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1. Introduction 

The numerical abundance of many species sharing the same ecosystem very different levels 
of the organism and are in constant change, depending on many factors. Due to the 
heterogeneous strucspeciese of the life cycles of organisms and abiotic resources in the 
environment based on census population densities derived from overdispersion (variance is 
higher than means in Poisson distribution) (Cox, 1983; Cameron and Trivedi, 1998) and a 
large number of zero values (zero-inflated data) is observed (Yeşilova et al, 2011). In such a 
case, zero-inflated Poisson (ZIP) regression model is a appropriate approach for analyzing a 
dependent variable having excess zero observations (Lambert, 1992; Böhning, 1998; Böhning 
et al, 1999; Yau and Lee, 2001; Lee et al, 2001; Khoshgoftaar et al, 2005; Yeşilova et al, 2010).  
Zero-inflation is also likely in data sets, excess zero observations. In such cases, a zero-
inflated negative binominal (ZINB) regression model is an alternative method (Ridout et al, 
2001; Yau, 2001; Cheung, 2002; Jansakul, 2005; Long and Frese, 2006; Hilbe, 2007; Yeşilova et 
al, 2009; Yeşilova et al, 2010). Morever,  The Poisson hurdle model and negative binomial 
hurdle model (Rose and Martin, 2006; Long and Frese, 2006; Hilbe, 2007; Yeşilova et al, 2009; 
Yeşilova et al, 2010), and zero-inflated generalized Poisson (ZIGP) model (Consul, 1989, 
Consul and Famoye, 1992; Czado et al., 2007) are widely used in the analysis of zero-inflated 
data.   
In this part, the analysis of data with many zeros for Notonecta viridis Delcourt (Heteroptera: 
Notonectidae) and Chironomidae species (Diptera) were carried out by means of using the 
models of Poisson Regression (PR), negative binomial (NB) regression, zero-inflated Poisson 
(ZIP) regression, zero-inflated negative binomial (ZINB) regression and negative binomial 
hurdle (NBH) model.  

Samplings 

The study was based on periodical samplings of the coastal band of Van Lake, conducted 
between July-September 2005 and May-September 2006. Samples were taken at totally 
twenty sampling points as streams entrance (6 points), settlement coastlines (7 points) and 
naspeciesal coastlines (7 points). Samples were taken according to Hansen et al. (2000). The 
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invertebrates were collected with a standard sweep net (30 cm width, 1 mm mesh) 
(Southwood, 1978; Rosenberg, 1997; Hansen et. al, 2000; Yeşilova et al., 2011). 
Notonectid identification was made by Dmitry A. Gapon (Zoological Institute RAS, 
Universitetskaya nab., 1, St. Petersburg, Russia).  

2. Methods 

2.1 Poisson regression 

The logarithm of  mean of Poisson distribution (  ) is supposed to be a linear function of 

independent variables ( ix ) is, 

    '
log i ix     

Poisson Regression Model can be written as  

 Pr( / , ) exp( ) !iy
i i i iiiy x y    ,yi=0,1,… (1) 

In equation 1, iy  denotes dependent variable having Poisson distribution. Likelihood 

function for PR model is, (Böhning, 1998) 

    ' ', exp ln !
1

n
y y yLL x x xi i ii i i

i
   

  
  


  (2)    

In equation 2,   are unknown parameters.   can be estimated by maximizing log 
likelihood function according to ML (Khoshgoftaar et al, 2005;Yau, 2006). 

2.2 Negative binomial regression 

NB regression model is, 
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In equation 3,   is a arbitrary parameter and indicates overdispersion level. Log likelihood 
function for NB regression model is (Hilbe, 2007; Yau, 2006), 
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2.3 Zero inflated poisson regression 

ZIP regression is [13],  

 
(1 )exp( ), 0
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In equation (4), i represents the possibility of extra zeros’ existence. Log likelihood function 

for ZIP model is (Yau, 2006), 
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 (5)     

 .I , given in equation (5) is the indicator function for the specified event. Then i and 

i parameters can be obtained following link functions,  

  log B    (6)  

and  

 log
1

G
 


    
    (7) 

In equations 6 and 7, B(nxp) and G(nxq) are covariate matrixes.    and   are respectively 
unknown parameter vectors with px1 and qx1 dimension (Yau, 2006).  

2.4 Zero inflated negative binomial regression 

ZINB regression model is [18], 
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In equation (8), ( 0)   indicates an overdispersion parameter. Log likelihood function for 

ZINB model is (Yau, 2006),  
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 .I , given in equation 9 is the indicator function for the specified event. The model 

descripted by Lambert (1992) can be given as, 

  log X    and   log
1

G
 


    
  

Here, X(nxp) and G(nxq) covariate matrixes,   and  are respectively unknown parameter 

vectors with px1 and qx1 dimension. Maximum likelihood estimations for  ,  and   can 
be obtained by using EM algorithm.  

2.5 Negative binomial hurdle model 

Log-likelihood for negative binomial hurdle model (Hilbe, 2007), 

        ln 0 ln 1 0 lnL f f P j         (10) 

In equation (10),  0f indicates the probability of the binary part and  p j  indicates the 
probability of positive count. The probability of zero for logit model is, 

       0 0; 1 1 exp 1f P y x xb       
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and 
1-  0f  is, 

     exp 1 1 exp 1xb xb   

The log likelihood function for both parts of negative binomial Hurdle Model is, 

 L=cond    0,ln 1 1 exp 1 ,y xb    

      ln exp 1 1 exp 1xb xb   

      * ln exp 1 expy xb xb    

     ln 1 exp ln 1xb y        

    ln 1 ln 1y        

     ln 1 1 exp 1xb       

2.6 Model selection 

Akaiki Information Criteria (AIC) is goodness of criteria used for model selection. AIC, 

 2 2AIC LL r     (11) 

In equations, LL indicates log likelihood, r indicates parameter number and n indicates 
sample size.   

3. Results 

In this study, R statistical software program was used. Insect densities were included to the 
model as dependent variable. Besides years, months, species and station are included as 
independent variables to the model. The 66 (20.63%) of the 320 dependent variable were 
zero valued. The distribution of the insect densities was skewed to right because of excess 
zeros.      
 

Model AIC 
PR 57846.00  
ZIP 47791.71 
NB  3176.40    
ZINB  2819.800 

PH 47791.71  
NBH 2803.206 

 

Table 1. Model selection criteria for PR, NB, ZIP, ZINB, PH and NBH. 
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In PR analyses, deviance and Pearson Chi-square goodness of statistics higher than one 
(831.417 and 650.213, respectively). Thus, goodness of statistics represents that there is an 
overdispersion in insect densities. AIC model selection criteria for the models of PR, NB, 
ZIP, ZINB, PH, and NBH were given in Table 1. The model with the smallest AIC was NBH 
regression.   
Maximum likelihood (ML) parameter estimations and standard errors for PR were given in 
Table 2. 
 
 

 Estimate Std. Error z value Pr(>|z|) e  
(Intercept) 6.179499 0.054470 113.449 <2e-16 *** 482.992 
year 0.118847 0.013069 9.094 <2e-16 *** 1.125244 
month 0.175298 0.005066 34.604 <2e-16 *** 1.191246 
Station -0.081353 0.001124 -72.357 <2e-16 *** 0.921917 
species -1.943212 0.018356 - 105.863 <2e-16 *** 0.1432735 

*p<0.05, **p<0.01, ***p<0.001 

Table 2. Parameter estimations and standard errors for Poisson regression.  

ML parameter estimations and standard errors for negative binomial regression were given 
in Table 2. 
 
 

 Estimate Std. Error z value Pr(>|z|) e  
(Intercept) 8.52318 0.99249 8.588 4.16e-16 *** 5029.119 
year -0.15794 0.24824 -0.636 0.525 0.853901 
month -0.08205 0.09168 -0.895 0.372 0.9212259 
Station -0.08031 0.01949 -4.121 4.82e-05 *** 0.9228302 
species -1.92518 0.22452 -8.575 4.56e-16 *** 0.1458495 

*p<0.05, **p<0.01, ***p<0.001 

Table 3. Parameter estimations and standard errors for negative binomial regression.  

ML parameter estimations and standard errors for zero-inflated Poisson regression both 
count model and logit model were given in Table 4 and Table 5, respectively.  
 
 

 Estimate Std. Error z value Pr(>|z|) e  
(Intercept) 6.017745 0.056073 107.32 <2e-16 *** 410.6515 
year 0.271101 0.013047 20.78 <2e-16 *** 1.311408 
month 0.162333 0.005271 30.80 <2e-16 *** 1.176252 
station -0.046859 0.001122 -41.76 <2e-16 *** 0.954222 
species -2.002676 0.018382 -108.94 <2e-16 *** 0.1349736 

*p<0.05, **p<0.01, ***p<0.001 

 

Table 4. Parameter estimations and standard errors for ZIP count model. 
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 Estimate Std. Error z value Pr(>|z|) e  
(Intercept) -3.92991 1.33906 -2.935 0.00334 ** 0.01964544 
year 0.50266 0.33705 1.491 0.13587 1.653113 
month 0.04405 0.11930 0.369 0.71197 1.045035 
station 0.17250 0.02994 5.761 8.36e-09 *** 1.188272 
species -0.44380 0.30013 -1.479 0.13923 0.6415937 

*p<0.05, **p<0.01, ***p<0.001 

Table 5. Parameter estimations and standard errors for ZIP logit model.  

ML parameter estimations and standard errors for zero-inflated negative binomial 
regression both count model and logit model were given in Table 6 and Table 7, 
respectively.  
 

 Estimate Std. Error z value Pr(>|z|) e  
(Intercept) 9.47226 1.04897 9.030 < 2e-16 *** 12994.22 
year -0.13254 0.20609 -0.643 0.520132 0.8758679 
month -0.16895 0.09356 -1.806 0.070957 0.8445511 
station -0.06233 0.01806 -3.452 0.000557 *** 0.9395728 
species -2.21006 0.20855 -10.597 < 2e-16 *** 0.1096941 

*p<0.05, **p<0.01, ***p<0.001 

Table 6. Parameter estimations and standard errors for ZINB count model. 

 

 Estimate Std. Error z value Pr(>|z|) e  
(Intercept) -1.21687 4.61145 -0.264 0.791872 0.2961557 
year 1.64137 0.88380 1.857 0.063288 5.162237 
month -0.23791 0.22636 -1.051 0.293246 0.7882736 
station 0.18398 0.05485 3.354 0.000795 *** 1.201992 
species -3.69139 3.88424 -0.950 0.341934 0.02493732 

*p<0.05, **p<0.01, ***p<0.001 

Table 7. Parameter estimations and standard errors for ZINB logit model. 

ML parameter estimations and standard errors for Poisson hurdle both count model and 
logit model were given in Table 8 and Table 9, respectively.  
 

 Estimate Std. Error z value Pr(>|z|) e  
(Intercept) 6.017745 0.056073 107.32 <2e-16 *** 410.6515 
year 0.271101 0.013047 20.78 <2e-16 *** 1.311408 
month 0.162333 0.005271 30.80 <2e-16 *** 1.176252 
station -0.046859 0.001122 -41.76 <2e-16 *** 0.954222 
species -2.002676 0.018382 -108.94 <2e-16 *** 0.1349736 

*p<0.05, **p<0.01, ***p<0.001 

Table 8. Parameter estimations and standard errors for PH count model. 
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ML parameter estimations and standard errors obtained for the NBH count model was 
given in Table 8. While stations and species were significant on the insect densities, the 
effect of years and the effect of months were not significant on the insect densities.  
ML parameter estimations and standard errors obtained for the NBH logit model was given 
in Table 9. The effects months, years and species were not significant on the insect densities. 
However, the effect of station was significant on the insect densities. 
 

 Estimate Std. Error z value Pr(>|z|) e  
(Intercept) 3.92991 1.33906 2.935 0.00334 ** 50.9024 
year -0.50266 0.33705 -1.491 0.13587 0.6049194 
month -0.04405 0.11930 -0.369 0.71197 0.9569061 
station 0.17250 0.02994 -5.761 8.36e-09 *** 1.188272 
species 0.44380 0.30013 1.479 0.13923 1.558619 

*p<0.05, **p<0.01, ***p<0.001 

Table 9. Parameter estimations and standard errors for PH logit model. 

ML parameter estimations and standard errors obtained for negative binomial hurdle both 
count model and logit model were given in Table 10 and Table 11, respectively.  
ML parameter estimations and standard errors obtained for the NBH count model was 
given in Table 10. While stations and species were significant on the insect densities, the 
effect of years and the effect of months were not significant on the insect densities.  
 

 Estimate Std. Error z value Pr(>|z|) e  
(Intercept)   9.43372     1.26292    7.470  8.03e-14 *** 12502.95 
year          -0.19128     0.24381   -0.785    0.4327 0.8259013 
month          -0.17020     0.11124   -1.530    0.1260     0.8434961 
station  -0.04587     0.02096   -2.188    0.0287 *   0.9551661 
species         -2.33333     0.25071   -9.307   < 2e-16 *** 0.0969723 

*p<0.05, **p<0.01, ***p<0.001 

Table 10. Parameter estimations and standard errors for NBH count model. 

ML parameter estimations and standard errors obtained for the NBH logit model was given 
in Table 11. The effects months, years and species were not significant on the insect 
densities. However, the effect of station was significant on the insect densities. 
 
 

 Estimate Std. Error z value Pr(>|z|) e  
(Intercept)   3.92991     1.33906    2.935   0.00334 ** 50.9024 
year          -0.50266     0.33705   -1.491   0.13587     0.6049194 
month          -0.04405     0.11930   -0.369   0.71197     0.9569061 
station  -0.17250     0.02994   -5.761  8.36e-09 *** 0.8415583 
species          0.44380     0.30013    1.479   0.13923     1.558619 

*p<0.05, **p<0.01, ***p<0.001 

Table 11. Parameter estimations and standard errors for NBH logit model. 

www.intechopen.com



 
Zero-Inflated Regression Methods for Insecticides 

 

267 

Average insect density observed in the year 2005 has shown 17% decrease in reference to the 
year 2006. Insect densities observed at monthly sampling ranges depending on water 
temperaspeciese were increased with the rise of temperaspeciese, but specifically after the 
month of July such intensity was decreased at the rate of 16% ( -0.19128     ~ 0.8434961e ) 
towards the month of September within the both years. It has been determined that insect 
intensities observed at different stations have shown differentiation at the rate of 5%. 
Chironomid larvae which are included in prey of notonectidae fed by different sources of 
food at aquatic environment have been found at rather lower density  in reference to 
notonectid density. However, it is hard to guess that such decrement has been formed under 
the impact of notonectidae.  Nevertheless notonectidae do not depend on a single host, their 
sources of food are rather wide range of variety.  Small arthropods on the water surface, 
small crustaceans living in water, larvae of aquatic insects, snails, small fish or larvae of frog 
are among their preys (Bruce et al., 1990).   
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