
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



4 

The Execution Step in Parkinson’s 
Disease – On the Vicious Cycle of 

Mitochondrial Complex I Inhibition, Iron 
Dishomeostasis and Oxidative Stress 

Marco T. Núñez, Pamela Urrutia, 
Natalia Mena and Pabla Aguirre 

University of Chile 
Chile 

1. Introduction  

The evidence for the participation of redox-active iron and reactive oxygen species (ROS) in 

a number of neurodegenerative diseases, including, Huntington’s disease, Alzheimer’s 

disease, Friedreich’s ataxia, Amyotrophic lateral sclerosis (ALS) and Parkinson’s disease is 

by now unquestionable.   

In particular, in the case of Parkinson's disease (PD) iron accumulation has been 

demonstrated in the dopaminergic neurons of the substantia nigra pars compacta and 

neuronal death in this area is prevented by pharmacological agents with iron chelating 

capacity. Other pathognomonic signs of PD include inhibition of mitochondrial complex I 

and decreased glutathione (GSH) content. In this chapter we will discuss the effects of 

complex I inhibition on Fe-S cluster synthesis and iron homeostasis, and the positive 

feedback loop between iron, glutathione and ROS that ends in cell death. We will also 

discuss the possible role of hepcidin as a mediator of inflammatory stimuli that trigger iron 

dishomeostasis. 

2. Iron homeostasis and dishomeostasis - the role of iron transporters on 
iron accumulation 

2.1 Iron homeostasis 

The components of neuronal iron homeostasis are shown in Figure 1. The scheme includes 

transferrin and transferrin receptor (TfR), inflow (DMT1; SLC11A2) and efflux (ferroportin 

1, FPN1) iron transporters, the iron storage protein ferritin, the ferrireductase Dcytb, 

responsible for the reduction of extracellular Fe3+ to Fe2+ prior to transport by DMT1, and 

the ferroxidase ceruloplasmin, responsible for the oxidation of Fe2+ after transport by FPN1 

and prior to the binding by apoTf. Transferrin-bound iron uptake starts with the binding of 

transferrin to surface receptors, followed by internalization into the endosomal system, 

release of iron mediated by the acidification of the endosome, reduction possibly mediated 

by Steap3, and transport into the cytosol by endosomal DMT1. Once in the cytoplasm, Fe2+ 
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becomes part of the labile or reactive iron pool where it distributes to mitochondria, 

neuromelanin and ferritin or engages in electron exchange reactions (Kakhlon & 

Cabantchik, 2002; Kruszewski, 2003). All the components described in Figure 1 have been 

detected in the brain (Haeger et al., 2010; Moos et al., 2007; Rouault et al., 2009), with the 

exception of Steap3, described in erythroid precursor cells (Ohgami et al., 2005). 

 

 

Fig. 1. Components of neural iron homeostasis. The molecular components comprise the 
transferrin-transferrin receptor complex, inflow (DMT1) and efflux (ferroportin, FPN1) iron 
transporters, the iron storage protein ferritin, the ferrireductase Dcytb, responsible for the 
reduction of Fe3+ prior to transport by DMT1 and the ferroxidase ceruloplasmin, responsible 
for the oxidation of Fe2+ after transport by FPN1 and prior to Fe3+ binding to apoTf.  

The mammalian DMT1 gene undergoes alternative splicing. The 1A and 1B mRNA DMT1 

variants originate from alternative splicing at the 5’ end (exons 1A and 1B), while the +IRE 

or –IRE variants originate from splicing on the 3’ end (exons 16/16A and 17) (Hubert & 

Hentze, 2002).  These variants give raise to four DMT1 protein isoforms, all of them active in 

Fe2+ transport (Ludwiczek et al., 2007).  

It is generally accepted that the two +IRE isoforms are post-transcriptionally regulated by 

the IRE/IRP system, which regulates translation of iron homeostasis proteins, which include 

the TfR, DMT1 and ferritin, in response to the concentration of reactive iron in the 

cytoplasm (Garrick & Garrick, 2009). Knowledge of differential transcriptional regulation of 

DMT1 expression is emerging. Both the inflammatory cytokine nuclear factor kappa B 

(NFκB) and the nuclear factor Y regulate DMT1(1B) expression in embryonic carcinoma cells 

(Paradkar & Roth, 2006). In contrast, hypoxia up regulates expression of the DMT1(1A) 

isoform, presumably through activation of hypoxia inducible factor 1b (HIF1b) (Lis et al., 

2005; Wang et al., 2010a). 

2.2 Iron essentiality in the brain 

Iron is an essential element for the development of early cognitive functions. Late fetal and 
early postnatal iron deficiency causes learning and memory disabilities in humans that 
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persist following iron repletion (Lozoff et al., 1996; Grantham-McGregor & Ani, 2001; Beard 
& Connor, 2003; Felt et al., 2006). In animal models, nutritional iron deficiency interferes 
with hippocampus-depending learning (McEchron & Paronish, 2005; Ranade et al., 2008) 
and synaptic plasticity (Jorgenson et al., 2005). These functional failings have been ascribed 
to the iron requirements of metabolic pathways involved in neurotransmitter synthesis and 
myelin formation. Enzymes involved in neurotransmitter synthesis that contain iron as a 
prosthetic group are recognized targets of iron deficiency (Kwik-Uribe et al., 2000; Taneja et 
al., 1986; Youdim et al., 1980). Tryptophan hydroxylase, required for serotonin synthesis, 
tyrosine hydroxylase, required for dopamine and norepinephrine synthesis, monoamine 
oxidases A and B involved in dopamine catabolism, glutamate decarboxylase , involved in 
gamma-aminobutyric acid synthesis and glutamate transaminase, involved in L-glutamate 
synthesis, belong to this group. 
Current understanding of the molecular mechanisms underlying the essential role of iron in 
neuronal function is in large part unknown. Just of late, a role for iron in synaptic plasticity 
and the associated postsynaptic Ca2+ signals has begun to emerge (Hidalgo et al., 2007; 
Hidalgo & Núñez, 2007). Recent work has shown that in hippocampal neurons, iron 
chelation with desferrioxamine blocks NMDA-induced calcium signals and the ensuing 
ERK1/2 activation (Muñoz et al., 2011).  Moreover, iron chelation decreases basal synaptic 
transmission and inhibits iron-induced synaptic stimulation in hippocampal slices, and also 
impairs sustained long-term potentiation (LTP) induced by strong stimulation. Together, 
these results suggest that upon NMDA receptor stimulation, iron is required for the 
generation of calcium signals which in turn promote ERK1/2 activation, an essential step of 
sustained LTP. 
Iron concentration in cerebrospinal fluid (CSF) ranges between 0.2 and 1.1 µM whereas 
transferrin concentration is around 0.24 µM (Symons & Gutteridge, 1998; Moos & Morgan, 
1998). Thus, CSF iron often exceeds the binding capacity of transferrin, and non transferrin 
bound iron (NTBI) uptake is expected to occur in neurons that express DMT1.  
In the brain, DMT1 is expressed in hippocampal pyramidal and granule cells, cerebellar 
granule cells, pyramidal cells of the piriform cortex, substantia nigra and the ventral portion 
of the anterior olfactory nucleus, striatum, cerebellum, hippocampus and thalamus, as well 
as in vascular cells throughout the brain and ependymal cells in the third ventricle (Gunshin 
et al., 1997; Williams et al., 2000; Burdo et al., 2001). 
The pervasive presence of DMT1 in neurons suggests that this transporter is necessary for 
their regular function (Hidalgo & Núñez, 2007; Wright & Baccarelli, 2007; Pelizzoni et al., 
2011; Muñoz et al., 2011). Hippocampal neurons express the 1B, but not the 1A, isoform 
(Haeger et al., 2010). Since expression of the IB isoform responds to NFkB, regulation of 
neuronal DMT1 levels by inflammatory stimuli is possible. 

2.3 Iron toxicity 

Iron is an intrinsic ROS producer. When one or more of its six ligand binding sites is not 
tightly bound iron becomes redox-active and capable to engage in one-electron exchange 
reactions producing free radicals (Graf et al., 1984). This is due to the occurrence of the 
Haber-Weiss and Fenton reactions. The thermodynamic balance of these reactions indicates 
that in the reductive environment of the cell, iron, in the presence of oxygen, catalyzes the 
consumption of GSH and the production of the hydroxyl radical (Halliwell, 2006b; Bórquez 
et al., 2008). In dopaminergic cells, another source of free radicals derives from the non-
enzymatic oxidation of dopamine mediated by redox-active iron, resulting in semiquinones 
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and H2O2 production (Zoccarato et al., 2005). Thus, iron, both through the Fenton reaction or 
by dopamine oxidation, is a dangerous pro-oxidant agent.  
Overwhelming evidence indicates that iron accumulation is a common feature of a number 
of neurodegenerative disorders of the central nervous system that include Huntington’s 
disease, Alzheimer’s disease, Friedreich’s ataxia, Amyotrophic lateral sclerosis (ALS) and 
Parkinson’s disease (Jellinger, 1999; Sayre et al., 2000; Bartzokis et al., 2000; Perry et al., 2003; 
Zecca et al., 2004; Berg & Youdim, 2006; Wilson, 2006; Weinreb et al., 2011). 
Iron accumulation has been demonstrated in the dopaminergic neurons of the substantia 
nigra pars compacta (Youdim et al., 1989; Hirsch et al., 1991; Gorell et al., 1995; Vymazal et 
al., 1999).  Interestingly, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a drug that 
causes experimental Parkinson’s disease up regulates DMT1(+IRE) protein expression in 
mice ventral mesencephalon, where it increases neuronal death presumably through 
abnormal increases in cellular iron content (Salazar et al., 2008; Jiang et al., 2010). 
Additionally, DMT1(-IRE) mediates L-DOPA neurotoxicity in primary cortical neurons (Du 
et al., 2009). 
The position of iron dishomeostasis in the progression of events leading to neuronal death is 
unknown, since iron accumulation has been detected in tissue from patients who have died 
after the final steps of the pathology. Nevertheless, since neuronal death caused by MPTP or 
6-hydroxydopamine intoxication is blocked by pharmacologic or genetic chelation of iron 
(Kaur et al., 2003; Shachar et al., 2004; Youdim et al., 2004; Youdim & Buccafusco, 2005; 
Zheng et al., 2010) or by dysfunction of the iron transporter DMT1 (Salazar et al., 2008), it is 
possible that iron dishomeostasis takes place in the late stages of the disease as part of a 
vicious cycle resulting in uncontrolled oxidative damage and cell death. A recent study in 
mecencephalic dopaminergic neurons shows that low (0.25-0.5 µM) concentrations of MPP+, 
the active metabolite of MPTP and a potent mitochondrial complex I inhibitor, induces 
neuritic tree collapse without loss of cell viability (Gómez et al., 2010).  This collapse was 
effectively prevented by decreasing iron supply or by the addition of antioxidants. Thus, it 
seems plausible that increased intracellular iron is involved in the early steps of 
dopaminergic neuron dysfunction. 
Iron toxicity is not restricted to dopaminergic neurons. Neurotoxic concentrations of NMDA 
induces iron-induced the NO-Dexras1-PAP7 signaling cascade in glutamatergic PC12 cells. 
Upon activation, PAP7 binds to intracellular DMT1 and relocates it to the plasma 
membrane. Increased intracellular iron, the physiological function of DMT1, increases the 
production of hydroxyl radicals. Thus, the DMT1-iron uptake-hydroxyl radical signaling 
pathway appears to mediate NMDA neurotoxicity (Cheah et al., 2006). 

3. Decreased mitochondrial Fe-S cluster synthesis as a consequence of 
complex I dysfunction 

3.1 Mitochondrial complex I inhibition in PD 

Decreased activity of mitochondrial complex I, found in post-mortem tissue of PD patients 
(Schapira et al., 1990; Tretter et al., 2004; Banerjee et al., 2009; Hattingen et al., 2009), is 
probably a founding event in neuronal death. Interestingly, this phenotype is replicated in 
experimental PD induced by MPTP intoxication, which induces parkinsonian symptoms in 
mice, primates and humans.  Inhibition of complex I leads to impaired mitochondrial ATP 
production and an accelerated production ROS (Langston et al., 1983; Singer & Ramsay, 
1990; Scotcher et al., 1990; Noll et al., 1992). 
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The association between complex I inhibition and PD is further supported by the 
observation that rats intoxicated with the selective inhibitor of complex I rotenone, develop 
a syndrome similar to PD, characterized by neuronal degeneration and the formation of 
inclusion bodies rich in alpha-synuclein (Betarbet et al., 2000). Likewise, inhibition of 
glutaredoxin 2, an enzyme involved in Fe-S synthesis, produced an alteration in iron 
metabolism in a model of Parkinson's disease (Lee et al., 2009). Additionally, mutations in 
mitochondrial proteins PINK-1 and DJ-1 result in a genetic form of PD, leading further 
support for an important role of mitochondria in PD neurodegeneration (Bonifati et al., 
2003; Valente et al., 2004; Blackinton et al., 2005). 
ROS seem to have a negative effect on complex I activity. Experiments with isolated 
synaptosomal mitochondria revealed that low concentrations of H2O2 decrease complex I 
activity by 10%. This relatively minor effect of H2O2 was additive to partial inhibition of 
complex I induced by low (5 nM-1 μM) concentrations of rotenone (Chinopoulos & Adam-
Vizi, 2001). Similarly, sub-mitochondrial particles exposed to O2.-, H2O2, or ·OH presented 
decreased activity of NADH dehydrogenase, a marker of complex I activity (Zhang et al., 
1990). Thus, an initial inhibition of complex I could generate a positive loop between ROS 
generation and further complex I inhibition. 

3.2 Mitochondrial iron-sulfur cluster synthesis 

By being the locus of heme and iron-sulfur (Fe-S) clusters synthesis, the mitochondria is an 
essential organelle for cell iron homeostasis (Rouault & Tong, 2005). Fe-S clusters, formed by 
the tetrahedral coordination of sulfur groups with Fe atoms, are small inorganic cofactors 
believed to be the first catalysts in the evolution of macromolecules. In eukaryotes the most 
common species of Fe-S clusters are the 2Fe-2S and 4Fe-4S forms (Rouault & Tong, 2005; Lill 
& Muhlenhoff, 2008; Ye & Rouault, 2010). Today, Fe-S clusters are found as prostetic groups 
of a wide range of proteins. In mitochondria, proteins such as NADH dehydrogenase 
(complex I), succinate dehydrogenase (complex II), cytochrome c reductase (complex III) 
and aconitase contain Fe-S clusters. Fe-S clusters are also exported to cytosol for 
incorporation into cytoplasmic proteins that require them, such as aconitase, xanthine 
oxidase, glutamine phosphoribosyl pyrophosphate amidotransferase and nuclear proteins 
involved in DNA repair (Martelli et al., 2007). For a compendium of Fe-S clusters see The 
Prosthetic Groups and Metal Ions in Protein Active Sites (PROMISE) 
http://metallo.scripps.edu/promise/MAIN.html).  
The biogenesis of Fe-S clusters in mitochondria has been proposed as a sensor of the cellular 
Fe status, being high Fe-S cluster levels indicative of high intracellular iron concentrations 
and vice versa (Rouault & Tong, 2005).  Additionally, the loss of function of proteins 
involved in mitochondrial biogenesis of the clusters or in cluster export to the cytoplasm, 
has been associated with deregulation of cytoplasmic Fe metabolism, mitochondrial 
accumulation of Fe and clinical manifestations such as sideroblastic microcytic anemia, 
myopathy and ataxia (Rouault & Tong, 2008). Recent data from our laboratory indicate that 
inhibition of complex I by rotenone results in decreased synthesis of Fe-S clusters, as shown 
by the decreased activity of the Fe-S cluster-containing enzymes cytosolic aconitase, 
mitochondrial aconitase,  xanthine oxidase and glutamyl phosphoribosyltransferase as well 
as the activation of cytosolic Iron Regulatory Protein 1 (IRP1) (Mena et al., 2011). We think 
that as a consequence of decrease synthesis of Fe-S complexes, and the consequent 
activation of IRP1, a decreased activity of complex I results in a false “low iron” signal that 
activates the iron uptake system. 
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In consequence, diminished Fe-S cluster synthesis could play a fundamental role in 
promoting the accumulation of iron observed in PD. Future research is needed to evaluate 
its participation in neurodegenerative diseases in which iron accumulation is observed. 

4. Cell death in PD: necrosis, apoptosis or necroptosis? 

The two main pathways of cell death in neurodegenerative and other ROS-related disorders 
are apoptosis and necrosis. Apoptosis, also termed “programmed cell death” is understood 
as a regulated process consisting in the activation of caspases by endogenous or external 
stress signals. Necrosis, morphologically characterized by a gain in cell volume, plasma 
membrane rupture and subsequent loss of intracellular contents, is considered as an 
uncontrolled form of cell death. Lately, evidence is accumulating indicating that necrotic 
death may be also regulated by a set of signal transduction pathways (Kroemer et al., 2009). 
A third cell death pathway is “necroptosis” or programmed necrosis. Necroptosis death 
begins by activation of death receptors and its execution involves the active disintegration of 
mitochondrial, lysosome and plasma membranes. Necroptosis participates in the 
pathogenesis of several diseases, including ischemic injury, neurodegeneration and viral 
infection (Vandenabeele et al., 2010). The execution step of necroptosis includes 
mitochondrial dysfunction, decreased ATP levels, increased oxidative stress and increased 
labile iron pool mediated by increased ferritin degradation (Vandenabeele et al., 2010). 
 While the evidence that iron overload in the brain causes necrotic death is scanty (Lobner & 
Ali, 2002; Maharaj et al., 2006), overwhelming evidence points to apoptosis as the most 
common pathway of death (Wang et al., 1998; Zaman et al., 1999; Barzilai et al., 2000; 
Kuperstein & Yavin, 2003; Liu et al., 2003; Zheng et al., 2005; Kooncumchoo et al., 2006; Xu 
et al., 2008; Kupershmidt et al., 2009; Shi et al., 2010; Ziv et al., 1997). The possible 
participation of necroptosis in neurodegenerative processes has not been explored but the 
common characteristics of redox-active iron, oxidative stress and mitochondrial 
dysfunction, all of which contribute to the execution of necroptosis, make possible that 
necroptosis may be involved in iron-associated neuronal death. 

5. Inflammation and hepcidin – a nexus to iron dishomeostasis 

In addition to iron accumulation, other event strongly associated with neuronal death in PD 
and other neurodegenerative disorders is the presence of inflammatory processes 
characterized by the occurrence of reactive microglia and the massive production of 
proinflammatory cytokines. Although both phenomena have been studied as independent 
events leading to the progression of disease, the recent identification in central nervous 
system of hepcidin, a hormone that mediates the relationship between systemic iron 
homeostasis and inflammation, might change our views. 

5.1 Hepcidin, the master regulator of iron homeostasis 

Hepcidin is a cationic peptide of 25 amino acids secreted into blood circulation by the liver. 
The mature peptide derives from a precursor of 84 amino acids that after two successive 
proteolytic cleavages generates the mature peptide. Hepcidin was initially described as a 
peptide with antimicrobial activity (Krause et al., 2000), however further studies revealed 
that it also acts as a major regulator of circulating iron levels (Nicolas et al., 2001; Pigeon et 
al., 2001).  
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Two processes contribute to the levels of circulating iron, the recycling of senescent red 
blood cells (RBC) and intestinal iron absorption. The recycling by spleen macrophages of 
heme iron from senescent RBC is the main contributor of iron to the circulation, providing 
about 95% of daily turnover. The recycling of RBC iron comprise the phagocytosis of 
senescent RBC, the release of the iron in the heme moiety of hemoglobin by heme 
oxygenase-1 and the subsequent release of this iron into the plasma mediated by FPN1 (De 
Domenico et al., 2008; Kovtunovych et al., 2010). 
The physiological function of hepcidin is to down-regulate the levels of circulating iron. It 

does so by down-regulation of the iron exotransporter FPN1 in macrophages. The binding 

of hepcidin to FPN1 present in the plasma membrane of splenic macrophages induces the 

endocytosis of the complex and the subsequent degradation of FPN1 in the lysosome 

(Nemeth et al., 2004). The decreased levels of FPN1 lead to the accumulation of iron in 

macrophages and the decrease of circulating iron (Ganz, 2006). 
Hepcidin synthesis is regulated by multiple stimuli that have an effect in the regulation of 
circulating iron levels: (i) increased iron levels induce an increase in hepcidin synthesis in 
the liver through a mechanism that depends on transferrin receptor 1 and 2, the 
hemochromatosis protein (HFE) and hemojuvelin/BMP (De Domenico et al., 2007; Gao et 
al., 2010); (ii) erythropoietin, a hormone that stimulates red blood cell production. 
Erythropoietin blocks hepcidin synthesis in order to increase circulating levels of iron 
necessary for hemoglobin synthesis (Wrighting & Andrew, 2006; Pinto et al., 2008); (iii) 
inflammatory stimuli, mainly the cytokine IL-6, that through stimulation of hepcidin 
synthesis reduces circulating levels of iron, preventing its use for the proliferation of 
pathogens (Wrighting & Andrews, 2006) and (iv) hypoxia, that through activation of the 
hypoxia inducible factor I down-regulates the synthesis of hepcidin in order to increase 
blood iron levels required for the synthesis of heme in new red blood cells, to counteract 
oxygen deprivation (Peyssonnaux et al., 2007). 
The interaction of hepcidin with FPN1 generates an antiinflammatory response. Binding of 

hepcidin to FPN1 induces the recruitment and activation of the tyrosine kinase Janus kinase 

2 (JAK-2) (De Domenico et al., 2009), which phosphorylates FPN1 in 2 adjacent tyrosines 

present in a cytosolic loop. Activation of JAK-2 allows for the phosphorylation and 

translocation to the nucleus of signal transducer and activator of transcription 3 (STAT-3), 

which induces the expression of genes that encode for proteins whose role is to suppress the 

inflammatory response (De Domenico et al., 2010a). Within them are the receptor for 

interleukin 17, a cytokine with antiinflammatory properties and the suppressor of cytokine 

signaling 3 (SOCS-3) (De Domenico et al., 2010b), a modulator that inhibits the transduction 

pathways associated with receptors for proinflammatory cytokines IL-6 and tumor necrosis 

factor-alpha (Croker et al., 2008). 

5.2 Hepcidin expression in the CNS 

Hepcidin shows a wide distribution in the CNS, most notably in the midbrain, with a clear 

presence in the superior colliculus, the geniculate nucleus, some fiber bundles of the 

substantia nigra pars reticulata and the substantia nigra pars compacta (Zechel et al., 2006) 

and the striatum (Wang et al., 2010b). Hepcidin is expressed mainly in glial cells, as well as 

in neurons and endothelial cells of choroid plexus (Zechel et al., 2006; Marques et al., 2009). 

Hepcidin expression changes with age: increased mRNA levels of hepcidin in cortex, 

striatum and hippocampus have been observed with aging (Wang et al., 2010b). 
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As stated above, hepcidin synthesis is induced by inflammatory stimuli. Bacterial 
lipopolisaccharide (LPS), a potent inflammatory agent, induces liver hepcidin expression. 
LPS also increases hepcidin expression in the brain. After an intraperitoneal injection of LPS, 
a transient transcription of the gene for hepcidin ensues in the choroid plexus, which 
correlates with increased levels of pro-hepcidin in the cerebrospinal fluid (Marques et al., 
2009). The highest hepcidin expression was observed at 3 hours returning to baseline levels 
24 hours after the injection. Interestingly, LPS treatment induces a 10-fold increase in 
hepcidin expression in the substantia nigra (Wang et al., 2008), which correlates with a 
marked increase in iron levels observed in this region in PD. 

5.3 FPN1 expression in the CNS 

As described above, the iron transporter FPN1 is the receptor for hepcidin. The expression 

of this transporter-receptor in mouse brain is quite ubiquitous; it is present in 

oligodendrocytes, microglia, astrocytes and neurons (Song et al., 2010). Space-temporal 

expression of FPN1 in neurons is variable (Moos & Rosengren Nielsen, 2006). In young 

brain a high immunoreactivity is found in the neurons of the hippocampus and striatum 

(cell bodies and in projection fibers), a mild expression in the substantia nigra pars compacta 

and the superior colliculus and low expression in the substantia nigra pars reticulata 

(Boserup et al., 2011). In the adult brain, FPN1 immunoreactivity is lower in the projections 

of the striatum, but no differences have been found in neuronal cell bodies (Moos & 

Rosengren Nielsen, 2006).  

An interesting fact is that the spatial distribution of FPN1 and hepcidin are similar. 

Although the effects of hepcidin on FPN1 levels can differ according to cell type (Chaston et 

al., 2008), the injection of hepcidin in mice lateral cerebral ventricle, causes a decrease in the 

levels of FPN1 in the cerebral cortex, hippocampus and striatum (Wang et al., 2010b), 

suggesting that their cellular targets in the brain generate the same response than that 

observed in macrophages, that is, iron retention inside the cells. This conclusion is 

strengthened by the fact that high doses of hepcidin produce an increase in the iron storage 

protein ferritin, thus indicating increased cellular iron concentration in these brain areas.  

Unexpected for a high cell iron situation, in the hippocampus and cortex of rats treatment 

with hepcidin induces the decrease of both FPN1 protein and mRNA and an increase in 

total DMT1 (Li et al., 2011), a situation that should drive further iron accumulation. 
Hippocampal neurons in culture treated with hepcidin also show a decrease in the 
expression of FPN1, which is reflected in a reduction of the iron released from these cells 
(Wang et al., 2010b). There are no studies in other cell types, however, and it is possible that 
the response in glial cells should be similar to neurons and macrophages, particularly since 
microglia cells derive from the same precursor cells that give rise to macrophages (Ginhoux 
et al., 2010). 

5.4 Hepcidin - a nexus between inflammation and iron accumulation in PD 

Reports of some cases of PD associated with head trauma (Lees, 1997) and encephalitis (Jang 
et al., 2009) strongly suggest that inflammation can promote this neurodegenerative disease. 
Currently, there is a growing array of evidences describing inflammatory properties in the 
parkinsonian brain. Indeed, many cases of PD are accompanied by general inflammation of 
the brain, with a dramatic proliferation of reactive amoeboid macrophages and microglia 
HLA-DR+ in the substantia nigra (McGeer et al., 1988). In the striatum, macrophage 
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proliferation is accompanied by high expression of pro-inflammatory cytokines such as 
TNF-α, IL-1ȕ, IFN-Ȗ and IL-6 (Mogi et al., 1994; Muller et al., 1998), which are expressed by 
glial cells (Hirsch et al., 1998). Particularly, the presence of IL-1ȕ, IL-6 and TNF-α has been 
observed in cerebrospinal fluid and the basal ganglia of patients with PD (Nagatsu, 2002). In 
addition to increased expression of inflammatory cytokines by activated microglia, factors 
released by dead dopaminergic cells appear to increase the neuroinflammatory and immune 
response, leading to irreversible destruction of these cells (Orr et al., 2002). 
In general, pro-inflammatory cytokines such as TNF-α and IL-1 have neurotoxic effects, 
while anti-inflammatory molecules are neuroprotective (Allan & Rothwell, 2001). 
Intriguingly, IL-6, a classical proinflammatory cytokine, has a dual effect, at low 
concentrations it protects for neuronal death while at larger concentrations it is highly toxic 
(Li et al., 2009). 
It is not completely understood how the inflammatory response is generated in PD. It has been 
proposed that the inflammatory response is a product of the oxidative load induced by the 
metabolism of dopamine (DA). Deamination of DA by monoamine oxidase generates 
hydrogen peroxide (Gotz et al., 1994), whereas the not enzymatic auto-oxidation produces 
additionally DA quinones and semiquinones (Stokes et al., 1999). These metabolites, in 
conjunction with the highly toxic hydroxyl radical generated through the Fenton reaction, are 
likely to alter protein structure and decrease glutathione levels by generating increased 
oxidative stress (Halliwell, 2006a), which could lead to activation of an inflammatory response 
(Park et al., 1999; Di Loreto et al., 2004). In fact, antioxidants such as green tea polyphenols are 
strong inhibitors of the inflammatory response (Conner and Grisham, 1996; Singh et al., 2010), 
and may reduce the incidence of dementia, AD, and PD (Mandel et al., 2011). 
An inflammatory component has also been observed in several animal models of PD: the 
injection of 6-hydroxydopamine, MPTP and rotenone generates microglial activation, 
astrogliogenesis and secretion of inflammatory cytokines (Barnum & Tansey, 2010). The 
injection of LPS, a potent inducer of inflammation, has also been used as a model of PD. 
Stereotaxic injection of LPS in the nigro-striatal pathway induced a strong 
macrophage/microglial reaction in substantia nigra, being the substantia nigra more 
responsive than the striatum to the inflammatory stimulus (Herrera et al., 2000). 
Furthermore, no detectable damage to either the GABAergic or the serotoninergic neurons 
was observed, a demonstration of the particular sensitivity sustantia nigra pars compacta 
neurons to inflammatory stimuli. 
The abundant evidence for the existence of inflammatory processes in PD, and the induction 
of hepcidin synthesis by cytoquines such as IL-6, suggest that brain hepcidin levels should 
be higher in inflammatory processes. Hepcidin should induce differential iron accumulation 
in the diverse cell types present in the brain, based in the different levels of expression of its 
receptor, FPN1. In the adult brain, the expression of FPN1 is lower in neurons than in glia, 
thus hepcidin would induce a redistribution of iron, accumulating it mainly in the glial cells, 
which would act as an "iron sponge". Additionally, the activation of the signal transduction 
pathway associated with the binding of hepcidin to FPN1, could reduce the inflammatory 
response generated during neurodegeneration. Alternatively, the decrease in FPN1 induced 
by hepcidin binding in neurons could result in increased iron accumulation and oxidative 
stress, which could accelerate the death of these cells.  
Future studies on the participation of hepcidin on the disregulation of iron homeostasis in 
glia and neurons as a response to inflammation, will provide valuable information about its 
protective or deleterious role in the progress of neurodegenerative diseases. 
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6. Glutathione metabolism in PD – a cause or a consequence of increased 
ROS and increased iron content? 

The tripeptide glutathione (γ-L-glutamyl-L-cysteinylglycine) is the most abundant and the 
main antioxidant agent in the central nervous system, where it reaches mM concentrations 
(Meister & Anderson, 1983; Dringen et al., 2000). In its redox cycling, glutathione is present 
either in its reduced (GSH) form or its oxidized disulfide (GSSG) form, the ratio GSH/GSSG 
being faithful reflection of the redox state of the cell (Schafer & Buettner, 2001). 
Early post-mortem studies revealed decreased levels of GSH in degenerating substantia 
nigra of PD patients (Perry et al., 1982; Sofic et al., 1988; Sian et al., 1994), the observation 
implicating that GSH depletion may play a major role in the neurodegenerative process. The 
question arises whether GSH depletion is an early event during the progression of the 
disease or a reflection of increased oxidative stress resulting, for example, from 
mitochondrial complex I inhibition or from iron accumulation. 
Chronic sub-maximal inhibition of GSH synthesis in N27 dopaminergic cells results in about 
50% inhibition of mitochondrial electron transport chain complex I without ensuing cell 
death, inhibition that was reversed upon removal of the inhibitor (Chinta & Andersen, 
2006). Thus, increased oxidative stress generated by complex I inhibition should result in 
decreased GHS levels and further inhibition of complex I. Conversely, a decrease in GSH 
levels, provoked by unknown causes, could result in inhibition of complex I activity. 
Iron induces the consumption of GSH. After exposure to increasing concentrations of iron, 
SH-SY5Y dopaminergic cells undergo sustained iron accumulation and a biphasic change in 
intracellular GSH levels, increasing at low (1-5 μM) Fe and decreasing thereafter. Indeed, 
cell exposure to high iron concentrations (20-80 µM) markedly decreases the GSH / GSSG 
molar ratio and the GSH half-cell reduction potential, which associated with loss of cell 
viability (Núñez et al., 2004).  
It is therefore possible that a decrease in GSH levels is a consequence of the increased 
oxidative load produced by the increase in intracellular Fe. Nevertheless, increased iron and 
decreased GSH may be intertwined in a positive feedback loop, since in dopaminergic 
neurons the pharmacological reduction of GSH levels results in increased levels of TfR and 
an increased labile iron pool (Kaur et al., 2009).  Thus, the question remains as to which of 
the three processes initiates the oxidative spiral, but a reasonable assumption is that if one of 
them ensues the others will follow. 

7. A positive feedback loop in the death of neurons 

We propose that inhibition of mitochondrial complex I by endogenous and/or exogenous 
toxins, and inflammatory processes produced by trauma or other causes, result in a vicious 
cycle of increased oxidative stress, increased iron accumulation and decreased GSH content 
(Figure 2). In this scheme, neuronal death linked to complex I dysfunction is brought about 
by a positive feedback loop in which complex I inhibition results in decreased Fe-S cluster 
synthesis, IRP1 activation, increased DMT1 and TfR expression and iron accumulation. 
Complex I dysfunction and increased cellular iron result in decreased GSH levels. Both 
increased oxidative stress and low GSH levels further inhibit complex I activity. Central to 
this scheme is the deregulation of iron homeostasis since iron chelators effectively block cell 
death and prevent early events in neurodegeneration such as neuritic tree shortening.  
Another input to this cycle is brought about by inflammatory cytoquines that induce 
hepcidin synthesis which, by inducing FPN1 degradation, results in increased cellular iron.  
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Fig. 2. A positive feedback loop resulting in uncontrolled oxidative load. Complex I 
inhibition results in decreased levels of ATP and decreased Fe-S synthesis (see text). 
Decreased Fe-S cluster synthesis results in activation of IRP1 that needs a 4Fe-4S cluster to 
acquire its inactive state. Increased IRP1 activity results in increased DMT1 and transferrin 
receptor and decreased FPN1 synthesis, which results in increased iron accumulation. 
Increased iron induces increased oxidative stress and GSH consumption. Both increased 
oxidative stress and decreased GSH produce further complex I inhibition. 

8. Conclusion 

Diminished activity of mitochondrial complex I, iron accumulation, oxidative stress and 
inflammation are common pathognomonic signs of sporadic PD. It is possible that the 
initiation of any one of these processes will initiate or enhance the others, through the 
generation of positive feedback loops that will produce apoptotic neuronal death. 
Intervention of these positive loops should result in prolonged life of the affected neurons. 
Still unanswered is the question of why substantia nigra pars compacta neurons are so 
particular prone to this disregulation. 
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Parkinson's disease (PD) results primarily from the death of dopaminergic neurons in the substantia nigra.

Current PD medications treat symptoms; none halt or retard dopaminergic neuron degeneration. The main

obstacle to developing neuroprotective therapies is a limited understanding of the key molecular mechanisms

that provoke neurodegeneration. The discovery of PD genes has led to the hypothesis that misfolding of

proteins and dysfunction of the ubiquitin-proteasome pathway are pivotal to PD pathogenesis. Previously

implicated culprits in PD neurodegeneration, mitochondrial dysfunction, and oxidative stress may also act in

part by causing the accumulation of misfolded proteins, in addition to producing other deleterious events in

dopaminergic neurons. Neurotoxin-based models have been important in elucidating the molecular cascade of

cell death in dopaminergic neurons. PD models based on the manipulation of PD genes should prove valuable

in elucidating important aspects of the disease, such as selective vulnerability of substantia nigra dopaminergic

neurons to the degenerative process.
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