levels of 

OX in the mPFC of hypertensive rats, and dramatically differ from the data observed in 

normotensive Wistar rats (Banegas et al, 2010). These effects are conditioned by the side in 

which 6-OHDA or saline was administered. 

 

 

 

Fig. 2. Oxytocinase activity in the left and right medial prefrontal cortex of hypertensive rats. 

Oxytocinase activity in the left (blue bars) and right (rose bars) medial prefrontal cortex of left (SL) or 
right (SR) sham-operated and left (LL) or right (LR) 6-OHDA lesioned hypertensive rats. (n=10 in each 

group). Values represent mean ± SEM of specific oxytocinase activity expressed as nanomoles of Cys--
naphthylamide hydrolyzed per minute per milligram of protein. (a) Differences between left and right 
sides. (b) Differences in the same side between sham and lesioned animals. Single letter: p<0.05; double 
letter: p<0.01; triple letter: p<0.001. 
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Fig. 3. Percentage differences between the left and right prefrontal cortex of hypertensive rats 

Bars represent the percentage differences between the levels of oxytocinase activity of the left and right 
sides of the prefrontal cortex for each of the hypertensive rats studied in all four groups. H, higher 
value; L, lower value. 

4. Discussion 

It has been demonstrated that the PFC plays a critical role in the development of ADHD and 

that the mesocortical DA system is involved in that process. In addition, previous studies 

demonstrated that the laterality of the prefrontal function in the rat is also involved in ADHD, 

particularly the dysregulation of the right PFC having a deficit of its dopaminergic system 

(Sullivan & Brake, 2003). Indeed, the mPFC DA system exhibits many functional hemispheric 

asymmetries involving the right mesocortical DA system. Thus, 6-OHDA lesions of the right 

but not the left frontal cortex conducts to pronounced behavioural hyperactivity and altered 

subcortical catecholamine function. The right frontal systems play a key role in motor 

inhibition and the mesocortical DA seems to be an important part of this regulation. It is 

therefore expected that its impairment may led to hyperactivity behaviour. ADHD children 

have mainly impaired ability to keep their attention focus due to dysfunctions in the right 

hemisphere attention systems (Reviewed by Sullivan & Brake, 2003). 
Therefore, it is interesting to compare the bilateral behavior of the mPFC after the specific 
lesion of the right or the left nigrostriatal dopaminergic system in normotensive rats and in 
an animal model of ADHD: the SHR strain. This could provide valuable information on the 
bilateral behaviour of the frontostriatal dopaminergic system whose operation is critical for 
understanding the pathogenesis of disorders such as PD or ADHD. 
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The present results obtained in SHR differed substantially from those previously obtained in 

normotensive rats (Banegas et al, 2010). Most importantly, there is a remarkable lower level 

of left predominance in sham hypertensive controls (figures 2 and 3), compared with the 

high one observed in sham normotensive controls (figures 4 and 5). This is in agreement 

with the reduction of the asymmetry observed in prefrontal cortex and hippocampus in 

ADHD (Shaw et al., 2009) and during aging and vascular dementia compared to healthy 

subjects (Xu et al., 2008; Vallesi et al., 2010; Bergerbest et al., 2009). Indeed, disruption of 

physiological asymmetry has been involved in the pathogenesis of cognitive disorders such 

as ADHD. An increase in the thickness of the right frontal cortex together with a left-

hemispheric increase in the occipital cortical regions characterize the normal bilateral 

development of children. However, in ADHD, while the posterior component of this 

bilateral development was intact, the prefrontal one was lost (Shaw et al., 2009). The 

morphological asymmetry of hippocampus in healthy subjects, assessed by magnetic 

resonance imaging, is greater than that in Alzheimer's disease and in patients with vascular 

dementia (Xu et al., 2008). Studying the effects of age on the asymmetry of the motor system, 

Vallesi et al. (2010) reported that older adults showed a more symmetric pattern than 

younger subjects. Moreover, an age-associated reduction of asymmetry in prefrontal 

function has been related to several forms of cognitive impairment (Bergerbest et al., 2009). 

 

 

Fig. 4. Oxytocinase activity in the left and right medial prefrontal cortex of normotensive rats 

Oxytocinase activity in the left (gray bars) and right (open bars) medial prefrontal cortex of left (SL) or 
right (SR) sham-operated and left (LL) or right (LR) 6-OHDA lesioned normotensive rats. (n=10 in each 

group). Values represent mean±SEM of specific oxytocinase activity expressed as nanomoles of Cys--
naphthylamide hydrolyzed per minute per milligram of protein. (a) Differences between left and right 
sides. (b) Differences in the same side between sham and lesioned animals. Single letter: p<0.05; triple 
letter: p<0.001 (from Banegas et al, 2010 with permission). 
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Fig. 5. Percentage differences between the left and right prefrontal cortex of normotensive rats. 

Bars represent the percentage differences between the levels of oxytocinase activity of the left and right 
sides of the prefrontal cortex for each of the normotensive rats studied in all four groups. H, higher 
value; L, lower value. 

Especially informative is the comparison of figures 3 and 5 in which we can notice the great 
difference in the bilateral response of normotensive and SHR. While in SL and SR 
normotensive rats virtually all the animals were left predominant with a high percentage of 
difference (figure 5), in SL and SR hypertensive the left predominance is substantially lower 
(figure 3). Whereas in LL normotensive animals, OX predominance was shifted to the right 
in nine animals (figure 5), in LL hypertensive rats the left predominance was increased 
(figure 3). The bilateral response of animals from the LR group of normotensive and 
hypertensive was quite similar. 
The slight difference observed in the bilateral distribution of OX between SL and SR of 
hypertensive rats could be due to a differential response of the local inflammatory processes 
following the introduction of the cannula into the left or right hemisphere, as previously 
suggested by Banegas et al. (2009) in normotensive rats. 
The direct effect of lesions in hypertensive animals on OX also differed from the previous 
observation in normotensive rats. OX decreased in the left side and increased in the right 
hemisphere of normotensive LL (figure 4). In contrast, in hypertensive LL rats, the enzyme 
activity increased in the left hemisphere and was not modified in the right one (figure 2). 
Clearly, the response to left or right lesions in normotensive rats involved both left and right 
hemispheres. On the contrary, in hypertensive rats, it only implies changes in the left 
hemisphere. It is particularly noticeable that the right mPFC was not modified either when 
left or right lesions were performed, in marked contrast with the important changes that 
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Fig. 6. Hypothetic consequences of frontal changes in CysAP/OX activity 

Hypothetic consequences of a reduction (top) or increase (bottom) in the frontal levels of CysAP/OX. 
Decreased CysAP would imply higher availability of Ang IV as well as lower metabolism/higher 
availability of its substrates oxytocin and vasopressin. Higher levels of Ang IV could indicate an 
improvement of cognitive processes (Gard, 2008). The reduction of CysAP may also suggest increased 
glucose uptake which would also improve cognitive processes (Wenk, 1989). In addition, increased 
availability of oxytocin or vasopressin would agree with the facilitation of cognitive processes (Gulpinar 
and Yegen, 2004) as well as a higher anxyolitic effect (Neumann, 2009). Finally, this would support an 
inverse relationship between cognitive processes and anxiety level (Ouimet et al., 2009). We could 
suggest contrary effects for an increased frontal level of CysAP. 
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occurred in normotensive rats (Banegas et al., 2010). This observation may be linked to the 
reduced volume of right PFC and reduced metabolism in the mPFC in humans with ADHD 
(Viggiano et al., 2004). 
While ADHD have a reduction of left/right asymmetry, as observed in SL and SR, LL return 
the asymmetrical difference to a degree similar to that observed in normotensive rats. 
Accordingly, we could hypothesize that LL but not LR balanced the asymmetrical 
misbalance of SHR/ADHD. 
Angiotensin IV (Ang IV) binds specifically to the AT4 receptor, which is identical to the 
insulin-regulated aminopeptidase (IRAP) (Albiston et al., 2001). Cystein aminopeptidase 
(CysAP), also called oxytocinase (OX) or vasopressinase (EC 3.4.11.3), is considered the 
human variant of IRAP (Stragier et al., 2008). In addition, CysAP was also reported to be 
identical to the placental leucine aminopeptidase (Tsujimoto et al., 1992). These enzymes can 
therefore be considered identical and they are located in virtually all regions of the brain, 
including the cortex (Fernando et al., 2005). In addition, it has been reported that Ang IV 
increased DA levels in striatum, this effect being mediated by OX/IRAP acting as receptor 
for Ang IV (Stragier et al., 2007). 
Ang IV is thought to play a role in cognitive and behavioral functions. However, the 
mechanism by which it modulates these functions is not fully understood and several 
compatible hypothesis have been proposed (Stragier et al., 2008). For example, it was 
proposed that the binding of Ang IV to its receptor, AT4 (oxytocinase/CysAP/IRAP), results 
in the inhibition of the receptor’s metabolic activity, reducing the catabolism of its substrates 
and consequently increasing their availability and extending their action (Stragier et al., 
2008). Ang IV could therefore regulate glucose uptake modulating OX activity: OX/IRAP is 
indeed co-localized with the glucose transporter GLUT4. In the presence of insulin, OX and 
GLUT4 are expressed in the plasma membrane, where GLUT4 induces glucose uptake. It 
was suggested that the inhibition of OX, following binding of AngIV, could increase glucose 
uptake in neurons leading to an improvement of cognitive processes (Gard, 2008; Stragier et 
al., 2008) (figure 6). 
In addition to oxytocin, CysAP/OX hydrolyzes vasopressin, enkephalins and other 
neuropeptides also involved in cognitive processes (Gard, 2008). Indeed, oxytocin and 
vasopressin are important modulators of diverse social and anxiety-related behaviors 
(Veenema & Neumann, 2008). Therefore, a decrease in CysAP/OX activity implies high levels 
of Ang IV, as well as a lower metabolism and thus a higher availability of its substrates such as 
oxytocin or vasopressin. Both effects may facilitate cognitive processes (Gard, 2008; Gülpinar 
& Yegen, 2004) and reduce anxiety levels (Veenema & Neumann, 2008). The contrary is 
occurring in case of an increase in CysAP/OX. Indeed, the development of cognitive 
enhancers based on the inhibition of OX has been proposed (Chai et al., 2008) (figure 6). 

5. Conclusion 

The present results demonstrated that the bilateral behavior of OX in the mPFC differs 
between normotensive and hypertensive rats and highlights the importance of bilaterality in 
biology. The functional meaning of bilaterality as well as how its disruption may lead to 
pathological consequences are unknown. However, we can speculate that brain functions, 
processed with varying degrees of asymmetry for the two hemispheres, could be under an 
universal modus operandi which would consist in the reciprocal inhibition of homologous 
centers. The regulationof a large number of brain processes is based on a retro-inhibitor-
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stimulator feed-back system. This could explain the existence of neurochemical imbalances that 
arise, change their side of prevalence or increase their degree of asymmetry in specific 
conditions. It could be speculated that imbalances in established brain asymmetries (toward 
symmetry or toward increasing asymmetry) due to unilateral damage, might lead to 
neuropathological deviations in brain functions (Ramirez et al., 2004; Banegas-Font et al., 2005b)  
In any case, these results confirm that studies which are not considering the bilaterality may 
lead to loss of invaluable informations leading to erroneous conclusions and 
misinterpretations of the pathophysiological processes. 
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