
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



17 

Sex Steroids in Insects and the  
Role of the Endosymbiont Wolbachia:  

A New Perspective 

Ilaria Negri1 and Marco Pellecchia2 

1DIVAPRA - University of Turin 
2Koiné - Consulenze Ambientali S.n.c. Parma 

Italy 

1. Introduction  

Sex steroids play a pivotal role in sex differentiation and sex reversal in several species of 

vertebrates, both with genotypic and environmental sex determination systems (Nakamura, 

2010; Norris & Carr, 2006). Steroidal sex hormones can be found naturally in both sexes of 

vertebrates, although the proportions of hormones may differ between males and females. 

Feminization of males or masculinization of females can be induced by altering the levels of 

‘female’ and ‘male’ hormones, respectively. Estrogens for example have a feminizing effect 

on gonadal differentiation in many species of fish, amphibians, reptiles, and birds (Guiguen 

et al., 2010; Nakamura, 2009, 2010). In humans, androgen receptor defect disorder may lead 

to gonadal feminization and, in its complete form, the syndrome causes sex reversal of 

genotypical (XY) males and a female phenotype (Oakes et al., 2008).  

Vertebrate-like sex steroids occur in several groups of invertebrates including nematodes, 

arthropods, echinoderms, but full information on the precise action and function of sex 

steroids is still missing (Janer & Porte, 2007). Some intriguing data have been provided in 

mollusks, where an involvement of steroids in gender determination and sexual 

differentiation of the brain, and even in a “superfeminization syndrome”, has been 

demonstrated (Oehlmann et al., 2006; Wang & Croll, 2004). 

In insects the existence of sex hormones is under debate. Indeed sex differentiation is 

generally thought to be a strictly genetic process, in which each cell decides its own sexual 

fate autonomously, based on its sex chromosome constitution. Therefore, differentiation of 

primary and secondary sexual characteristics should be exclusively under the control of the 

genotype of each single cell (Schütt & Nöthiger, 2000; Steinmann-Zwicky et al., 1989). This 

hypothesis was born studying insect gynandromorphs, i.e. aberrant specimens with an 

intermediate feature between female and male (according to the Greek roots gyne = female, 

aner = male, morphe = form; Fig. 1). In the fruit fly Drosophila melanogaster, gynandromorphs 

may arise when one embryonic nucleus loses an X chromosome and the insects possess a 

mixture of XX (i.e. female) and X0 (i.e. male) tissues. According to Gilbert (2000), because 

there are no sex hormones in insects to modulate such events, each cell makes its own sexual 

“decision”. 
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Fig. 1. Gynandromorphs, i.e. aberrant specimens made up of both female and male cells, are 

common in insects. On the left: Polyommatus bellargus (Lepidoptera, Lycaenidae) mosaic 

gynandromorph in which male (blue) and female (brown) features are mixed (Courtesy of 

R. Villa, Bologna, Italy). On the right: D. melanogaster bilateral gynandromorph in which one 

side is female and the other male (Modified from Griffiths et al., (2000). An introduction to 

genetic analysis, 7th edition, New York: W. H. Freeman).  

However recent data demonstrate that in insects as in vertebrates, non-autonomous (= 

hormonal) sex determination controls sex dimorphism (DeFalco et al., 2008). In the germ 

line of the D. melanogaster embryo there is evidence for both autonomous and non-

autonomous regulation of sexual identity, but non-autonomous signals from the soma are 

dominant, and germ cells establish their sexual identity as they contact the somatic gonad 

(Casper & Van Doren, 2009; DeFalco et al., 2008). In fact, XX (i.e. female) and XY or X0 (i.e. 

male) germ cells are not irrevocably committed to female or male identity, respectively 

(Waterbury et al., 2000).  

According to these results, the presence of signals coordinating the development of a 

gender-specific phenotype (i.e. sex hormones) is conceivable. In his fine review, De Loof 

(2006) suggests that the loss of an X chromosome in Drosophila embryonic cells possibly 

makes the mutant cells react differently to a given hormonal environment and/or signals 

from their neighbours than XX cells. 

Finally, it is noteworthy to note that, in addition to gynandromorphs, intersexes specimens 

do exist in insects. As previously discussed, gynandromorphism is the simultaneous 

presence within the same organism of genotypically and phenotypically male and female 

tissues rather than of masculinized or feminized tissues, as is the case with intersexes. 

Indeed intersexes are characterised by phenotypically male and female regions, but 

genetically homogeneous pattern (Laugé, 1985; White, 1973). In 1934, for example, Whiting 

and colleagues described individuals of the hymenopteran Habrobracon juglandis which were 

found to be genetically male but with feminized genitalia. 

How can the existence of intersexes be explained, if each cell makes its own sexual decision?   

2. Ecdysteroids: A role as sex hormones in insects? 

De Loof (2006) proposes that ecdysteroids are the best candidates for a role as sex steroids in 

insects since, for example, they are involved in the appearance of sex dimorphic structures; 

are produced by the gonads; and induce different gender-specific physiological effects. 

Indeed the role of ecdysteroids is not restricted to moulting but they have a much wider 

effect on the insect biology, both at the larval and adult stages. 
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Insect moulting is induced by the steroid hormone 20-hydroxyecdysone (20E). Ecdysone 

pulses in the insects’ hemolymph trigger moulting, and the presence or absence of juvenile 

hormone determines whether moults will lead to another larval stage or, through 

metamorphosis, to a pupa and an adult form (Gilbert at al., 2002). The 20E precursor is 

secreted by the prothoracic glands after their stimulation by the brain prothoracicotropic 

hormone (PTTH) whose release is governed by both intrinsic factors, like the body size, and 

extrinsic factors, like photoperiod and temperature (Gilbert at al., 2002). 

Dietary cholesterol is then converted to 20E thanks to many hydroxylation reactions 

catalysed by cytochrome P450 enzymes of microsomal and/or mitochondrial origin, the 

final step being characterised by the action of a P450 monooxygenase that hydroxylates the 

ecdysone s.s. (E) at carbon 20. 

Cytochrome P450s are encoded by the Halloween genes family, first characterised in D. 

melanogaster and then described in lots of insect species (Christiaens et al., 2010; Rewitz et al., 

2007). 

Once 20E is biosynthesized, it binds the heterodimeric nuclear receptor EcR/USP composed 

of EcR (Ecdysone Receptor) and USP (Ultraspiracle, homologous to the vertebrate retinoid-X 

receptor), which shares many commonalities with the human thyroid hormone receptor. 

Then, the EcR/USP complex activates the transcriptional processes underlying the cellular 

and morphogenetic moulting cascade events (Gilbert et al., 2002). In D. melanogaster, pulses 

of 20E throughout fly development have proved to regulate cell proliferation, 

differentiation, and programmed cell death in a highly controlled manner. During 

metamorphosis, for example, ecdysone is a primary regulator of apoptosis in larval tissues 

such as salivary glands, midgut and neural tissues which are destroyed or remodelled into 

an “adult” form (Mottier et al., 2004; Tsuzuki et al., 2001). The activation and execution of 

ecdysis (i.e. shedding of the old cuticle during embryonic and larval development) are 

controlled by a series of peptide hormones produced by Inka cells and neuropeptides within 

the central nervous system, whose expression is again under ecdysteroid control (Zitnan et 

al., 2007). 

In adults the role played by ecdysteroids is much less explored: for example, it has been 

demonstrated that they control several important aspects of reproduction, including ovarian 

development and oogenesis (Carney & Bender, 2001; Raikhel et al., 2005; Riddifort, 1993; 

Swevers & Iatrou, 2003). In many insect species 20E is also directly involved in the 

regulation of vitellogenin biosynthesis by the female fat body, a metabolic tissue 

functionally analogous to the vertebrate liver, and it can also induce vitellogenin synthesis 

in males (Bownes et al., 1983; Bownes et al., 1996; Huybrechts & De Loof, 1977; Zhu et al., 

2007). The 20E has also been shown to affect sexual behaviour, having a role in courtship 

initiation by males, and promoting male–male sexual attraction (Ganter et al., 2007). 

De Loof (2006, 2008) suggests that ecdysteroids already served as sex hormones long before 

they acquired a function in moulting. In particular, 20E secreted by the follicle cells of the 

insect ovary could be the physiological equivalent of vertebrate estrogens, while E - the 

precursor of the active moulting hormone 20E - should act as a distinct hormone, being the 

physiological equivalent of the vertebrate testosterone (De Loof & Huybrechts, 1998; De 

Loof, 2006). Indeed, by using Drosophila larval organ culture Beckstead and colleagues (2007) 

demonstrate that E can regulate a set of genes that are distinct from those controlled by 20E, 

thus confirming that it may exert different biological (=hormonal) functions from 20E. 
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3. Ecdysteroids and Wolbachia: Different roles and different manipulations 

Wolbachia are members of the order Rickettsiales (α-Proteobacteria), a diverse group of 
symbionts with parasitic, mutualistic or commensal lifestyle. The genus Wolbachia is known 
to infect exclusively invertebrates, namely nematodes and arthropods, being widely spread 
in insects where it is estimated to occur in up to 66% of the species (Hilgenboecker et al., 
2008; Werren et al., 2008). Wolbachia bacteria, and specifically the species W. pipientis, are 
transmitted through the germ line from the mother to the offspring and, occasionally, 
between individuals of phylogenetically distant species (Stouthamer et al., 1999). The trans-
ovarial inheritance of Wolbachia in insects seems to be mediated by bacteryocite-like cells 
(cells specialized for harbouring endosymbionts) in the ovary of the infected mother, which 
degenerate thus ensuring transmission of bacteria to germ line cells and then to the progeny 
(Sacchi et al., 2010). 
Phylogenetic studies based on 16S ribosomal sequences reveal that Wolbachia bacteria are 
divided into eight different supergroups: two are commonly found in Nematoda (mainly in 
filarial but also in non filarial species), whereas the other six supergroups are found 
primarily in Arthropoda, including insects, mites, spiders, scorpions and isopod crustaceans 
(Werren et al., 2008).  
A unique feature shared by Arthropoda and Nematoda is the ability to replace the 
exoskeleton, a process known as ecdysis. This shared characteristic is thought to reflect a 
common ancestry, giving rise to the clade Ecdysozoa (Ewer, 2005a). Although the 
exoskeleton composition varies among ecdysozoans, the process of moulting itself is similar 
within the clade: the epidermis undergoes cell division producing a larger surface and 
separates from the exoskeleton. Then the epidermis secretes a new exoskeleton that remains 
soft until the residues of the old cuticle are shed at ecdysis. The new cuticle then expands 
and hardens (Ewer, 2005a, 2005b). 
As previously discussed, arthropod moulting is induced by the steroid hormone 20E and a 

role for ecdysteroids in nematode ecdysis has also been observed. In filarial nematodes, 

moulting seems to be regulated by ecdysteroid-like hormones: in Dirofilaria immitis, for 

example, moulting from the third to the fourth larval stage can be induced in vitro by the 

20E of insects (Wabrick et al., 1993), and orthologs of insects nuclear receptors involved in 

ecdysone response have been found (Crossgrove et al., 2008; Ghedin et al., 2007; Tzertzinis 

et al., 2010). In Caenorhabditis elegans these nuclear receptors are also involved in the 

regulation of sex determination and reproductive development (Höss & Weltje, 2007; 

Motola et al., 2006) and, interestingly, ecdysone has also a role in the fertility and 

microfilaria release in filarial worms (Barker et al., 1991). 

In nematodes, Wolbachia is an obligate symbiont, as worms depend on bacteria for survival. 
Antibiotic curing of Wolbachia “infection” inhibits nematode fertility and development, 
suggesting a specific role for the symbiont in host oogenesis, embryogenesis and moulting 
(Arumugam et al., 2008; Casiraghi et al., 2002; Frank et al., 2010). 
In arthropods the bacterium is able to manipulate the host reproduction in order to increase 
the number of infected females. The effects of the Wolbachia infection include cytoplasmic 
incompatibility, that is an aberrant or considerably reduced offspring production if 
uninfected females mate with infected males, or if the parents are infected with different 
Wolbachia strains; thelytokous parthenogenesis, in which infected virgin females produce 
daughters; feminization, in which infected genetic males develop as females; and male-
killing, in which infected males die (Stouthamer et al., 1999; Werren et al., 2008). 
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Such phenotypic variability is thought to be linked to high genome plasticity of insect-borne 
Wolbachia, since all the sequenced genomes of the symbiont contain high number of 
repetitive sequences, including IS (insertion sequences) elements and prophage-like 
sequences (Iturbe-Ormaetxe & O’Neill, 2007; Wu et al., 2004). 
According to us, except for cytoplasmic incompatibility that is a secondary effect of the 
infection, the phenotypic effects observed in arthropods might not be so different, but 
strictly interconnected, and possibly all ascribable to feminization. 
Indeed, male killing could be just an unsuccessful “attempt” at feminization by Wolbachia. 

Male-killing is known in several insect species, where males die during embryogenesis or 

development. Insight into the mechanism of male killing comes from the moths Ostrinia 

scapulalis and O. furnacalis, where Wolbachia kills genetic males during the larval 

development. Intriguingly, a partial Wolbachia curing leads to the appearance of 

lepidopteran intersexes having exclusively male genotype (Kageyama & Traut, 2003). 

Accordingly, a partial feminization of genetic males does occur, while a complete 

feminization is incompatible with the survival of the male genotype (Kageyama & Traut, 

2003; Sakamoto et al., 2007).  

Regarding the parthenogenesis induction by Wolbachia, this phenomenon has been 

demonstrated in several haplodiploid species of mites, hymenopterans and thrips, where 

males naturally develop (parthenogenetically) from unfertilized haploid eggs and females 

from fertilized diploid eggs (Arakaki et al., 2001; Stouthamer et al., 1990; Weeks & Breeuwer, 

2001). In Wolbachia-infected species, unfertilized eggs are subjected to a “diploidy” 

restoration, giving origin to (infected) females. Recently, Giorgini and colleagues (2009) 

observed that in the (haplodiploid) wasp Encarsia hispida, the symbiont Cardinium (which 

belongs to the only bacterial group known to cause similar reproductive manipulations of 

Wolbachia) doesn’t induce, as expected, thelytokous parthenogenesis but feminization. In 

fact antibiotic treatment results in uninfected diploid male offspring, thus demonstrating 

that diploidy restoration is a necessary condition, but not sufficient, to elicit female 

development. Therefore, Cardinium is responsible for the feminization of the hymenopteran 

genetic males. 

Since in studies concerning the parthenogenesis induction by Wolbachia no cytogenetic 

analyses have been performed on males produced by cured females, the hypothesis that the 

symbiont actually induces feminization rather than parthenogenesis may be conceivable.  

As will be discussed later, feminization deals with sex determination and differentiation 

much more directly than the other Wolbachia-induced phenotypes, thus offering the 

opportunity to shed light on processes governing arthropod development and reproduction, 

and on the involvement of the endosymbiont in such processes.  

On the whole, the data available in the literature suggest that the phenotypic effects induced 

by Wolbachia may be linked to differences in host physiology, and in particular to endocrine-

related processes governing development and reproduction which in insects display high 

variability. 

Interestingly, Wolbachia bacteria are known to localize in many hosts’ steroidogenic tissues. 

In different insect species, the endosymbiont has been observed in the cytoplasm of the 

follicular cells (Gonella et al. 2011; Sacchi et al., 2010) (Fig. 2). In Drosophila, Wolbachia 

microinjected into the abdominal cavity has shown a tropism towards somatic stem cells 

that differentiate in follicular cells (Frydman et al., 2006). In insects the follicular epithelium 

is one of the major niches deputed to the synthesis of ecdysteroids (Swevers et al., 2005).  
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Upper left and right: A Zyginidia pullula (Hemiptera, Cicadellidae) oocyte surrounded by a single layer 
of follicle cells (gallocyanin–chrome alum reaction on leafhopper ovary sections). Lower left: TEM 
micrograph of a Wolbachia-infected Z. pullula follicle cell filled with bacteria. Lower right: Immuno-
histochemical reactions showing strong positivity (brown) to anti-wsp (Wolbachia surface protein) 
antibody in the leafhopper’s follicular epithelium.  

Fig. 2. Wolbachia localization in the follicular epithelium of the gonad’s host. 

Moreover, the endosymbiont is frequently associated to host’s fat bodies, the other major 
niche for steroid synthesis (Kamoda et al., 2000; Thummel & Chory, 2002) (Fig. 3). 
Therefore, it is conceivable that Wolbachia may interfere with insect reproduction and 

development by modulating host hormonal pathways, as it has already been shown for 

isopod crustaceans and will be explained in the following section. 

 

 

Fig. 3. In-situ hybridization with a specific probe for Wolbachia 16S rRNA on Zyginidia pullula 
fat body shows positive staining (red), indicating that the tissue is filled with bacteria. 
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4. Wolbachia and the feminization of the arthropod host 

In arthropods, feminization induced by Wolbachia was first described in isopod crustaceans 
(Bouchon et al., 2008; Martin et al., 1973; Rigaud et al., 1999) and, later, the phenomenon was 
studied in the lepidopteran species Eurema hecabe, Ostrinia scapulalis and O. furnacalis, and 
the hemipteran species Zyginidia pullula (Hiroki et al., 2002; Kageyama & Traut, 2003; Negri 
et al., 2006; Sakamoto et al., 2007). 
In Crustacea, which are phylogenetically close to insects, sex differentiation and 

development of secondary sexual characteristics are driven by an androgenic hormone 

(AH), secreted by the androgenic gland (AG), whose action inhibits female differentiation 

(Legrand et al., 1987; Sagi & Khalaila, 2001). In fact, Crustacea are by default female and the 

expression of male secondary characteristics is only possible by the production of AH. 

Indeed, the ablation of the AG results in the degeneration from male to the female form, 

whereas injection with purified extracts of the AH or implantation of AGs into females 

results in the development of external male sexual characteristics or the complete sex 

reversal (Charniaux-Cotton, 1954; Sagi et al., 1997; Suzuki & Yamasaki, 1998). Therefore, it 

has been suggested that in Crustacea sex reversal is actually due to masculinisation of 

females or de-masculinisation of males (Ford, 2008). 

The feminization effect induced by Wolbachia in isopods is thought to be linked to interactions 
between the bacterium and the AG differentiation process or, more probably, the AH receptors 
(Bouchon et al., 2008; Rigaud & Juchault, 1998). Indeed, in Armadillidium vulgare genetic males, 
AH mRNA can be detected at the beginning of male gonad differentiation, and AH may thus 
have an early and local action by inducing male differentiation of embryonic gonads (Negri et 
al., 2010). Wolbachia could then induce feminization (or de-masculinisation?) by targeting AH 
receptors, thereby inhibiting AG differentiation (Juchault & Legrand, 1985). If Wolbachia 
bacteria are experimentally inoculated in adult males, the AG become hypetrophic, but the 
host soon develops female genital apertures, probably because the AH receptors are no longer 
functional due to the infection (Martin et al., 1973; Martin et al., 1999). 
In insect species, Wolbachia is able to feminize genetical males and, in all these cases, the 
existence of intersexes linked to Wolbachia effects has been described: in the presence of 
signals coordinating the development of a gender specific phenotype, intersexes might arise 
from a conflict between male and female sex hormones and/or receptors (Hiroki et al., 2002; 
Kageyama & Traut, 2003; Negri et al., 2006; Sakamoto et al., 2007). 
In E. hecabe, feminizing Wolbachia acts continuously throughout the larval development to 
produce the female phenotype (Narita et al., 2007). As a consequence, if the bacteria act on 
sex differentiation rather than sex determination, sex hormone (i.e. ecdysteroid) pathways 
should be involved. Some clues are provided by studies on infected E. hecabe, where an 
incomplete Wolbachia suppression during host development, i.e. when host sex 
differentiation is not yet completed, leads to larval/pupal moulting defects (Narita et al., 
2007). In particular, some individuals show morphological abnormalities (i.e. curled, folded 
or asymmetric wings), while a certain number of insects do not pupate: dissection of dead 
pupae reveals that many of them have actually completed adult morphogenesis but failed to 
escape from the pupal case (Narita et al., 2007). Interestingly, similar moulting defects may 
be obtained in knockdown insects using RNA interference techniques on ecdysone 
receptors. For example, some treated nymphs of the german cockroach Blattella germanica do 
not moult into adults, maintaining both nymphal and adult structures of ectodermal origin 
duplicated, whereas those nymphs that moulted into adults show characteristic 
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deformations in the wing extension (Cruz et al., 2006). Also Drosophila EcR mutants are 
characterised by pupal lethality: specimens rarely eclose and the pharate adults dissected 
from the pupal case show abnormalities (Davies et al., 2005). 
Moreover, since in some lepidopteran species the ecdysteroid titer has been proven to 
regulate sex specific wing development (Lobbia et al., 2003), sexually intermediate traits in 
wing morphology observed in E. hecabe specimens subjected to a partial Wolbachia curing 
could also be attributed to the ecdysteroid action.  
In the other lepidopteran species Ostrinia scapulalis and O. furnacalis, Wolbachia has the 
ability to feminize genetic males, but – as discussed above - a complete feminization is fatal, 
and genetical males die (Kageyama and Traut, 2003; Sakamoto et al., 2007). In these species 
male-killing occurs during the larval development while the role played by ecdysteroids is 
crucial. In other insects, the sex-specific killing action by Wolbachia occurs during 
embryogenesis (Dyer& Jaenike, 2004; Fialho & Stevens, 2000; Jiggins et al., 2001; Zeh et al., 
2005). Embryogenesis takes place in a steroid hormone-enriched environment where steroid 
hormones act for the coordination of morphogenetic movements (De Loof, 2006; Kozlova & 
Thummel, 2003; Gaziova et al., 2004). Thus, if male-killing Wolbachia interacts with the host 
hormonal pathway involving ecdysteroids, this could interfere with the processes required 
for a normal development of males. 
Unfortunately, little information about sex-specific action of ecdysteroids during insect 
embryogenesis and development is available, and it mainly concerns the effects of endocrine 
disrupting chemicals. For example, in the housefly Musca domestica and in the midge 
Chironomus riparius the sex ratio is affected by the ecdysteroid agonist bisphenol A (Izumi et 
al., 2008; Lee & Choi, 2007). Another ecdysteroid agonist, tebufenozide, exerts similar effects 
on C. riparius and the moth Platynota idaeusalis (Biddinger et al., 2006; Hahn et al., 2001). 
Female-biased sex ratios are also obtained after a treatment performed on the midge larvae 
with the ecdysteroid antagonist ethynil estradiol (Hahn et al., 2001; Lee & Choi, 2007).  
According to some authors, the observed sex-specific effect could be explained by considering 
insect steroids as sex hormones. In particular, larval or embryo males die because they are 
subjected to an unsuitable, i.e. female, hormonal environment (Hahn et al., 2001). 
Recent studies on the moth Ostrinia scapulalis are providing new data on the molecular bases 
of the Wolbachia-host interaction. Sugimoto and colleagues (2010) analysed the expression of 
the doublesex gene (dsx) in Ostrinia intersexes (= partially feminized males) generated from 
antibiotic treated mothers. Doublesex is the highly conserved gene at the bottom of the sex 
determination cascades in insects, and it is known to regulate the somatic sexual 
differentiation through the sex specific proteins DSXf (female) and DSXm (male). (Burtis & 
Baker, 1989). In particular, dsx resides at the junction of a complex network of regulatory 
interactions that include homeotic genes, ligand-based signal transduction cascades, and 
other transcriptional regulators for the differentiation of sexually dimorphic structures 
(Burtis, 2002; Rideout et al., 2010). In Drosophila males, feminization may be induced by 
modifying dsx expression. The ectopical expression of DSXf with the complete removal of 
endogenous DSXm may cause external complete feminization (Waterbury et al., 1999); even 
the XY (male) germ line may be feminized by ectopical expression of DSXf (Waterbury et al., 
2000). 
As expected, in somatic tissues of O. scapulalis males and females, the sex-specific isoform of 
DSX was found; while in the gonads the opposite sex was also weakly expressed, maybe 
because reproductive organs comprise also undifferentiated germ cells where both DSXf and 
DSXm could be expressed (Sugimoto et al., 2010). In intersex individuals originated from 

www.intechopen.com



 
Sex Steroids in Insects and the Role of the Endosymbiont Wolbachia: A New Perspective 

 

361 

Wolbachia-cured mothers, both female- and male-specific isoforms are present, suggesting that 
the symbiont may interfere either with the sex-specific splicing of the gene dsx itself or (more 
probably) with another upstream process involved in sex determination/differentiation 
(Sugimoto et al., 2010). 
Male- and female-specific isoforms of DSX share a zinc finger DNA-binding domain 

(designated as the DM motif), which is widely conserved in the Animal Kingdom, from 

corals to nematodes, from arthropods to vertebrates, and characterize the dmrt family of 

genes (Erdman & Burtis, 1993; Murphy et al., 2010; Matsuda et al., 2002; Raymond et al., 

1998; Smith et al., 2009; Yoshimoto et al., 2008; Zhu et al., 2000). 

Despite the attention that dmrt factors have received, to date it has not been well elucidated 

how dmrts mediate their activities, and putative downstream targets have yet to be 

characterized. 

In some vertebrates, such as fish, it has been demonstrated that sex steroid hormones affect 

dmrt1 expression (Herpin & Schartl, 2011), thus it would be of capital interest to verify changes 

in O. scapulalis dsx expression following steroid treatments, and if feminizing Wolbachia may 

play a role in modulating dsx expression by interaction with hormonal pathways. 

New insights into the mechanisms underlying the bacterium-host interaction have been 

provided by studies on the leafhopper Z. pullula. In this hemipteran species, Wolbachia-

infected genetic males develop into intersexes with a female phenotype, which retain 

secondary male features in the ano-genital zone (Negri et al., 2006) (Fig. 4).  

 

 

Fig. 4. Zyginidia pullula males feminized by Wolbachia maintain typical male structures (the so-
called upper pygofer appendages) localized in the last abdominal segments. These forked 
chitinous structures are completely absent in normal females. In feminized males they appear 
well developed (upper left), or not completely developed but reduced to a stump (lower right). 

Leafhopper feminized males are vital and even active reproductively. In laboratory rearing, 

couplings are often observed (Fig. 5), meaning that these individuals have a feminine ‘sex 

appeal’, and progeny is occasionally obtained (Negri et al., 2006). In addition to feminized 

males with ovaries (“intersex females”), some rare intersexes bear male gonads (“intersex 

males”) (Negri et al., 2009a) (Fig. 5). Interestingly, “intersex males” possess a Wolbachia density 

approximately four orders of magnitude lower than “intersex females” (Negri et al., 2009a). 
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Fig. 5. On the left: a spermatheca of an intersex female of Zyginidia pullula full of sperms 
after after mating (haematoxylin/eosin stain on leafhopper gonad sections). On the right: 
testis of an intersex male showing different stages of spermatogenesis (gallocyanin–chrome 
alum reaction on leafhopper gonad sections). 

Recent data demonstrate that Wolbachia infection is able to modulate the leafhopper’s 
genomic imprinting through cytosine methylation of the host DNA (Negri et al., 2009a, 
2009b). 
Genomic imprinting is a phenomenon whereby a gene, or a region of a chromosome, is 
reversibly modified so that it retains a sort of “memory” of its own genetic history. The term 
imprinting, originally coined referring to a complex behaviour of the X chromosome in the 
dipteran insect Sciara coprophila (Crouse, 1960), indicates a situation in which the activity of 
the imprinted genes or chromosomes is determined by the sex of the parent that transmits 
them, and the altered expression is limited to the somatic tissue of the progeny, whereas the 
germ line is not permanently altered (Surani, 1998). Epigenetic changes are based on 
molecular mechanisms including methylation of cytosines, remodelling of chromatin 
structure through histone chemical modifications and RNA interference. These molecular 
processes can activate, reduce or completely disable the activity of genes.  
Methylation of cytosine residues in the DNA is currently one of the most studied epigenetic 
mechanisms (Bender, 2004). This robust but reversible marking of genomic DNA is 
catalyzed by a conserved family of enzymes called DNA methyltransferases (DNMTs), 
which have been extensively studied in mammals, plants and fungi (Goll & Bestor, 2005).  
Until now, the genomic imprinting has been found in vertebrates (Martin & McGowan 1995; 

Sharman 1971; Surani 1998) and invertebrates, including lots of insect species (Rewieved in 

Lyko & Maleszka, 2011). In particular, in the hymenopteran wasp Nasonia vitripennis and in 

the coccid Planococcus citri imprinting is related to sex determination (Beukeboom et al. 2007; 

Field et al. 2004); in P. citri it has been clearly assessed that DNA methylation is deeply 

involved in the establishment of the differential sex-specific genomic imprinting.  

At a molecular level, in the hemipteran Z. pullula the occurrence of sex specific differences in 
the methylation pattern was observed (Negri et al., 2009a). Surprisingly, Random 
Amplification of Polymorphic DNA (RAPD) PCRs showed that Wolbachia-infected “intersex 
females” possess the same imprinting pattern of uninfected females (Negri et al., 2009a, 
2009b). These data demonstrate that the infection disrupts the male imprinting thus 
influencing the expression of genes involved in sex differentiation and development. In 
addition, the alteration occurs only if the bacterium exceeds a density threshold, as “intersex 
males” maintain a male genome—methylation pattern (Negri et al., 2009a). Methylation-
sensitive RAPD analyses were also carried out on gonads (testes and ovaries), confirming 
the occurrence of a sex-specific methylation of the genome, and strengthening the results 
obtained with somatic tissues in Wolbachia-infected specimens (Negri et al., 2009b). This 
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suggests that Wolbachia is not only able to induce a feminization of genetic males, but may 
also cause the inheritance of female imprinting in gonads of feminized males. This is 
particularly intriguing since in gonads the parental imprinting is generally erased and re-
established on the basis of the parent sex, and clearly indicates that feminized males act as 
true females establishing a female genomic imprinting in their genome. On the whole data 
demonstrate that Wolbachia may be considered an ‘environmental’ factor that promotes 
heritable epigenetic changes in the host gene expression: the epigenetic effects of Wolbachia 
symbiosis are manifested as a ‘maternal effect’, in which infection of the mother alters the 
offspring phenotype. 

5. Possible interplay between steroid signalling and epigenetic pathways 

5.1 Role of sex steroids in mammal sex differentiation 
In humans the male-determining gene Sry on the male-specific Y chromosome is known to 
promote sexual development by inducing the bipotential gonads of the embryo to form 
testes. Then, the differentiated gonad produces the male sex steroid (i.e. testosterone) which 
activates gene transcription via androgen and estrogen receptors, thus driving the 
masculinisation processes of the whole body (Anway et al., 2005; Chang et al., 2006). In 
particular, sex hormone synthesis induces not only the sexual differentiation of the 
reproductive system, but also the sexual differentiation of the brain. This is known to occur 
in a carefully defined critical period, where a brief hormone exposure permanently 
organizes the brain sex differences (Dohier, 1998; Gabory et al., 2009; McCarthy et al., 2009). 
Indeed, gonadal hormones defeminize and masculinize the male brain, while a lack of 
gonadal steroids allows for feminization in the female. In rodents, for example, treatments 
with steroids during the critical period leads to a defeminized and masculinized neural 
phenotype, while blocking aromatization of testosterone to estradiol or antagonizing 
estrogen receptor binding inhibits a correct brain organization in males (Barraclough, 1961; 
Baum, 1979; Vreeburg et al., 1977). 
The mechanisms exerted by sex hormones are strictly linked to the epigenetic machinery. 
For example, gonadal hormones are able to induce sex differences in DNA methylation, 
methyl-binding proteins and chromatin modifications necessary for a correct sexual 
differentiation of the brain (Nugent & McCarthy, 2011).  
The role for steroids in modulating epigenetic changes is attracting the growing interest of 
many researchers. In particular, the field of endocrine disruption is shedding new light on 
the discipline of basic reproductive neuro-endocrinology, through studies on how early life 
exposures to endocrine-disrupting chemicals may alter gene expression via epigenetic 
mechanisms, including DNA methylation and histone acetylation/methylation. 
Importantly, these effects may be transmitted to future generations if the germ line is 
affected via trans-generational, epigenetic actions.  
Recent evidence shows for example that androgen and estrogen receptors interact with 
histone modifying enzymes (Tsai et al., 2009). Measuring levels of acetylation and 
methylation of histones in neonatal mouse brains, Tsai and colleagues (2009) found that H3 
histone modification is sexually dimorphic in some areas of the neonatal brain, and prenatal 
testosterone interacts with H3 acetylation to reverse this dimorphism.  
In another study, tamoxifen - a selective estrogen receptor modulator - has been shown to 
interfere with imprinting at the specific locus Insulin-like growth factor 2/H19 in rat 
spermatozoa (Pathak et al., 2010). Since imprint at this locus is acquired during 
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spermatogenesis in the male germ line, a role for estrogen signalling in the methylation 
dynamics of the testis is hypothesized. In particular it has been hypothesized that tamoxifen 
could exert an epigenetic action by directly affecting DNA methylation in the male germ 
cells. The observed reduction in sperm DNA methylation suggests imprinting error in the 
male germ-line mediated by defective estrogen signalling (Pathak et al., 2009; Pathak et al., 
2010). Hence decipher interaction between estrogen signalling and DNA methylation 
pathways is of primary importance.  

5.2 The Wolbachia-host interaction: A new perspective   
The model proposed in Fig. 6 tries to explain a possible Wolbachia/host interaction involving 
host hormonal signalling and epigenetic regulation. In view of the absence of genes 
codifying for typical eukaryotic DNA methyltransferases in the sequenced genomes of 
Wolbachia strains isolated from D. melanogaster and the nematode B. Malayi (Foster et al., 
2005; Wu et al., 2004), we cannot exclude that the bacterium encodes for some proteins 
interfering with ecdysteroids signalling pathway thus modulating the expression of the host 
DNMTs and/or histone modifying enzymes.  
Hormone signalling orchestration is done by nuclear receptors, and over the past decade it 

has become increasingly clear that the recruitment of co-regulatory proteins to nuclear 

receptors is required for hormone-mediated transcriptional and biological activities. Many 

nuclear receptor co-regulators are key epigenetic regulators and utilize enzymatic activities 

to epigenetically modify the DNA and chromatin, through DNA methylation and histone 

acetylation/methylation (Hsia et al., 2010 Mahajan & Samuels, 2000; Rosenfeld et al., 2006). 

 

 

20E = 20-hydroxyecdysone; EcR = Ecdysone receptor; USP = Ultraspiracle; NRc = Nuclear Receptor co-
regulator; Dmt = DNA-methyltransferase; dmr = Differentially metylated regions; Wp = Wolbachia 
product; WNRc = Wolbachia Nuclear Receptor co-regulator.  
Filled lollypops and open lollypops indicate methylated and unmethylated CpGs, respectively. 

Fig. 6. Model illustrating the possible interplay between ecdysone signaling and epigenetic 
regulation. For simplicity, among epigenetic mechanisms, only DNA methylation is 
considered.  

In particular, as proposed in Fig. 6, once 20E is biosynthesized, it binds the nuclear 
receptor EcR which heterodimerizes with USP. Then, the EcR/USP complex binds DNA 
constitutively and complexes with nuclear receptors co-regulators, thus catalyzing DNA 
methyltransferases (and/or histone modifying enzymes) which results in a proper DNA 
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methylation. In Wolbachia-infected insects, alterations of the methylation patterns may be 
due to hypothetical Wolbachia products (directly binding the nuclear-receptor or 
functioning as/or interfering with nuclear receptor co-regulators) that could inhibit EcR 
binding to DNA or DNA-methyltransferases (and/or histone modifying enzymes) 
recruitment, respectively.  
Accordingly, studies on Wolbachia-host interactions should give great attention for example 
to selective nuclear receptor modulators; substances with an antagonist action on the 
ecdysone nuclear receptor; or co-regulators of nuclear receptors, in view of their emerging 
role in integrating transcriptional co-regulation with epigenetic regulation (Rosenfeld et al., 
2006; Kato et al., 2011). This could eventually clarify the nature of this fascinating microbial 
symbiosis and the extraordinary effects on the host sexual development and reproduction.  

6. Conclusion  

An interaction between Wolbachia and host hormonal signalling pathways involving 
ecdysteroids may suggest the mechanistic way the bacterium uses for manipulating the host 
sexual behaviour and reproduction. Thus, the various phenotypic effects induced by the 
symbiont may be due to differences in the host physiology, considering that endocrine-
related processes governing host development and reproduction display an enormous 
variability. 
Recent data demonstrate a role of the symbiont in inducing epigenetic trans-generational 
changes in the host: by establishing intimate relationships with germ-line cells, epigenetic 
effects of Wolbachia symbiosis are manifested as a ‘maternal effect’, in which infection of the 
mother modulates the offspring phenotype. Indeed the Wolbachia infection is known to 
disrupt male imprinting, corresponding to changes in the genomic methylation pattern and 
in the host sexual phenotype towards females.  
These observations raise a key question: what is the molecular basis of such an interaction? 
Some fascinating clues are provided by the recent demonstrations of interplay between 
hormone signalling and epigenetic pathways. 
The mechanisms exerted by hormones are strictly linked to the epigenetic machinery, where 
steroids promote sex differences in DNA methylation, methyl-binding proteins and 
chromatin modifications, even if some epigenetic sex differences can also be directly 
attributed to the sex chromosomes. According to recent studies, selective nuclear receptor 
modulators and co-regulators of nuclear receptors are key factors in inducing epigenetic 
changes via DNA methylation and histone chemical modifications. These complex 
interactions influence the transcriptional output of many gene networks: the disruption of 
their normal function or expression by environmental factors can contribute to a vast 
spectrum of physiological abnormalities and disorders.  
Hence, we propose a new perspective supporting a role of the symbiont Wolbachia as an 
“environmental factor” experienced by a mother that promotes heritable epigenetic changes 
by interaction with hormonal signalling pathways. Although further efforts are needed to 
fully clarify the genetic and molecular bases of such an interaction, new work hypotheses 
have been now offered for the study of the mechanisms (yet largely unknown) used by 
symbionts to dialogue with their hosts. Likewise, the Wolbachia-host interaction could 
become an emerging model system for the study of hormone signalling orchestration by 
nuclear receptors, and for shedding light on the role of nuclear receptor coregulators in 
integrating transcriptional coregulation with epigenetic regulation. 
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