
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



2 

Rationale, Instrumental Accuracy, and 
Challenges of PET Quantification for Tumor 

Segmentation in Radiation Treatment Planning 

Assen S. Kirov1, C. Ross Schmidtlein1, Hyejoo Kang2 and Nancy Lee1 
1Memorial Sloan-Kettering Cancer Center, New York, 

2Northwestern Memorial Hospital, Chicago, 

USA 

1. Introduction 

In the past few decades, radiation therapy of cancer has reached a high level of dosimetric 
and spatial accuracy due to the strong efforts of both science and industry. This has led to 
the emergence of today’s precise radiation therapy procedures, such as stereotactic 
radiosurgery and stereotactic body radiation therapy, whose very names indicate a 
resemblance to surgical precision. This resemblance stems from the high precision with 
which a dose can be delivered relative to the calculated value in a treatment plan, which is 
typically within a few percent. However, there are still limits to this precision arising from 
the technical limitations of the delivery machines and due to the finite errors caused by 
patient motion and the positioning uncertainties during patient set-up for treatment 
(LoSasso, 2003; Palta & Mackie, 2011). In addition, one needs to consider the finite 
penumbra of a radiation therapy beam. Although the dose gradient is fairly steep (at a 
depth of 10 cm in water, the dose falls off by more than a factor of 10 at less than 5 mm 
distance from a 1-mm diameter 6 MV pencil beam), photon scatter in the patient and in the 
accelerator head leads to low-dose but long-range wings of the dose kernel (Kirov et al., 
2006). Hence, despite radiation therapy’s high dose delivery precision with respect to the 
planned dose, it is still a relatively blunt instrument when compared to surgery.  

As an added difficulty, while the precision of matching the delivered to the planned dose in 
radiation therapy is well known, the boundaries of the tumor target are not. One of the 
reasons for this is that the high-resolution imaging modalities—computed tomography (CT) 
and magnetic resonance imaging (MRI)—are unable to identify the metabolically active or 
molecularly relevant parts of the tumor. In contrast, positron emission tomography (PET) 
offers an important advantage by defining the tumor based on its molecular properties 
(Ling et al., 2000; Schöder & Ong, 2008). In fact, PET has one of the highest sensitivities and 
specificities in detecting metabolically active tumor tissue (Gambhir et al., 2001). As a result, 
PET is now widely used for cancer staging and to supplement traditional imaging systems 
that are used to define the target volume for radiation therapy (i.e. CT and MRI) (Gregoire & 
Chiti, 2011; Gregoire et al., 2007; Nestle et al., 2009). 
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However, despite PET’s ability to identity metabolic and molecular activity, delineating 
gross tumor volume (GTV) with PET is problematic due to uncertainties in the biological 
and physiological processes governing tracer uptake and the instrumental inaccuracy of 
PET images. These biological and physical uncertainties lead to significant ambiguity of the 
position of the tumor boundary in images generated by PET in PET/CT and PET/MRI 
scanners, which in turn leads to uncertainty as to where to aim the precise beam of modern 
radiotherapy.  

In this chapter, which is aimed as an introductory review, we address in order the following 
questions:  

i. What does radiation treatment planning (RTP) need from imaging? 
ii. What can PET provide for RTP? 
iii. What are the artifacts of PET images and how do they affect RTP? 
iv. What are the primary challenges of PET-based tumor segmentation? 

Within the context of these questions and the RTP process, we describe the effects of the 
factors that are mainly responsible for degradation of the PET image, including limited 
resolution, photon attenuation, scatter, noise, and image reconstruction. In addition, we 
specifically address the impact of potential inaccuracies of the current artifact correction 
strategies on segmenting lesions in PET images. 

2. The imaging requirements of radiation treatment planning 

In radiation therapy (RT), the prescribed dose can be delivered to a phantom and verified 
with precision better than 5% for most points within a patient, even for very large and non-
uniform intensity modulated radiation therapy (IMRT) fields (Kirov et al., 2006). 
Furthermore, with the introduction of image guidance and respiratory gating techniques, 
both before and during treatment, similar precision can be achieved for dynamic treatments 
in which the target is moving. As a result, high treatment delivery precision is becoming 
standard today for more and more tumor types and disease sites ('A Practical Guide To 
Intensity-Modulated Radiation Therapy,' 2003; Palta & Mackie, 2011). This high RT dose 
delivery precision sets high accuracy and precision requirements in imaging for both tumor 
boundary definition (segmentation) and for activity concentration determination for dose 
painting (Ling et al., 2000), as described in Section 3 below. 

This leads to the question: how accurately are GTV contours currently drawn? At present, 
tumor boundaries are drawn by radiation oncologists using CT images, in which the tumor 
may or may not be clearly seen, in a process resembling art. Using PET images in the 
treatment planning process is becoming more common since it provides additional 
functional information (Gregoire et al., 2007; Nestle et al., 2009). The use of PET images in 
treatment planning has led to better agreement among physicians on target definition (Fox 
et al., 2005; Steenbakkers et al., 2006) and is hypothesized to improve the outcome of 
therapy. However, CT and PET have vastly different resolution and noise properties. As a 
result, when CT images are combined with PET images, which have much poorer 
resolution, an additional source of uncertainty is introduced into the segmentation process. 
Thereby, the uncertainties in PET images are translated into uncertainty of the RTP 
contours. Here it is also worth mentioning that many studies that show large discrepancies 
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between PET-derived GTV and CT-derived GTV are performed without intravenous (IV) 
contrast. The routine use of IV contrast during PET/CT is expected to enable the clinician in 
further refining the GTV (Haerle et al., 2011).  

Ideally, drawing target contours with an accuracy of the order of 1 mm is desirable to match 
the precision of contemporary dose delivery. While this is achievable with CT and MRI, it is 
still a challenge for PET. Lastly, GTV is also derived based on clinical examination. Because 
all imaging modalities (PET, CT, or MRI) have limitations in defining mucosal involvement, 
the value of a physical examination by a radiation oncologist cannot be underestimated. 

Currently, due to the limited resolution of PET and its poorly known quantification 
accuracy, defining the target for radiation therapy by segmenting PET images is 
problematic. For this reason, it is important to understand and try to minimize the potential 
image degrading factors for each patient PET scan (Kang et al., 2009).  

3. What can PET provide to radiation treatment planning? 

PET reveals functional information about elevated cell metabolic activity, including 
proliferation or molecular processes that may help localize the most active or potentially 
radiation-resistant parts of a tumor as well as cancerous metabolic activity not visible in CT 
images (Erdi et al., 2002; Zanzonico, 2006). Fig. 1 shows an example of how 
fluorodeoxyglucose [FDG-]PET (red contour) can lead to alteration of a CT-defined GTV and 
the final planning treatment volume (PTV). This illustrates the substantial difference between 
the use of PET for diagnostic and RTP purposes. Whereas the goal of diagnostic PET is to 
detect the presence of a tumor by its abnormal uptake, the goal of using PET in RTP is to 
delineate cancerous from normal tissue with high accuracy. This poses new challenges for 
PET. The physical basis for these challenges is discussed in section 5 of this chapter. 

     
Fig. 1. CT (blue) and FDG-PET (red) gross tumor volume (GTV) and planning target volume 
(PTV, green) contours drawn around a lung lesion that is positioned close to the spinal cord. 

This discussion cannot be considered complete without addressing the various 
relationships between the actual tumor volume, its estimate as outlined by the physician 
(GTV), the established margins for both the clinical target volume (CTV) and PTV, the 
physician’s prescription, and the delivered dose (Mackie & Gregoire, 2010; Palta & 
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Mackie, 2011).Traditional imaging techniques, such as CT and x-ray, attempt to identify 
volume in a binary (tumor/no tumor) fashion via anatomical abnormalities because they 
do not supply any functional or metabolic information about the tumor cells or sub-
regions. As a result, most radiation therapy planning and delivery is based on irradiating 
a homogenous target and avoiding the surrounding tissue. These plans are designed to 
maximize the likelihood of tumor control while minimizing the likelihood of normal 
tissue complications constrained by the properties of radiation, by the dose delivery 
precision and by the tumor position uncertainties. The lack of in-vivo biological 
information about the tumor at voxel size scale requires assuming homogeneity of the 
target, which implies that the dose delivery should also be homogeneous in order to 
maximize the probability of tumor control. 

In this case, the uncertainty in subclinical disease and delivery is dealt with by extending 
margins from the estimated GTV to account for the subclinical disease (CTV) and delivery 
uncertainty (PTV). The beam penumbra leads to a gradual fall off on the edge and outside of 
these margins. However, the segmentation’s boundary, physician’s prescription, and 
treatment plans are based on a hard boundary. The dose is effectively delivered to a soft 
boundary where that dose may or may not fall off proportionally with the tumor cell 
density. Quantitatively accurate PET images using tracers that capture the appropriate 
tumor information have the potential to make the definition of these soft boundaries more 
explicit and thus, more conformal to the targeted tumor function. 

Currently there is an increased interest in using PET to define highly aggressive or 
radiation-resistant parts of the tumor and selectively treat them with a higher dose in 
order to increase tumor control probability (TCP) without increasing normal tissue 
complication probability (NTCP). This treatment approach is known as “dose painting” 
(Ling et al., 2000; Lee et al.,2008; Aerts et al.,2010; Petit et al., 2009; Bentzen & Gregoire, 
2011). Fig. 2 shows how PET has been used for dose painting by increasing the dose to 
physician-selected regions by using information from the fused PET/CT image as well as 
from other sources. 

 
Fig. 2. Example of “dose painting by regions” using PET/CT: CT scan with dose contours 
(left) and fused CT and FDG-PET (right). The inner contours, some of which encompass the 
PET avid regions seen, are irradiated to higher doses. 
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Due to the recently observed highly complex spatial distribution of various tissue properties 
probed with different tracers on a micro-environmental scale, it was suggested that 
treatments can be prescribed and delivered on a voxel-by-voxel basis with a technique 
known as “dose painting by numbers” (Petit et al., 2009; Bentzen & Gregoire, 2011). 
However, although PET has the potential to provide this type of information, there are 
difficulties, which need to be addressed for the implementation of such treatments. Among 
the main challenges are: the limited spatial resolution and signal-to-noise ratio of the 
imaging system; the dynamic nature of the tumor microenvironment, which can shift 
between planning and treatment;   the fact that there are few tracers that can reliably 
provide the needed biological information about the relevant molecular processes, and those 
that do exist require further validation; and the finite setup and delivery uncertainties in 
radiation therapy. 

4. PET uncertainties  

The accuracy of the PET segmentation task is limited by the uncertainties of the PET image. 
As described in a paper by Boelaard (Boellaard, 2009) the factors leading to uncertainty in 
PET can be divided into three groups: biological (e.g., glucose levels, inflammation, patient 
comfort, heterogeneity of tumor composition, perfusion, etc.), physical (e.g., positron 
annihilation physics, detector limitations, reconstruction method), and technical (e.g., 
activity specification and injection errors, residuals, injection time). The uncertainty 
contributed by each of these factors can be quite large —up to tens of percent—and these 
estimates are often approximate or reflect observed maximum deviations. As an example of 
one technical factor, Fig. 3 shows an illustration of the uncertainty in administered activity. 

 
Fig. 3. Deviation of injected activity from intended in percent as observed for 23 patients 
who were participants in different clinical protocols.  

Compared to the accuracy of dose delivery that is achievable in RT today (of the order of a 
few percent), further efforts are necessary to better quantify the uncertainty contributed by 
each PET image degrading factor. This is especially true if dose-painting by numbers is 
considered. In the next section, we address in more detail the physical factors. 
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5. Physical PET image degrading factors and their effect on segmentation 

The activity distribution in a PET image differs from the actual tracer activity distribution 
due to physical limitations of the PET scanners (Surti et al., 2004; Cherry et al., 2003) and the 
physical processes summarized in Table 1. In this section we briefly describe the effects of 
these processes and provide some insight on how each of them may affect the accuracy of 
PET segmentation even after correction. An illustration of some of the physical phenomena 
based on a realistic Monte Carlo simulation of a PET scan is presented in Fig. 4. 
 

No. Factor Brief Description 

1 PET Resolution 
Smearing of activity obtained with PET due to 
physical and detector phenomena (see Table 2) 

2 Photon Attenuation 
Loss of photons due to scatter or absorption in the 
patient 

3 Photon Scatter 
Deviation of photons from their original 
trajectory due to scatter (see Fig. 8)  

4 Random Coincidences 
Accidental coincidences from photons originating 
from the decay of different atomic nuclei 

5 Arc Effects  

For lines of response close to the periphery of a 
PET scanner, the effective detector face is smaller 
and the effective detector thickness is larger due 
to the curvature of the detector ring 

6 Electronics Dead Time 
Loss of counts due to overloading the electronic 
modules with too many events 

7 
 
Image Reconstruction 
 

Mathematical reconstruction of the PET data from 
a patient scan to produce three dimensional 
images of the activity distribution (this image is 
dependent on the reconstruction method and its 
parameters)  

8 Registration with the 
Attenuation Image 

Alignment between the PET and CT 
images in a PET/CT scan 

9 Motion 
Movement of the tumor and of neighboring 
tissues due to patient or organ motion  

Table 1. Summary of the main physical factors involved in the degradation of PET images 

In the above table are listed only the physical phenomena and factors affecting the PET 
image. It does not include the technical factors, which may cause inaccurate determination 
of the Standard Uptake Value (SUV) related to activity measurement and injection 
inaccuracies, and the biological uncertainty factors as listed by Boellaard (Boellaard, 2009), 
since they are not subject of the present chapter. 

www.intechopen.com



Rationale, Instrumental Accuracy, and Challenges of PET  
Quantification for Tumor Segmentation in Radiation Treatment Planning 33 

5.1 Resolution 

The factors affecting PET resolution (Cherry et al., 2003; Tomic et al., 2005) are summarized 
in Table 2. The finite resolution of PET scanners degrades quantification accuracy and can 
make small objects invisible if they are comparable or smaller than the Full Width at Half 
Maximum (FWHM) of the point spread function (PSF). It can also lead to loss of contrast for 
larger objects due to blurring. The effect is known as partial volume effect (PVE). Various 
PVE correction methods exist, which apply the correction either at a region or at a voxel 
level (Soret et al., 2007), during or post reconstruction. Most of the post-reconstruction 
correction methods lead to variance increase and often use anatomical images (CT or MRI) 
to control noise amplification. Since PET images are functional and therefore do not need to 
match the anatomical structures, PVE corrections which do not use anatomical images were 
also explored (Boussion et al., 2009; Kirov et al., 2008). Fig.5 shows PET images before and 
after applying one of these approaches. A straightforward and promising approach 
implemented by some vendors is to incorporate the point-spread function in the 
reconstruction process (Alessio & Kinahan, 2006). For isotopes with higher positron energy 
(e.g. 13N and 82Rb) the positron range contribution to the PET PSF is greater and its spatial 
variance becomes important (Alessio & MacDonald, 2008).  

 
Fig. 4. Annihilation photons originating from a FDG cylinder placed next to an air cavity 
(short yellow lines close to center) in a water cylinder (horizontal green lines) within a 
model of the GE Discovery LS PET scanner (Schmidtlein et al., 2006) as simulated by the 
GATE Monte Carlo code (Jan et al., 2004). Many photons are seen to scatter in the phantom 
and one even scatters in air, producing a delta electron (red). Some photons are absorbed in 
the phantom or scattered outside the solid angle of the scanner. A simulation result from 
this arrangement is shown in Fig.12. 
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No. Factor Brief Description 

1 Positron Range 
Distance the positron travels prior to annihilation, 
typically up to about 3 mm for the most often used 
radioactive isotopes  (Zanzonico, 2006) 

2 Detector Size and 
Distance to Detector 

PET spatial resolution usually cannot be less than half 
the size of the face of detector elements; increasing the 
diameter of the detector ring decreases its efficiency 
and increases the effect of photon non-colinearity 

3 Photon Non-colinearity 
Photons are not emitted exactly back-to-back since the 
positron is not fully stopped at the time of annihilation  

4 Block Effect 
Scattering of photons in neighboring detectors 
broadens resolution; also the block readout scheme or 
detector coding can affect resolution 

5 Depth of Interaction 
Photons may protrude from one detector without 
interaction and interact within a neighboring detector 

6 Under-sampling 
In addition to finite detector size, the angular sampling 
interval and selected voxel size also impose a limit on 
resolution 

7 Reconstruction 
Smoothing functions are applied to data during or after 
reconstruction to suppress noise in the data 

Table 2. Summary of the main factors affecting PET resolution 

 
Fig. 5. Effect of a post-reconstruction resolution correction(Kirov et al., 2008) as seen on a 
PET image before (left) and after (right) PVE correction. Improved contrast is observed 
especially for the small lesions, but there are modifications of the image related to the Gibbs 
phenomenon that require further investigation. 

The smearing of the tracer distribution due to the finite PET resolution affects segmentation. 
This is in addition to any biological effects, which may lead to variable gradients of the 
tumor cell density or metabolism on the tumor periphery and thereby also blur the tracer 
uptake distribution.  PVE related blurring leads to a size dependent variation of the optimal 
segmentation threshold.  This is addressed by using adaptive threshold methods where the 
threshold is a function of the size of the lesion, as was shown for spherical objects (Erdi et 
al., 1997; Lee, 2010).  The reconstruction parameters (number of iterations, filter types) affect 
the resolution and their effect on the segmentation threshold has been demonstrated by 
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several groups (Daisne et al., 2003; Ford et al., 2006). Some of the more advanced auto-
segmentation approaches combine a resolution correction step within the segmentation 
process using either deconvolution (Geets et al., 2007), or convolution (De Bernardi et al., 
2009) operations. 

5.2 Attenuation correction 

The attenuation correction (AC) (Zaidi & Hasegawa, 2003) may cause inaccuracies 
(Mawlawi et al., 2006) due to: 

i. incorrect attenuation caused by streaking CT artifacts in proximity to metallic implants  
ii. movement resulting in loss of registration between the CT and PET images  
iii. use of contrast media, which may cause an overestimation of the AC especially for 

older bilinear AC algorithms (Nehmeh et al., 2003)  
iv. truncation – for large or mis-positioned patients, part of the patient may be outside the 

CT Field of View (FOV). Unaccounted attenuation results in underestimation of the 
SUV and will produce streaking artifacts at the edge of the CT images – a rim of high 
activity at the edge of the CT FOV  

Dual energy CT attenuation correction methods have been proposed for reducing (iii) above 
(Kinahan et al., 2006; Rehfeld et al., 2008) 

Each of the mechanisms listed above can affect quantification within the images. As a result, 
they can alter the basic data that automated segmentation approaches  use for determining the 
probability for assigning a voxel to a certain class. The effects of streaking artifacts in CT due to 
metallic implants are difficult to quantify due to the gross mismatch between the estimated 
attenuation coefficients and the actual amount of attenuation in the data. This can cause an 
artificial increase of uptake in the reconstructed images in some regions and reduction in 
others. Because of the statistical nature of iterative reconstruction and of the irregularity of the 
CT artifacts, it is difficult to determine where these effects will be seen. Some vendor software 
smoothes or redefines regions in the images to remove these CT artifacts, which allows the 
reconstruction of more reliable PET images. In Fig.6. is shown an artifact that was caused by 
inaccurate attenuation correction due to CT streaking artifact. The non-AC corrected image 
indicates this artifact to be clearly visible just above the prosthesis. 

 
Fig. 6. PET attenuation correction (AC) artifact caused by hip prosthesis: CT streaking 
artifact (left), and PET with (center) and without (right) AC and scatter correction. 

PET and CT misregistration causes systematic shifts in the intensity within the PET images. 
This may cause similar systematic shifts in the boundaries of the various segmentation 
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schemes. These intensity shifts are especially noticeable in the lung, where small shifts in the 
patient’s position can shift bone into lung and vice versa. In general regions in the patient 
that were dense during the CT and then less dense during the PET acquisition will show 
artificially elevated uptake. This effect is demonstrated in Fig. 7. for Monte Carlo simulated 
PET images of a female thorax, for which the correct position of the AC map is known (Kang 
et al., 2009). In practice, most vendors use heavily smoothed CT images for AC in the 
reconstruction process, which smooth these effects but do not eliminate them especially for 
larger misalignments.  

In addition, scatter correction estimates rely on the attenuation map from the CT to estimate 
the contribution of the scatter events and can therefore be offset because of attenuation 
correction misalignment, as discussed in more detail in the next section.  

 
Fig. 7. Reconstructed images of true coincidences with an attenuation correction (AC) map, 
shifted by 15 mm in positive X (right; a) and Y (down; b) directions, show pronounced 
changes in activity distribution compared to correctly aligned AC (c). The activity is plotted 
in relative units. 

5.3 Scatter corrections 

Photon scatter can lead to erroneous lines of response (LOR, Fig. 8). In the top right inset 
one can see that photons Compton scattered up to 50 degrees will fall inside a coincident 
photon energy window above 375 keV. 3D PET provides much higher sensitivity, but also 
results in a higher fraction of scattered events compared to 2D PET. In Fig.9 is illustrated 
how scattered photons obtained from Monte Carlo simulation can contaminate the PET 
energy window. It should be noted that 2D PET systems are in the process of being phased 
out by the manufacturers, however, a large number of these scanners are currently in use. 

Various methods for evaluation of scatter exist (Bailey, 1998; Surti et al., 2004; Zaidi & 
Koral, 2004) and can be performed at different levels of accuracy: uniform, in which the 
number of scattered photons across the sinogram is approximated by a smooth function, or 
more detailed and based on the attenuation correction (AC) image. Historically scatter 
correction strategies included uniform sinogram tail fitting methods which are outdated and 
may perform well for uniform phantoms. Experimental approaches using dual or multiple 
energy windows to separate scatter events have also been investigated (Grootoonk et al., 
1996; Trebossen et al., 1993). 

Vendors currently use CT based scatter correction schemes and apply the corrections so that 
they are invisible for the user. Calculating the scatter from the AC image was initiated by 
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Olinger (Ollinger, 1996) and can be performed either analytically using the Klein-Nishina 
formula for single scattered photons, which is becoming the industry standard, or using 
Monte Carlo. The latter is a more accurate method, but it is very time consuming and 
currently different groups are working on improving the efficiency of these calculations.  

There are three main mechanisms through which scatter can affect the quantitative accuracy 
of the reconstructed images: i) inaccurate modeling of the scatter distribution; ii) inaccurate 
scatter fraction that is used for scaling the correction in some of the correction approaches; 
and iii) a shift of the location of the distribution.  

 
Fig. 8. An illustration of the perturbing role of scatter: erroneous LORs (top left and bottom); 
dependence of the energy of the Compton scattered annihilation photons on angle of scatter 
in degrees (top right); illustrations and example count rates in kilo-counts per second (kcps) 
and scatter fractions for 2D and 3D PET modes, respectively, for a water phantom with a 20-
cm diameter filled with 1 mCi 18F-FDG and placed in a Monte Carlo model of a clinical PET 
scanner (bottom).  

In practice, the largest contribution to the errors seen in scatter correction is due to an 
inaccurate estimate of the scatter fraction. The reason is that the scatter fraction is often 
obtained by using a tail fit of the projection data outside the patient, which can be affected 
by patient motion, pulse pileup, or spilled activity. This causes the entire distribution of the 
scatter counts to be over- or under- corrected. This uniform over- or under- correction in 
the projection data, can however be re-distributed unevenly by the attenuation and 
normalization corrections. 
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Fig. 9. Photon spectra of coincident photons reaching the detectors of the GE Discovery LS 
PET/CT scanner, after being emitted from a digital model of the NEMA-2 2001 scatter 
fraction phantom (20.3 mm diameter) ('NEMA NU 2-2001, Performance Measurements of 
Positron Emission Tomographs,' 2001), as simulated by the GATE Monte Carlo code. (Jan et 
al., 2004). Photons with energies below 300 keV are discarded since the coincidence energy 
windows typically range from 350 or 375 keV to 650 keV. The different spectra correspond 
to photons from all coincidences (solid line), photons from coincidence of which at least one 
photon was scattered in the phantom (long dash), spectra of only single-scattered photons 
(short dash), and spectra of only multiple-scattered photons (dotted line).   

In the case of extreme over correction the edges of the images will show zero counts and the 
resulting images have a “bleached out” appearance. This is most often seen when activity 
outside the patient’s body as determined from the CT mask is present. This alters the tail fit 
from which the scatter fraction is estimated. An example of this occurs when a patient 
begins a scan with arms up (CT arms up) and then part way through the scan lowers their 
arms. Alternatively, this can happen at high activities when pulse pile-up can lead to 
compounding the true counts so that they produce pulses above the energy window and to 
compounding scattered counts to fall inside that window. This may increase the tail of 
scattered events in the sinogram and lead to scatter overcorrection. This is most often seen 
near the bladder or heart in normal scans and sometimes with short half-life tracers due to 
their high initial activity. In either case, resulting images have a dramatic loss of contrast 
and appear bleached out. In the case of severe over correction, because of the loss of contrast 
and quantitative accuracy, the affects on segmentation can be dramatic. However, these 
images are often poor enough that no usable diagnostic information remains, and it is 
obvious that they are not useful for segmentation. 

Poor modeling of the scatter distribution can cause local regions of the projection data to be 
over or under-corrected. Discrepancies in the modeled scatter distribution are further scaled 
by the system sensitivity and attenuation corrections during image reconstruction. The net 
result is that the over-corrected regions will show reduced uptake and the under-corrected 
regions will show increased uptake. However, because the scatter distribution, even after 
being scaled is smoothly varying in projection space, poor modeling of the shape of the 
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distribution is generally difficult to identify and likely a small effect. The exception to this is 
when the entire distribution is improperly scaled due to a poor estimate of the scatter 
fraction. 

Although, the scatter distribution is a slowly varying function of position in projection 
space, the application of the attenuation correction scales these counts so that they 
concentrate in the more highly attenuated regions in the images (Fig.10). Because of this, in 
some regions of the thorax the apparent number of scattered photons in the images may 
approach the number of true coincidences (Kang et al., 2009). Therefore, an inaccuracy of the 

 
 

 
a) No SR correction b) With SR rejection 

 
c) Random counts only, no AC d) Scatter counts only, no AC 

 
e) Random counts only, with AC f) Scatter counts only, with AC 

 
 

Fig. 10. (a-f) Effect and distribution of scattered and random (SR) coincidences for the 
NEMA-2 Image Quality phantom, as obtained from a Monte Carlo simulated scan (Jan et al., 
2004; Schmidtlein et al., 2006), which allows exact separation of these events.  
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scatter correction of about 15% (Chang et al., 2009), can result in a similar quantification 
error in the PET signal for these regions. This can alter the tumor to background ratio, which 
can affect most segmentation methods.  

Finally, the scattered events can affect segmentation accuracy if the AC map is shifted with 
respect to the PET image due to patient movement between the CT and the subsequent PET 
scan. In addition to shifting the true counts image as was shown in Section 5.2 (Fig 7), this 
will cause a similar shift of the scatter counts image (Fig.10f). The under- and over- 
corrections will be most pronounced at the extreme edges of the patient along the axis of the 
shift. However, unless the shift is substantial, the overall effect may be small if the 
attenuation correction is smoothed. In general, this is a second order effect when compared 
to the effect of the attenuation correction misregistration on the true coincidences. 

5.4 Random corrections 

The number of random events increases with increasing the injected activity and may 
exceed the number of true events by few times. However, the random correction is very 
accurate. Usually it is obtained in one of the following three ways: (i) real time subtraction of 
the count rate from a delayed timing window for which no true coincidences are possible, 
(ii) off-line correction using a low-noise estimate of the random events rate obtained by 
smoothing the delayed sinogram; or (iii) random rates calculated from the single events rate 
in each detector. Direct subtraction of real time measured random coincidences increases 
noise in the corrected image. Brasse et al (Brasse et al., 2005) have shown that while 
smoothed delayed random estimates provide the lowest noise images, singles-based 
random estimates perform only marginally worse, but without the dead-time penalty and 
increased data bandwidth of the delayed counts approach. 

In analogy with the discussion in Section 5.3, although random counts are quite smooth and 
uniform, because of the attenuation correction, any uncorrected random counts will be 
pushed in the regions with high attenuation (Fig.10) and they may cause inaccuracies 
similar to these described for scattered photons. However due to much higher accuracy of 
the random events correction, these inaccuracies are expected to be smaller than those 
introduced by the inaccuracy of the scattered events correction. 

5.5 Normalization correction 

The normalization correction corrects for the “non-uniformity of detector response related to 
the geometry of the scanner” and for the difference in sensitivity between the different 
detector channels (Bailey, 1998). It is performed during routine re-calibration of the scanner 
by using a uniform activity cylinder or by a scanning rod source. The vendor of the scanner 
specifies the source and the correction procedures. For more information on different 
approaches for normalization correction see (Bailey, 1998) and (Badawi, 1999). Improper or 
out of date normalization files can add some artifacts to the reconstructed image. The most 
common artifacts are caused by unaccounted for change in the efficiency of some detectors. 
They can be seen in transverse slices as ring-like light and dark intensity patterns centered 
on the transverse axis. The effect on automated segmentation schemes is likely to be similar 
to that of CT streak artifacts but less intense. 
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5.6 Dead time 

Corrections are needed to account for count loses due to the electronics dead time. Since the 
losses are larger at high count rates, this can be done by repetitive scans of a decaying 
source. High count rates can also lead to mis-positioning and misclassifying events due to 
pulse pile-up in block detector systems (Badawi, 1999). Mis-positioning may cause loss of 
imaging accuracy if normalization is performed at count rates very different from these in 
clinical scans. Additionally, at high activities, pulse pile-up can cause true counts to be 
pushed out and scattered events pushed in the coincidence energy window (event 
misclassification). As discussed in Section 5.3, this may lead to an overestimation of the 
scatter correction and therefore can affect segmentation as described in section 5.3. 

5.7 Image reconstruction and noise 

PET image reconstruction is inherently noisy due to the Poisson processes that govern the 
detection and the interpretation of the emitted photons (e.g. decay, detection, energy 
spectrum).  While all modern PET scanners are supplied with and clinics use statistically 
based (iterative) image reconstruction, it is useful to discuss the resolution and noise 
properties of images generated with older, deterministic, image reconstruction methods 
first.  In deterministic image reconstruction methods, such as filtered back-projection, the 
back-projection process mixes the Poisson distributed projection data via the projection 
operator (often a uniformly spaced Radon transform) to generate images whose voxels have 
a Gaussian noise distribution (Alpert et al., 1982; Schmidtlein et al., 2010). The resulting 
images have better signal-to-noise ratios for high contrast objects than for low contrast 
objects (this is not true for OSEM, as explained below).  Additionally, the projection operator 
and related post-filtering tend to smooth the noise and create covariance between 
neighboring voxels.  Post filtering greatly increases the ability to interpret the images.  

The most popular iterative image reconstruction algorithm is Ordered Subsets 
Expectation Maximization (OSEM), which is a form of Maximum Likelihood Expectation 
Maximization (MLEM) with accelerated convergence achieved by iterating over smaller 
subsets of the data (typically an angular component of the sinogram) (Tarantola et al., 
2003). This iterative reconstruction seeks the most likely image given the data and a 
statistical model of the system. However, like all un-regularized maximum likelihood 
estimates, these reconstruction methods begin to fit the noise of the data if iterated too 
many times. Furthermore, the signal-to-noise (SNR) ratio over the image is more uniform, 
and because of that  hot objects will have higher noise compared to colder objects 
(Schmidtlein et al., 2010). As a result, the ability of iterative statistical reconstruction to 
produce increased contrast in low uptake regions is one of the primary reasons that these 
methods are superior to deterministic methods for diagnostic purposes. 

Overall, the noise of voxels in OSEM generated images is best described as log-normally or 
multi-variate normally distributed (Barrett et al., 1994) where the standard deviation is 
proportional to the voxel intensity. It follows then from the proportionality and the non-
uniform sampling that the  noise and resolution  properties in these images are position 
dependent (Fessler & Rogers, 1996). In addition, the covariance between neighboring 
voxels is increased, that adds complexity when evaluating the statistical properties of 

www.intechopen.com



 
Positron Emission Tomography – Current Clinical and Research Aspects 42

regions of interest (Buvat 2002; Schmidtlein et al, 2010). Following iterative reconstruction, 
most data is typically smoothed to reduce the effects of the data over-fitting. To avoid 
these effects and/or non-uniform spatial resolution, some penalized-likelihood 
(regularization) schemes have been developed (Fessler & Rogers, 1996), but are rarely 
used. Li (Li, 2011) most recently analyzed the noise properties of penalized-likelihood 
algorithms.  

Two new features that are now available with the latest generation of PET scanners are 
point spread function modeling (PSF) and time-of-flight (TOF) reconstruction. Both of these 
modifications to the reconstruction process alter the noise in the reconstructed images by 
altering the projection operator. PSF reconstruction uses the measured spatial resolution of 
the scanner to account for blurring (Table 2). Counter intuitively (deconvolution is usually a 
noise amplifying process) this process results in smoother images. This behavior can be 
explained by realizing that, with the addition of the PSF information into the system model, 
the over fitting normally seen in maximum likelihood models is constrained by the 
improved system model (mathematically this can also be seen through the propagation of 
the PSF kernel through the forward and back projectors (Rapisarda et al., 2010; Tong et al.,  
2010). In TOF reconstruction, the use of the timing information restricts lines-of-response 
(LOR) in the projection matrix to a smaller portion of the object. In addition this reduces 
both the amount of random and scattered events in the object. Hence, for TOF 
reconstruction the contrast can be improved, though the effect is most pronounced in 
patients with more scatter (Chang et al., 2011). 

Therefore resolution, contrast and signal-to-noise ratio are dependent on the reconstruction 
type and parameters. With few exceptions among the statistical auto-segmentation methods, 
e.g. (Yu, Caldwell, Mah, & Mozeg, 2009; Hatt et al., 2009), most other auto-segmentation 
methods are dependent on these characteristics of the images. 

5.8 Misregistration and motion 

Patient motion (e.g. breathing) can lead to loss of registration between CT and PET images. 
Due to the much longer PET acquisition time a PET image encompasses lesion positions 
over different breathing phases. This can affect the accuracy of the contours shown in Fig.1.  
Breathing motion artefacts in PET/CT images can be corrected for by binning PET data 
according to the breathing phase (e.g. in 10 bins), and then correct each of those data sets for 
attenuation using a phase-matched CT image set deduced from 4D-CT images.  This method 
is referred to as 4D PET/CT (Nehmeh et al., 2004). Another technique is the breath hold 
technique PET/CT acquisition, where both PET and CT images will be acquired at the same 
breathing amplitude, e.g. deep inspiration (Nehmeh et al., 2011). The basis of this technique 
as well as a description of the different motion tracking devices are summarized in a review 
(Nehmeh & Erdi, 2008). 

An interesting case of registered PET/CT images is shown in Fig.11. In this case, motion is 
suspected to be the reason for what seems to be activity in the air cavity. The behavior of the 
PET signal at tissue-air and tissue-lung interfaces was separately investigated and showed a 
steep PET signal drop for a cork or air cavity next to 18F activity (Fig.12) (Kirov et al., 2004). 
Therefore, motion is suspected to be the reason for what seems to be activity in the air cavity.  
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Fig. 11. A RTP contour displayed on registered CT (left) and PET (right) images from a FDG-
based PET/CT scan. PET signal appears to originate from ~ 1-cm wide air cavity inside the 
trachea, as seen with respect to the RTP contour.  

At 3 mm and beyond into the cavity the PET signal intensity drops to 30% below the peak 
value. Increased signal is observed on the opposing wall of the cavity due to positrons crossing 
the cavity (Fig. 12). The intensity of this peak is ~ 0.2% of that of the main peak. This was 
confirmed also by a Monte Carlo simulation, which gives the positron annihilation position.  

 
Fig. 12. Effect of the presence of air and lung cavities positioned next to activity on the PET 
image intensity. Relative PET signal profiles across FDG-air (solid line) and FDG-cork 
(dashed line) interfaces, as obtained by OSEM reconstruction of a 2D high sensitivity scan 
on the GE Discovery LS PET scanner. The profiles were summed over three neighboring 
slices at the center of the image to reduce noise. The positron annihilation position for this 
geometry, as obtained from a Monte Carlo simulation (Fig.4), is shown with the dotted line. 

5.9 Other artifacts 

In addition to the physical processes described above, other sources of error in PET images 
may be due to improper calibration, faulty detector blocks, or another malfunctioning of the 
scanner hardware as well as spilled activity on the cover of the detector rings, e.g. 
contamination from urinal splash. 
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5.10 Overall PET inaccuracy 

For simple phantoms, the overall quantification inaccuracy of PET scans has been measured. 
However, for more realistic cases in which the tracer distribution is a complex superposition 
of the perturbing effects of the various phenomena discussed above, PET accuracy is both 
unknown and not yet well investigated. In a Monte Carlo based investigation it was shown 
how different corrections and reconstruction algorithms can affect accuracy for non-uniform 
activity and attenuation varying in one direction (Kirov et al., 2007). The development of a 
new class of physical phantoms, capable of producing realistic activity distributions, similar 
to those observed in clinical scans (Kirov et al., 2011 ), will further aid in quantification of 
the overall PET inaccuracy.  

The artifacts discussed in the previous sections and summarized in Table 3, ultimately 
contribute to the inaccuracy of the segmentation boundary in the form of offsets and global 
inaccuracies as well as in uncertainty of the boundary location due to the noise of the voxel 
intensities. Here we present an example of a formalism that allows to explicitly represent the 
overall uncertainty of the position of the segmentation contour as a function of these 
inaccuracies and the uncertainty associated with a noise model based on a spherical tumor 
with constant uptake in an image reconstructed with OSEM. In this case, assuming that the 
uptake is increasing in a direction perpendicular to the segmentation boundary, the 
intensity of a given voxel at position r can be approximated as a truncated Taylor series 
expansion by 

ܺሺݎሻ ≅ ்ܺሺ்ܴሻ + ݎ݀ܺ݀ ฬ் ሺݎ − ்ܴሻ . (1)

Here ܺሺݎሻ is image intensity at a voxel at position, ݎ, and, ்ܴ is the position of the 
segmentation edge. It should be noted that this edge is a function of the segmentation 
method; however, once the segmentation is performed it is at a fixed position. By using a 
central difference approximation of the derivative, this can be rearranged to represent an 
estimate of the distance from the segmentation edge, ߜோ೅ = ݎ − ்ܴ as, 

ோ೅ߜ = ݎ − ்ܴ ≅ ݎ∆ʹ ሾܺ − ்ܺሿ்ܺା − ்ܺି , (2)

where, ܺ = ܺሺݎሻ, ்ܺ = ܺሺ்ܴሻ, ்ܺା = ܺሺ்ܴ + ି்ܺ ,ሻݎ∆ = ܺሺ்ܴ −  is the distance ݎ∆ ሻ, andݎ∆
between voxels. Now by assuming the independence of one voxel to another (i.e. ignoring 
the covariance), the uncertainty of the boundary at any particular position can be estimated 
by,  

ఋଶߪ ≅ ൬ ା்ܺݎ∆ʹ − ்ܺି ൰ଶ ൫ߪ௑ଶ + ௑೅ଶߪ ൯ + ቆ ሾܺݎ∆ʹ − ்ܺሿሾ்ܺା − ்ܺିሿଶ ቇଶ ൫ߪ௑೅శଶ + ௑೅షଶߪ ൯, (3)

where the first term represents the contribution of  uncertainty from the voxel intensities, 
and the second term represents the contribution due to the uncertainty from the gradient. 
Here, ߪఋଶ is the variance of the distance from the segmentation contour corresponding to 
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threshold T, and ߪ௑ଶ is the variance of voxel intensity. The above equation can be further 
simplified by substituting ்ܴା and ்ܴି for ݎ in (2), averaging these two results, and then by 
using the approximation, ଶሾ௑೅శି௑೅ሿ௑೅శି௑೅ష 	 ≈ ଶሾ௑೅ି௑೅షሿ௑೅శି௑೅ష 	 ≈ ͳ . 

Noting this and using the approximation that, for MLEM reconstructed images, the 
variances of the data are proportional to the square of the mean , ௑ଶߪ ≅  ,.ଶܺଶ , (Barrett et alߙ
1994; Schmidtlein et al., 2010), and evaluating ܺ at ்ܴ this can be rewritten to give the effect 
of noise on segmentation as, 

ఋଶߪ ≅ ൬ ߙʹ ା்ܺݎ∆ − ்ܺି ൰ଶ ൬ܺଶ் + Ͷ͵ ்ܺାଶ + Ͷ͵ ்ܺିଶ ൰ . (4)

The parameter, ߙ, can be estimated by finding a region of uniform uptake, such as the liver, 
through direct measurement. The uncertainties  introduced by the physical artifacts (Table 
3) and their corrections discussed in this chapter as well as other factors including biological 
uncertainty can in principle be incorporated into the parameters of Eq.(3) to quantitatively 
model the overall uncertainty of the segmentation, provided that their covariances are not 
significant. The above formalism ignores the covariance between neighboring voxels. In 
practice, the covariance can be included and estimated as shown by Buvat (Buvat, 2002), and 
the variance can be estimated by using a staggered checkerboard pattern (Schmidtlein et al., 
2010).  
 

Factor Brief Description of Effect on Segmentation 

PET Resolution 
Tracer distribution blurring and variation of segmentation 
threshold with object size  

Photon Attenuation 
AC artifacts can strongly affect relative voxel intensities and 
therefore, the position of the delineation contour 

Photon Scatter 
Although slowly varying  photon scatter can affect local 
intensities due to the effect of attenuation correction (Fig.10); the 
effects of severe over-correction can confound segmentation 

Random Coincidences Generally negligible effects due to accurate corrections 
Depth of Interaction Decreased spatial resolution and increased edge uncertainty 
Electronics Dead Time Can affect voxel intensities and also the scatter fraction estimate 

Image Reconstruction 
Parameters of iterative reconstruction (e.g., iteration number,  
post-reconstruction filters) modify the smoothness of an image 
to which segmentation methods are sensitive 

Registration with the 
Attenuation Image 

Attenuation artifacts and scatter artifacts 

Motion 
In addition to offsetting the lesion position, motion can cause 
loss of resolution, attenuation artifacts, and scatter artifacts  

Table 3. Contribution of the various physical PET artifacts to segmentation inaccuracy. 
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6. Challenges for PET based tumor segmentation 

According to Udupa et al, (Udupa et al., 2006) the image segmentation task is a process 
consisting of two stages: a high level process to recognize the rough region of interest (ROI) 
containing the tumor and a lower level process to delineate the tumor within that ROI. 
Although the delineation stage may be based mostly on low level information (the image 
intensities), it often requires high level information and interpretation including knowledge 
from areas which are not present nor reflected in the PET image, namely anatomy, 
physiology and pathology. This imposes the need for the segmentation to be performed by a 
physician expert or by a team of such experts (e.g. a nuclear medicine physician and a 
radiation oncologist) (MacManus & Hicks, 2008). At the same time manual only PET 
segmentation may lead to large inter– and intra– observer variations, due for example to 
different intensity windowing during display. This has prompted the development of PET 
auto-segmentation methods which are based on the intensities of the image voxels or on 
properties derived from these intensities. It has been shown that the use of such methods 
lead to reduction of inter-observer variability in delineation (van Baardwijk et al., 2007). 

A vast variety of PET auto-segmentation methods with different level of complexity have 
been developed in the last 15 years. Several recently published reviews present 
comprehensive list and classifications of these methods (Boudraa & Zaidi, 2006; Lee, 2010; 
Zaidi & El Naqa, 2010). A simpler classification can be based in part on the numerical 
simplicity of the approach and in part on the popularity of that approach. In order of 
increasing complexity (and decreasing popularity) the line-up is as follows: a) methods 
using a fixed threshold value in terms of intensity or standard uptake value (SUV), e.g. 
(Erdi et al., 1997; Mah et al., 2002; Paulino & Johnstone, 2004); b) adaptive threshold 
methodse.g. (Erdi et al., 1997; Black et al., 2004; Nehmeh et al., 2009; Nestle et al., 2005; 
Seuntjens et al., 2011) and  c) advanced segmentation methods, which include a large 
variety of more complex numerical approaches using gradient (Geets et al., 2007), 
statistical (Aristophanous et al., 2007; Hatt et al., 2009; Dewalle-Vignion et al., 2011), region 
growing (Day et al., 2009); deformable models (Li et al., 2008), texture analysis (Yu, et al., 
2009)  as well as other supervised or unsupervised learning methods (Zaidi, 2006; Zaidi & 
El Naqa, 2010; Belhassen & Zaidi, 2010). A similar classification is adopted by the 
educational task group on PET auto-segmentation within the American Association of 
Physicists in Medicine (AAPM TG211). 

The advantage of the fixed threshold methods is their simplicity, ease of implementation 
and use. Large discrepancies between some of these methods with respect to volumes 
visually determined by a physician were found for non-small lung cancer (NSLC) (Nestle et 
al., 2005) and for head and neck cancer (Greco et al., 2008). By design the adaptive threshold 
methods should provide better accuracy, however it is very important to adapt the 
parameters in each of these methods to the scanner and protocol used in each institution 
(Fig. 13) and to pay special attention to the phantom data sets used for this process (Lee, 
2010). It is known that the fixed and adaptive threshold methods are  challenged by  
irregularly  shaped non-uniform activity distributions (Black et al., 2004; Hatt, Cheze le Rest, 
van Baardwijk, et al., 2011). Finally, the advanced segmentation tools have been 
demonstrated to be more accurate and robust to non-uniform activity distributions, (Geets 
et al., 2007; Montgomery et al., 2007; Li et al., 2008; Hatt, Cheze Le Rest, Albarghach, et al., 
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2011), however their implementation, if not part of a commercial software may be 
significantly more demanding. Although the anatomical, metabolic and functional contours 
do not necessarily need to match, using images from different imaging imaging modalities 
(e.g. CT, PET, and MRI) is beneficial for tumor segmentation (El Naqa et al., 2007; Yu, 
Caldwell, Mah, & Mozeg, 2009; Yu et al., 2009). 

 
Fig. 13. PET segmentation thresholds obtained with different automatic segmentation 
algorithms that use a fixed threshold displayed on top of a profile of the activity across a 
real lesion: FPT – 40 % of peak activity, MTS- mean target SUV (Black et al., 2004) , BG – 
background-based method (Nestle et al., 2005). 

Despite these developments, the segmentation of PET images is still a challenge since the 
quantitative accuracy of PET with respect to the underlying histopathology is not well 
known. The quantitative accuracy of the PET image is affected by how well the selected 
tracer identifies the biological target and by the physical factors summarized in this chapter. 
In addition to using an accurate auto-segmentation tool by an experienced physician, 
resolution of each of these two problems for each patient is needed to claim reliable and 
accurate PET based tumor delineation. 
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8. Disclaimer 

The material in this chapter is not to be used as a substitute for medical advice, diagnosis or 
treatment of any health condition or problem. Radiation therapy and planning and PET/CT 
imaging should only be undertaken by qualified individuals. Your facility’s installation and 
set-up may differ from our experience and the ideas presented in this chapter are for 
discussion purposes only. You should not rely on the material presented here without 
independent evaluation and verification. Follow safety procedures and the instructions of 
medical equipment manufacturers. Medical physics treatment practices change frequently and 
therefore information contained in this chapter may be outdated, incomplete, or incorrect. 

9. References 

Aerts, H. J., Lambin, P., & Ruysscher, D. D. 2010, 'FDG for dose painting: a rational choice', 
Radiother Oncol, vol. 97, no. 2, pp. 163-4. 

Alessio, A. & MacDonald, L. 2008, 'Spatially Variant Positron Range Modeling Derived from 
CT for PET Image Reconstruction', IEEE Nucl. Sci. Symp. and Med. Imaging Conf., 

Dresden, pp 3637 - 3640. 
Alessio, A. M. & Kinahan, P. E. 2006, 'Improved quantitation for PET/CT image 

reconstruction with system modeling and anatomical priors', Med Phys, vol. 33, no. 
11, pp. 4095-103. 

Alpert, N. M., Chesler, D. A., Correia, J. A., Ackerman, R. H., Chang, J. Y., Finklestein, S., 
Davis, S. M., Brownell, G. L., & Taveras, J. M. 1982, 'Estimation of the local 
statistical noise in emission computed tomography', IEEE Trans Med Imaging, vol. 1, 
no. 2, pp. 142-6. 

Aristophanous, M., Penney, B. C., Martel, M. K., & Pelizzari, C. A. 2007, 'A Gaussian mixture 
model for definition of lung tumor volumes in positron emission tomography', Med 

Phys, vol. 34, no. 11, pp. 4223-35. 
Badawi, R. 1999, Introduction to PET Physics (web-page tutorial),  
 <http://depts.washington.edu/nucmed/IRL/pet_intro/intro_src/section6.html>. 
Bailey, D. L. 1998, 'Quantitative procedures in 3D PET', in The Theory and Practice of 3D PET, 

Developments in Nuclear Medicine (P H Cox ed.), ed. B. Bendriem and D.W. 
Townsend, Vol. 32, Kluwer Academic Publishers, Rdrecht / Boston /London. 

Barrett, H. H., Wilson, D. W., & Tsui, B. M. 1994, 'Noise properties of the EM algorithm: I. 
Theory', Phys Med Biol, vol. 39, no. 5, pp. 833-46. 

Belhassen, S. & Zaidi, H. 2010, 'A novel fuzzy C-means algorithm for unsupervised 
heterogeneous tumor quantification in PET', Med Phys, vol. 37, no. 3, pp. 1309-24. 

Bentzen, S. M. & Gregoire, V. 2011, 'Molecular imaging-based dose painting: a novel 
paradigm for radiation therapy prescription', Semin Radiat Oncol, vol. 21, no. 2, pp. 
101-10. 

Black, Q. C., Grills, I. S., Kestin, L. L., Wong, C. Y., Wong, J. W., Martinez, A. A., & Yan, D. 
2004, 'Defining a radiotherapy target with positron emission tomography', Int J 

Radiat Oncol Biol Phys, vol. 60, no. 4, pp. 1272-82. 
Boellaard, R. 2009, 'Standards for PET image acquisition and quantitative data analysis', J 

Nucl Med, vol. 50 Suppl 1, pp. 11S-20S. 

www.intechopen.com



Rationale, Instrumental Accuracy, and Challenges of PET  
Quantification for Tumor Segmentation in Radiation Treatment Planning 49 

Boudraa, A. O. & Zaidi, H. 2006, 'Image Segmentation Techniques In Nuclear Medicine 
Imaging', in H. Zaidi (ed), Quantitative analysis in Nuclear Medicine Imaging, 
Springer, Singapore, pp. 308-57.  

Boussion, N., Cheze Le Rest, C., Hatt, M., & Visvikis, D. 2009, 'Incorporation of wavelet-
based denoising in iterative deconvolution for partial volume correction in whole-
body PET imaging', Eur J Nucl Med Mol Imaging, vol. 36, no. 7, pp. 1064-75. 

Brasse, D., Kinahan, P. E., Lartizien, C., Comtat, C., Casey, M., & Michel, C. 2005, 'Correction 
methods for random coincidences in fully 3D whole-body PET: impact on data and 
image quality', J Nucl Med, vol. 46, no. 5, pp. 859-67. 

Buvat, I. 2002, 'A non-parametric bootstrap approach for analysing the statistical properties 
of SPECT and PET images', Phys Med Biol, vol. 47, no. 10, pp. 1761-75. 

Chang, T., Chang, G., Clark, J., & Mawlawi, O. 2009, ' Accuracy of Scatter and Attenuation 
Correction in PET imaging.', Abstract presented at the 2009 AAPM annual meeting, 

Med. Phys., vol. 36, no. 6, p. 2469. 
Chang, T., Clark, J., & Mawlawi, O. 2011, 'Evaluation of Image quality on a Time-of-Flight 

PET/CT scanner', Abstract presented at the 2011 joint AAPM/COMP meeting, Med. 

Phys., vol. 38, p. 3787. 
Cherry, S. R., Sorensen, J. A., & Phelps, M. E. 2003, Physics in Nuclear Medicine, Saunders, 

Elsevier. 
Daisne, J. F., Sibomana, M., Bol, A., Doumont, T., Lonneux, M., & Gregoire, V. 2003, 'Tri-

dimensional automatic segmentation of PET volumes based on measured source-
to-background ratios: influence of reconstruction algorithms', Radiother Oncol, vol. 
69, no. 3, pp. 247-50. 

Day, E., Betler, J., Parda, D., Reitz, B., Kirichenko, A., Mohammadi, S., & Miften, M. 2009, 'A 
region growing method for tumor volume segmentation on PET images for rectal 
and anal cancer patients', Med Phys, vol. 36, no. 10, pp. 4349-58. 

De Bernardi, E., Faggiano, E., Zito, F., Gerundini, P., & Baselli, G. 2009, 'Lesion 
quantification in oncological positron emission tomography: a maximum likelihood 
partial volume correction strategy', Med Phys, vol. 36, no. 7, pp. 3040-9. 

Dewalle-Vignion, A. S., Betrouni, N., Lopes, R., Huglo, D., Stute, S., & Vermandel, M. 2011, 
'A new method for volume segmentation of PET images, based on possibility 
theory', IEEE Trans Med Imaging, vol. 30, no. 2, pp. 409-23. 

El Naqa, I., Yang, D., Apte, A., Khullar, D., Mutic, S., Zheng, J., Bradley, J. D., Grigsby, P., & 
Deasy, J. O. 2007, 'Concurrent multimodality image segmentation by active contours 
for radiotherapy treatment planning', Med Phys, vol. 34, no. 12, pp. 4738-49. 

Erdi, Y. E., Mawlawi, O., Larson, S. M., Imbriaco, M., Yeung, H., Finn, R., & Humm, J. L. 
1997, 'Segmentation of lung lesion volume by adaptive positron emission 
tomography image thresholding', Cancer, vol. 80, no. 12 Suppl, pp. 2505-9. 

Erdi, Y. E., Rosenzweig, K., Erdi, A. K., Macapinlac, H. A., Hu, Y. C., Braban, L. E., Humm, J. 
L., Squire, O. D., Chui, C. S., Larson, S. M., & Yorke, E. D. 2002, 'Radiotherapy 
treatment planning for patients with non-small cell lung cancer using positron 
emission tomography (PET)', Radiother Oncol, vol. 62, no. 1, pp. 51-60. 

www.intechopen.com



 
Positron Emission Tomography – Current Clinical and Research Aspects 50

Fessler, J. A. & Rogers, W. L. 1996, 'Spatial resolution properties of penalized-likelihood 
image reconstruction: space-invariant tomographs', IEEE Trans Image Process, vol. 5, 
no. 9, pp. 1346-58. 

Ford, E. C., Kinahan, P. E., Hanlon, L., Alessio, A., Rajendran, J., Schwartz, D. L., & Phillips, 
M. 2006, 'Tumor delineation using PET in head and neck cancers: threshold 
contouring and lesion volumes', Med Phys, vol. 33, no. 11, pp. 4280-8. 

Fox, J. L., Rengan, R., O'Meara, W., Yorke, E., Erdi, Y., Nehmeh, S., Leibel, S. A., & 
Rosenzweig, K. E. 2005, 'Does registration of PET and planning CT images decrease 
interobserver and intraobserver variation in delineating tumor volumes for non-
small-cell lung cancer?', Int J Radiat Oncol Biol Phys, vol. 62, no. 1, pp. 70-5. 

Gambhir, S. S., Czernin, J., Schwimmer, J., Silverman, D. H., Coleman, R. E., & Phelps, M. E. 
2001, 'A tabulated summary of the FDG PET literature', J Nucl Med, vol. 42, no. 5 
Suppl, pp. 1S-93S. 

Geets, X., Lee, J. A., Bol, A., Lonneux, M., & Gregoire, V. 2007, 'A gradient-based method for 
segmenting FDG-PET images: methodology and validation', Eur J Nucl Med Mol Im, 
vol. 34, no. 9, pp. 1427-38. 

Greco, C., Nehmeh, S. A., Schoder, H., Gonen, M., Raphael, B., Stambuk, H. E., Humm, J. L., 
Larson, S. M., & Lee, N. Y. 2008, 'Evaluation of different methods of 18F-FDG-PET 
target volume delineation in the radiotherapy of head and neck cancer', Am J Clin 

Oncol, vol. 31, no. 5, pp. 439-45. 
Gregoire, V. & Chiti, A. 2011, 'Molecular imaging in radiotherapy planning for head and 

neck tumors', J Nucl Med, vol. 52, no. 3, pp. 331-4. 
Gregoire, V., Haustermans, K., Geets, X., Roels, S., & Lonneux, M. 2007, 'PET-based 

treatment planning in radiotherapy: a new standard?', J Nucl Med, vol. 48 Suppl 1, 
pp. 68S-77S. 

Grootoonk S, Spinks T J, Sashin D, Spyrou N M and Jones T 1996 , ‘Correction for scatter in 
3D brain PET using a dual energy window method’ Phys Med Biol 41 2757-74 

Hatt, M., Cheze Le Rest, C., Albarghach, N., Pradier, O., & Visvikis, D. 2011, 'PET functional 
volume delineation: a robustness and repeatability study', Eur J Nucl Med Mol 

Imaging, vol. 38, no. 4, pp. 663-72. 
Hatt, M., Cheze le Rest, C., Turzo, A., Roux, C., & Visvikis, D. 2009, 'A fuzzy locally adaptive 

Bayesian segmentation approach for volume determination in PET', IEEE Trans 

Med Imaging, vol. 28, no. 6, pp. 881-93. 
Hatt, M., Cheze le Rest, C., van Baardwijk, A., Lambin, P., Pradier, O., & Visvikis, D. 2011, 

'Impact of tumor size and tracer uptake heterogeneity in 18F-FDG PET and CT 
Non-Small Cell Lung Cancer tumor delineation', Journal of Nuclear Medicine, vol. 52, 
no. 11, pp. 1690-7. 

Haerle, S. K., Strobel, K., Ahmad, N., Soltermann, A., Schmid, D. T., & Stoeckli, S. J. 2011, 
'Contrast-enhanced (1)F-FDG-PET/CT for the assessment of necrotic lymph node 
metastases', Head Neck, vol. 33, no. 3, pp. 324-9. 

Jan, S., Santin, G., Strul, D., Staelens, S., Assie, K., Autret, D., Avner, S., Barbier, R., Bardies, 
M., Bloomfield, P. M., Brasse, D., Breton, V., Bruyndonckx, P., Buvat, I., 
Chatziioannou, A. F., Choi, Y., Chung, Y. H., Comtat, C., Donnarieix, D., Ferrer, L., 
Glick, S. J., Groiselle, C. J., Guez, D., Honore, P. F., Kerhoas-Cavata, S., Kirov, A. S., 

www.intechopen.com



Rationale, Instrumental Accuracy, and Challenges of PET  
Quantification for Tumor Segmentation in Radiation Treatment Planning 51 

Kohli, V., Koole, M., Krieguer, M., van der Laan, D. J., Lamare, F., Largeron, G., 
Lartizien, C., Lazaro, D., Maas, M. C., Maigne, L., Mayet, F., Melot, F., Merheb, C., 
Pennacchio, E., Perez, J., Pietrzyk, U., Rannou, F. R., Rey, M., Schaart, D. R., 
Schmidtlein, C. R., Simon, L., Song, T. Y., Vieira, J. M., Visvikis, D., Van de Walle, 
R., Wieers, E., & Morel, C. 2004, 'GATE: a simulation toolkit for PET and SPECT', 
Phys Med Biol, vol. 49, no. 19, pp. 4543-61. 

Kang, H., Schmidtlein C R, Mitev K , Gerganov G , Madzhunkov Y, Humm J L, Amols H I , 
& Kirov, A. S. 2009, 'Monte Carlo based evaluation of 3D PET quantification 
inaccuracy for the lung', Abstract presented at the 51 Annual Meeting of the AAPM, 

Anaheim, CA , Med. Phys., vol. 36, p. 2426. 
Kinahan, P. E., Alessio, A. M., & Fessler, J. A. 2006, 'Dual energy CT attenuation correction 

methods for quantitative assessment of response to cancer therapy with PET/CT 
imaging', Technol Cancer Res Treat, vol. 5, no. 4, pp. 319-27. 

Kirov, A. S., Caravelli, G., Palm Å, Chui C, & LoSasso T 2006, 'Pencil Beam Approach for 
Correcting the Energy Dependence Artifact in Film Dosimetry for IMRT 
verification', Med. Phys., vol. 33, no. 10, pp. 3690-9. 

Kirov, A. S., Danford, C., Schmidtlein, C. R., Yorke, E., Humm, J. L., & Amols, H. I. 2007, 
'PET Quantification Inaccuracy of Non-Uniform Tracer Distributions for Radiation 
Therapy', IEEE Nuclear Science Symposium and Medical Imaging Conference Record, 

Proceedings paper M13-5, p. 2838-2841.  
Kirov, A. S., Piao, J. Z., & Schmidtlein, C. R. 2008, 'Partial volume effect correction in PET 

using regularized iterative deconvolution with variance control based on local 
topology', Phys Med Biol, vol. 53, no. 10, pp. 2577-91. 

Kirov, A. S., Schmidtlein C R, Bidaut L M, Nehmeh S A, Yorke E, Humm J L, Larson S, Ling 
C C, & Amols, H. I. 2004, 'Experimental and Monte Carlo Characterization of 
Positron Range Artifacts in PET Near Body Cavities ', Abstract presented  at the 2004 

Annual Meeting of the AAPM, Med. Phys., vol. 31, p. 179. 
Kirov, A. S., Sculley, E., Schmidtlein, C. R., Siman, W., Kandel, B., Zdenek, R., Schwar, R., 

Ayzenberg, G., Yorke, E., Schöder, H., Humm, J. L., & Amols, H. 2011 'A New 
Phantom Allowing Realistic Non-Uniform Activity Distributions for PET 
Quantification’, Abstract presented at the 2011 Joint AAPM/COMP meeting, Med. 

Phys., vol. 38, no. 6, p. 3387. 
Lee, J. A. 2010, 'Segmentation of positron emission tomography images: some 

recommendations for target delineation in radiation oncology', Radiother Oncol, vol. 
96, no. 3, pp. 302-7. 

Lee, N. Y., Mechalakos, J. G., Nehmeh, S., Lin, Z., Squire, O. D., Cai, S., Chan, K., Zanzonico, 
P. B., Greco, C., Ling, C. C., Humm, J. L., & Schoder, H. 2008, 'Fluorine-18-labeled 
fluoromisonidazole positron emission and computed tomography-guided 
intensity-modulated radiotherapy for head and neck cancer: a feasibility study', Int 

J Radiat Oncol Biol Phys, vol. 70, no. 1, pp. 2-13. 
Li, H., Thorstad, W. L., Biehl, K. J., Laforest, R., Su, Y., Shoghi, K. I., Donnelly, E. D., Low, D. 

A., & Lu, W. 2008, 'A novel PET tumor delineation method based on adaptive region-
growing and dual-front active contours', Med Phys, vol. 35, no. 8, pp. 3711-21. 

www.intechopen.com



 
Positron Emission Tomography – Current Clinical and Research Aspects 52

Li, Y. 2011, 'Noise propagation for iterative penalized-likelihood image reconstruction based 
on Fisher information', Phys Med Biol, vol. 56, no. 4, pp. 1083-103. 

Ling, C. C., Humm, J., Larson, S., Amols, H., Fuks, Z., Leibel, S., & Koutcher, J. A. 2000, 
'Towards multidimensional radiotherapy (MD-CRT): biological imaging and 
biological conformality', Int J Radiat Oncol Biol Phys, vol. 47, no. 3, pp. 551-60. 

LoSasso, T. 2003, 'Quality Assurance of IMRT', A Practical Guide To Intensity-Modulated 

Radiation Therapy, Medical Physics Publishing, Madison, Wisconsin.  
Mackie, T. R. & Gregoire, V. 2010, International Commission on Radiation Units and 

Measurements (ICRU) Report 83. Prescribing, Recording, and Reporting Photon-Beam 

Intensity-Modulated Radiation Therapy (IMRT), Vol. 10(1), Oxford, UK. 
MacManus, M. P. & Hicks, R. J. 2008, 'Where do we draw the line? Contouring tumors on 

positron emission tomography/computed tomography', Int J Radiat Oncol Biol Phys, 
vol. 71, no. 1, pp. 2-4. 

Mah, K., Caldwell, C. B., Ung, Y. C., Danjoux, C. E., Balogh, J. M., Ganguli, S. N., Ehrlich, L. E., 
& Tirona, R. 2002, 'The impact of (18)FDG-PET on target and critical organs in CT-
based treatment planning of patients with poorly defined non-small-cell lung 
carcinoma: a prospective study', Int J Radiat Oncol Biol Phys, vol. 52, no. 2, pp. 339-50. 

Mawlawi, O., Pan, T., & Macapinlac, H. A. 2006, 'PET/CT imaging techniques, 
considerations, and artifacts', J Thorac Imaging, vol. 21, no. 2, pp. 99-110. 

Montgomery, D. W., Amira, A., & Zaidi, H. 2007, 'Fully automated segmentation of 
oncological PET volumes using a combined multiscale and statistical model', Med 

Phys, vol. 34, no. 2, pp. 722-36. 
Nehmeh, S. A., El-Zeftawy, H., Greco, C., Schwartz, J., Erdi, Y. E., Kirov, A., Schmidtlein, C. 

R., Gyau, A. B., Larson, S. M., & Humm, J. L. 2009, 'An iterative technique to 
segment PET lesions using a Monte Carlo based mathematical model', Med Phys, 
vol. 36, no. 10, pp. 4803-9. 

Nehmeh, S. A. & Erdi, Y. E. 2008, 'Respiratory motion in positron emission 
tomography/computed tomography: a review', Semin Nucl Med, vol. 38, no. 3, pp. 
167-76. 

Nehmeh, S. A., Erdi, Y. E., Kalaigian, H., Kolbert, K. S., Pan, T., Yeung, H., Squire, O., Sinha, 
A., Larson, S. M., & Humm, J. L. 2003, 'Correction for oral contrast artifacts in CT 
attenuation-corrected PET images obtained by combined PET/CT', J Nucl Med, vol. 
44, no. 12, pp. 1940-4. 

Nehmeh, S. A., Erdi, Y. E., Pan, T., Pevsner, A., Rosenzweig, K. E., Yorke, E., Mageras, G. S., 
Schoder, H., Vernon, P., Squire, O., Mostafavi, H., Larson, S. M., & Humm, J. L. 
2004, 'Four-dimensional (4D) PET/CT imaging of the thorax', Med Phys, vol. 31, no. 
12, pp. 3179-86. 

Nehmeh, S. A., Haj-Ali, A. A., Qing, C., Stearns, C., Kalaigian, H., Kohlmyer, S., Schoder, H., 
Ho, A. Y., Larson, S. M., & Humm, J. L. 2011, 'A novel respiratory tracking system 
for smart-gated PET acquisition', Med Phys, vol. 38, no. 1, pp. 531-8. 

'NEMA NU 2-2001, Performance Measurements of Positron Emission Tomographs' 2001, 
National Electrical Manufacturers Association, Rosslyn, VA. 

Nestle, U., Kremp, S., Schaefer-Schuler, A., Sebastian-Welsch, C., Hellwig, D., Rube, C., & 
Kirsch, C. M. 2005, 'Comparison of different methods for delineation of 18F-FDG 

www.intechopen.com



Rationale, Instrumental Accuracy, and Challenges of PET  
Quantification for Tumor Segmentation in Radiation Treatment Planning 53 

PET-positive tissue for target volume definition in radiotherapy of patients with 
non-Small cell lung cancer', J Nucl Med, vol. 46, no. 8, pp. 1342-8. 

Nestle, U., Weber, W., Hentschel, M., & Grosu, A. L. 2009, 'Biological imaging in radiation 
therapy: role of positron emission tomography', Phys Med Biol, vol. 54, no. 1,  
pp. R1-25. 

Ollinger, J. M. 1996, 'Model-based scatter correction for fully 3D PET', Phys Med Biol, vol. 41, 
no. 1, pp. 153-76. 

Palta, J. R. & Mackie, T. R. 2011, 'Uncertainties in External Beam Radiation Therapy', 
Medical Physics Publishing, Madison, Wisconsin.  

Paulino, A. C. & Johnstone, P. A. 2004, 'FDG-PET in radiotherapy treatment planning: 
Pandora's box?', Int J Radiat Oncol Biol Phys, vol. 59, no. 1, pp. 4-5. 

Petit, S. F., Dekker, A. L., Seigneuric, R., Murrer, L., van Riel, N. A., Nordsmark, M., 
Overgaard, J., Lambin, P., & Wouters, B. G. 2009, 'Intra-voxel heterogeneity 
influences the dose prescription for dose-painting with radiotherapy: a modelling 
study', Phys Med Biol, vol. 54, no. 7, pp. 2179-96. 

'A Practical Guide To Intensity-Modulated Radiation Therapy' 2003, Medical Physics 
Publishing, Madison, Wisconsin.  

Rapisarda, E., Bettinardi, V., Thielemans, K., & Gilardi, M. C. 2010, 'Image-based point 
spread function implementation in a fully 3D OSEM reconstruction algorithm for 
PET', Phys Med Biol, vol. 55, no. 14, pp. 4131-51. 

Rehfeld, N. S., Heismann, B. J., Kupferschlager, J., Aschoff, P., Christ, G., Pfannenberg, A. C., 
& Pichler, B. J. 2008, 'Single and dual energy attenuation correction in PET/CT in 
the presence of iodine based contrast agents', Med Phys, vol. 35, no. 5, pp. 1959-69. 

Schmidtlein, C. R., Beattie, B. J., Bailey, D. L., Akhurst, T. J., Wang, W., Gonen, M., Kirov, A. S., 
& Humm, J. L. 2010, 'Using an external gating signal to estimate noise in PET with an 
emphasis on tracer avid tumors', Phys Med Biol, vol. 55, no. 20, pp. 6299-326. 

Schmidtlein, C. R., Kirov, A. S., Nehmeh, S. A., Erdi, Y. E., Humm, J. L., Amols, H. I., Bidaut, 
L. M., Ganin, A., Stearns, C. W., McDaniel, D. L., & Hamacher, K. A. 2006, 
'Validation of GATE Monte Carlo simulations of the GE Advance/Discovery LS 
PET scanners', Med Phys, vol. 33, no. 1, pp. 198-208. 

Schöder, H. & Ong, S. C. 2008, 'Fundamentals of molecular imaging: rationale and 
applications with relevance for radiation oncology', Semin Nucl Med, vol. 38, no. 2, 
pp. 119-28. 

Seuntjens, J., Mohammed, H., Devic, S., Tomic, N., Aldelaijan, S., Deblois, F., J. Seuntjens, S. 
Lehnert, & Faria, S. 2011, 'Uptake Volume Histograms: A Novel Avenue Towards 
Delineation of Biological Target Volumes (BTV) in Radiotherapy', Med. Phys., vol. 
38, no. 6, p. 3786. 

Soret, M., Bacharach, S. L., & Buvat, I. 2007, 'Partial-volume effect in PET tumor imaging', J 
Nucl Med, vol. 48, no. 6, pp. 932-45. 

Steenbakkers, R. J., Duppen, J. C., Fitton, I., Deurloo, K. E., Zijp, L. J., Comans, E. F., 
Uitterhoeve, A. L., Rodrigus, P. T., Kramer, G. W., Bussink, J., De Jaeger, K., 
Belderbos, J. S., Nowak, P. J., van Herk, M., & Rasch, C. R. 2006, 'Reduction of 
observer variation using matched CT-PET for lung cancer delineation: a three-
dimensional analysis', Int J Radiat Oncol Biol Phys, vol. 64, no. 2, pp. 435-48. 

www.intechopen.com



 
Positron Emission Tomography – Current Clinical and Research Aspects 54

Surti, S., Karp, J. S., & Kinahan, P. E. 2004, 'PET instrumentation', Radiol Clin North Am, vol. 
42, no. 6, pp. 1003-16. 

Tarantola, G., Zito, F., & Gerundini, P. 2003, 'PET instrumentation and reconstruction 
algorithms in whole-body applications', J Nucl Med, vol. 44, no. 5, pp. 756-69. 

Tomic, N., Thompson, C. J., & Casey, M. E. 2005, 'Investigation of the “Block Effect” on 
spatial resolution in PET detectors', IEEE Trans. Nucl. Sci., vol. 52, no. 3, pp. 599-605. 

Tong, S., Alessio, A. M., & Kinahan, P. E. 2010, 'Noise and signal properties in PSF-based 
fully 3D PET image reconstruction: an experimental evaluation', Phys Med Biol, vol. 
55, no. 5, pp. 1453-73. 

Trebossen R, Bendriem B, Frouin V and Syrota A 1993 Spectral-Analysis of Scatter 
Distributions in Dual-Energy Acquisition Mode on a Positron Tomograph Journal of 

Nuclear Medicine 34 P186-P 
Udupa, J. K., Leblanc, V. R., Zhuge, Y., Imielinska, C., Schmidt, H., Currie, L. M., Hirsch, B. 

E., & Woodburn, J. 2006, 'A framework for evaluating image segmentation 
algorithms', Comput Med Imaging Graph, vol. 30, no. 2, pp. 75-87. 

van Baardwijk, A., Bosmans, G., Boersma, L., Buijsen, J., Wanders, S., Hochstenbag, M., van 
Suylen, R. J., Dekker, A., Dehing-Oberije, C., Houben, R., Bentzen, S. M., van 
Kroonenburgh, M., Lambin, P., & De Ruysscher, D. 2007, 'PET-CT-based auto-
contouring in non-small-cell lung cancer correlates with pathology and reduces 
interobserver variability in the delineation of the primary tumor and involved 
nodal volumes', Int J Radiat Oncol Biol Phys, vol. 68, no. 3, pp. 771-8. 

Yu, H., Caldwell, C., Mah, K., & Mozeg, D. 2009, 'Coregistered FDG PET/CT-based textural 
characterization of head and neck cancer for radiation treatment planning', IEEE 

Trans Med Imaging, vol. 28, no. 3, pp. 374-83. 
Yu, H., Caldwell, C., Mah, K., Poon, I., Balogh, J., MacKenzie, R., Khaouam, N., & Tirona, R. 

2009, 'Automated radiation targeting in head-and-neck cancer using region-based 
texture analysis of PET and CT images', Int J Radiat Oncol Biol Phys, vol. 75, no. 2, 
pp. 618-25. 

Zaidi, H. 2001, 'Scatter modelling and correction strategies in fully 3-D PET', Nucl Med 

Commun, vol. 22, no. 11, pp. 1181-4. 
Zaidi, H. & El Naqa, I. 2010, 'PET-guided delineation of radiation therapy treatment 

volumes: a survey of image segmentation techniques', Eur J Nucl Med Mol Imaging, 
vol. 37, no. 11, pp. 2165-87. 

Zaidi, H. & Hasegawa, B. 2003, 'Determination of the attenuation map in emission 
tomography', J Nucl Med, vol. 44, no. 2, pp. 291-315. 

Zaidi, H. & Koral, K. F. 2004, 'Scatter modelling and compensation in emission tomography', 
Eur J Nucl Med Mol Imaging, vol. 31, no. 5, pp. 761-82. 

Zanzonico, P. 2006, 'PET-based biological imaging for radiation therapy treatment planning', 
Crit Rev Eukaryot Gene Expr, vol. 16, no. 1, pp. 61-101. 

www.intechopen.com



Positron Emission Tomography - Current Clinical and Research

Aspects

Edited by Dr. Chia-Hung Hsieh

ISBN 978-953-307-824-3

Hard cover, 336 pages

Publisher InTech

Published online 08, February, 2012

Published in print edition February, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book's stated purpose is to provide a discussion of the technical basis and clinical applications of positron

emission tomography (PET), as well as their recent progress in nuclear medicine. It also summarizes current

literature about research and clinical science in PET. The book is divided into two broad sections: basic

science and clinical science. The basic science section examines PET imaging processing, kinetic modeling,

free software, and radiopharmaceuticals. The clinical science section demonstrates various clinical

applications and diagnoses. The text is intended not only for scientists, but also for all clinicians seeking recent

information regarding PET.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Assen S. Kirov, C. Ross Schmidtlein, Hyejoo Kang and Nancy Lee (2012). Rationale, Instrumental Accuracy,

and Challenges of PET Quantification for Tumor Segmentation in Radiation Treatment Planning, Positron

Emission Tomography - Current Clinical and Research Aspects, Dr. Chia-Hung Hsieh (Ed.), ISBN: 978-953-

307-824-3, InTech, Available from: http://www.intechopen.com/books/positron-emission-tomography-current-

clinical-and-research-aspects/rationale-instrumental-accuracy-and-challenges-of-pet-quantification-for-tumor-

segmentation-in-radia



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


