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1. Introduction

In this chapter, we review some aspects of physical systems described by quantum fields
defined on spaces with compactified dimensions. For a D-dimensional space, this means we

are considering a space which has a topology of the type Γd
D =

(

S1)d × R
D−d, with d (≤ D)

being the number of compactified dimensions, each with the topology of a circle. This is the
type of topology that emerges, for instance, in quantum field theory at finite temperature: the
Matsubara formalism imposes that the time direction is compactified in a circle with length
β = 1/T , where T is the temperature; its topology is then Γ1

4 = S1 × R
3 in the notation

introduced above. Another important example involves spacetimes of dimensions D larger
than four, with the “extra” or “hidden” dimensions being compactified and assumed to be
very small, as in Kaluza–Klein and string theories. In any case, the topology Γd

D mentioned
above corresponds to a generalized Matsubara formalism, in which imaginary-time and
spatial coordinates may be simultaneously compactified.

In the last few decades, this generalized Matsubara formalism has been employed in many
instances of condensed-matter and particle physics. Some of them are: (1) the Casimir
effect, studied in various geometries, topologies, fields, and physical boundary conditions
[Bordag et al. (2001); Milonni (1993); Mostepanenko & Trunov (1997)], in a diversity of
subjects ranging from nanodevices to cosmological models [Bordag et al. (2001); Boyer (2003);
Levin & Micha (1993); Milonni (1993); Mostepanenko & Trunov (1997); Seife (1997)]; (2) the
confinement/deconfinement phase transition of hadronic matter, in the Gross–Neveu and
Nambu–Jona-Lasinio models as effective theories for quantum chromodynamics [Abreu et
al. (2009); Khanna et al. (2010); Malbouisson et al. (2002)]; (3) quantum electrodynamics with
one extra compactified dimension, which leads to estimates of the size of extra dimensions
compatible with present-day experimental data [Ccapa Tira et al. (2010)]; (4) the study of
superconductors in the form of films, wires and grains [Abreu et al. (2003; 2005); Khanna
et al. (2009); Linhares et al. (2006; 2007); Malbouisson (2002); Malbouisson et al. (2009)], in
which the Ginzburg–Landau model for phase transitions is defined on a three-dimensional
Euclidean space with one, two or three dimensions compactified.

When studying the compactification of spatial coordinates, however, it is argued in Khanna
et al. (2009) from topological considerations, that we may have a quite different interpretation
of the generalized Matsubara prescription: it provides a general and practical way to account
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2 Will-be-set-by-IN-TECH

for systems confined in limited regions of space at finite temperatures. Distinctly, we shall
be concerned here with stationary field theories and employ the generalized Matsubara
prescription to study bounded systems by implementing the compactification of spatial
coordinates; no imaginary-time compactification will be done, temperature will be introduced
through the mass parameter in the Ginzburg-Landau Hamiltonian. We will consider a
topology of the type Γd

D = R
D−d × (S1)1 × (S1)2 × · · · × (S1)d, where (S1)1, . . . , (S1)d refer

to the compactification of d spatial dimensions.

In the following, we shall concentrate on Euclidean scalar field theories defined on such
spaces, with the Matsubara formalism applied to spatial coordinates. Our aim is to describe
the influence of compactification on physical phenomena as phase transitions in which, for
instance, the critical temperature depends on the parameters of compactification, that is, on
the “size” of the system. This means that, for instance, superconductors inside spatially bound
spaces such as films, wires and grains may have a critical temperature distinct from the same
material in the bulk form.

In this chapter, the way in which the critical temperature for a second-order phase transition
is affected by the presence of confining boundaries is investigated on general grounds. We
consider that the system is a portion of material of some size, the behavior of which in the
critical region is derived from a quantum field theory calculation of the dependence of the
physical mass parameter on its size. We focus in particular on the mathematical aspects of
the formalism, which furnish the tools to study boundary effects on the phase transition. We
consider the D-dimensional Ginzburg–Landau model compactified in d (≤ D) of the spatial
dimensions. The Ginzburg–Landau Hamiltonian, considering only the term λϕ4, is known
to lead to second-order transitions. In its version with N-components, in the large-N limit,
we are able to take into account nonperturbatively corrections to the coupling constant. In
this case, we shall obtain expressions for the transition temperature in the general situation.
Particularizing for D = 3 and d = 1, d = 2 and d = 3, we have the critical temperature
Tc(L) for the system in the form of a film of thickness L, an infinitely long wire having
a square cross-section L2, and for a cubic grain of volume L3, respectively. We show that
Tc(L) decreases as the size L is diminished and a minimal size for the suppression of the
second-order transition is obtained.

We also consider the model which, besides the quartic scalar field self-interaction, a sextic
one is present. The model with both interactions taken together leads to a renormalizable
quantum field theory in three dimensions and it may describe first-order phase transitions.
We consider this formalism in a general framework, taking the Euclidean D-dimensional
−λ |ϕ|4 + η |ϕ|6 (λ, η > 0) model with d = 1, 2, 3 compactified dimensions. It is known that
such potential ensures that the system undergoes a first-order transition. We obtain formulas
for the dependence of the transition temperature on the parameters delimiting the spatial
region within which the system is confined. Surely, there are other potentials which may be
considered, for instance, the Halperin–Lubensky–Ma potential [Halperin et al. (1974)], which
also engender first-order transitions in superconducting materials by effect of integration over
the gauge field and takes the form −αϕ3 + βϕ4.

We start from the effective potential, which is related to the physical mass and
coupling constant through renormalization conditions. These conditions, however, reduce
considerably the number of relevant contributing Feynman diagrams, if one wishes to be
restricted to 1- or 2-loop approximations. For second-order transitions, we need to consider
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Ginzburg–Landau Theory of Phase Transitions in Compactified Spaces 3

only the tadpole diagram to correct the mass and the 1-loop four-point function to correct the
coupling constant. For first-order transitions, we will not, for simplicity, make corrections to
the coupling constant. In this case, just two diagrams need to be considered: a tadpole graph
with the ϕ4 coupling (one loop) and a “shoestring” graph with the ϕ6 coupling (two loops).
No diagram with both couplings needs to be considered. The size dependence appears from
the treatment of the loop integrals. The dimensions of finite extent are treated in momentum
space using the formalism of Khanna et al. (2009).

It is worth noticing that for superconducting films with thickness L, a qualitative agreement
of our theoretical L-dependent critical temperature is found with experiments. This occurs in
particular for thin films (in the case of first-order transitions) and for a wide range of values of
L for second-order transitions [Linhares et al. (2006)]. Moreover, available experimental data
for superconducting wires are compatible with our theoretical prediction of the first-order
critical temperature as a function of the transverse cross section of the wire.

Finally, we discuss the infrared behavior and the fixed-point structure for the N-component
λϕ4 model in the large-N limit, with a compactified subspace. We study the cases in which
the system has no external influence and in which the system is submitted to the action of an
external magnetic field. In both situations, with or without a magnetic field, we get the result
that the existence of an infrared stable fixed-point depends only on the space dimension; it
does not depend on the number of compactified dimensions.

2. Critical behavior of the compactified λϕ4 model

We start by considering the complex scalar field model described by the Ginzburg–Landau
Hamiltonian density in a Euclidean D-dimensional space, in the absence of any geometrical
constraints, given by (in natural units, h̄ = c = kB = 1)

H =
1
2

∣

∣∂µ ϕ
∣

∣ |∂µ ϕ|+ 1
2

m2
0 |ϕ|2 +

λ

4
|ϕ|4 , (1)

where λ > 0 is the physical coupling constant. As usual, near criticality, the bare mass is taken
as m2

0 = α(T − T0), with α > 0 and T0 being a parameter with the dimension of temperature,
which is interpreted as the bulk transition temperature.

Let us now take the system in D dimensions confined to a region of space delimited by d ≤ D
pairs of parallel planes. Each plane of a pair j is at a distance Lj from the other member of
the pair, j = 1, 2, . . . , d, and is orthogonal to all other planes belonging to distinct pairs {i},
i �= j. This may be pictured as a parallelepipedal box embedded in the D-dimensional space,
whose parallel faces are separated by distances L1, L2, . . . , Ld. To simplify matters, we shall
take all Li = L. Let us define Cartesian coordinates r = (x1, x2, . . . , xd, z), where z is a
(D − d)-dimensional vector, with corresponding momentum k = (k1, k2, . . . , kd, q), q being
a (D − d)-dimensional vector in momentum space. The generating functional of Schwinger
functions is written in the form

Z =
∫

DϕDϕ∗ exp
(

−
∫ L1

0
dx1 · · ·

∫ Ld

0
dxd

∫

dD−dzH(|ϕ| , |∇ϕ|)
)

, (2)

with the field ϕ(x1, ..., xd, z) satisfying the condition of confinement inside the box, ϕ(xi ≤
0, z) = ϕ(xi ≥ 0, z) = const. Then, following the procedure developed in Khanna et al.
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(2009), we introduce a generalized Matsubara prescription, in which the Feynman rules are
modified through the replacements

∫

dki

2π
→ 1

L

+∞

∑
ni=−∞

; ki →
2niπ

L
, i = 1, 2..., d. (3)

Notice that compactification can be implemented in different ways, as for instance by
imposing specific conditions on the fields at spatial boundaries. We here choose periodic
boundary conditions.

In principle, the effective potential for systems with spontaneous symmetry breaking is
obtained, following the Coleman–Weinberg analysis [Coleman & Weinberg (1973)], as an
expansion in the number of loops in Feynman diagrams. Accordingly, to the free propagator
and to the tree diagrams, radiative corrections are added, with increasing number of loops.
Thus, at the 1-loop approximation, we get the infinite series of 1-loop diagrams with all
numbers of insertions of the ϕ4 vertex (two external legs in each vertex).

At the 1-loop approximation, the contribution of loops with only |ϕ|4 vertices to the effective
potential in unbounded space is

U1(ϕ0) =
∞

∑
s=1

(−1)s+1

2s

[

3λ|ϕ0|2
]s
∫ 1

(2π)D

dDk

(k2 + m2)s
, (4)

where m is the physical mass and the parameter s counts the number of vertices on the loop.

In the following, to deal with dimensionless quantities in the regularization procedures, we
introduce parameters c2 = m2/4π2, L2 = a−1, g = 3λ/8π2, where ϕ0 is the normalized
vacuum expectation value of the field (the classical field). In terms of these parameters
and performing the Matsubara replacements (3), the one-loop contribution to the effective
potential can be written in the form

U1(φ0, a) = ad/2
∞

∑
s=1

(−1)s+1

2s
gs|ϕ0|2s

×
+∞

∑
n1,...,nd=−∞

∫

dD−dq
[

a
(

n2
1 + · · ·+ n2

d

)

+ c2 + q2
]s . (5)

It is easily seen that only the s = 1 term contributes to the renormalization condition

∂2U(ϕ0)

∂ϕ2
0

∣

∣

∣

∣

∣

ϕ0=0

= m2. (6)

It corresponds to the tadpole diagram. The integral over the D − d noncompactified
momentum variables is performed using a well-known dimensional regularization formula
[Zinn-Justin (2002)] so that, for s = 1, we obtain

U1(φ0, a) =
1
2

ad/2π(D−d)/2Γ

(

1 − D − d

2

)

g|ϕ0|2Zc2

d

(

2 − D + d

2
; a

)

, (7)
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Ginzburg–Landau Theory of Phase Transitions in Compactified Spaces 5

where Zc2

d ( 2−D+d
2 ; a) is one of the Epstein–Hurwitz zeta functions, defined by

Zc2

d (ν; a1, ..., ad) =
+∞

∑
n1,...,nd=−∞

(a1n2
1 + · · ·+ adn2

d + c2)−ν, (8)

valid for Re(ν) > 1.

Next, we can use the generalization to several dimensions of the mode-sum regularization
prescription described in Elizalde (1995). It results that the multidimensional
Epstein–Hurwitz function has an analytic extension to the whole ν complex plane,
which may be written as

Zc2

d (ν; L) =
2ν− d

2 +1π2ν− d
2 Ld/2

Γ
(

1 − D−d
2

)

Γ(ν)

[

2ν− d
2 −1md−2νΓ

(

ν − d

2

)

+2d
∞

∑
n=1

(

m

Lni

) d
2 −ν

Kν− d
2
(mLn) + · · ·

+2d
∞

∑
n1,...,nd=1

⎛

⎝

m

L
√

n2
1 + · · ·+ n2

d

⎞

⎠

d
2 −ν

×Kν− d
2

(

mL
√

n2
1 + · · ·+ n2

d

)]

, (9)

where the Kν(z) are modified Bessel functions of the second kind. Taking ν = (2 − D + d)/2
in Eq. (9), we obtain from Eq. (7) the effective potential in D dimensions with a compactified
d-dimensional subspace:

U1(ϕ0, L) =
3λ|ϕ0|2

(2π)D/2

[

2−D/2−1mD−2Γ

(

2 − D

2

)

+d
∞

∑
n=1

( m

Ln

)D/2−1
KD/2−1(mLn) + · · ·

+2d−1
∞

∑
n1,...,nd=1

⎛

⎝

m

L
√

n2
1 + · · ·+ n2

d

⎞

⎠

D/2−1

×KD/2−1

(

mL
√

n2
1 + · · ·+ n2

d

)]

, (10)

where we have returned to the original variables, λ and L.

Notice that in Eq. (10) there is a term proportional to Γ
(

2−D
2

)

, which is divergent for even
dimensions D ≥ 2, and should be subtracted in order to obtain finite physical parameters. For
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odd D, the above gamma function is finite, but we also subtract this term (corresponding to a
finite renormalization), for the sake of uniformity. We get

U1,R(ϕ0, L) =
3λ|ϕ0|2

(2π)D/2

[

d
∞

∑
n=1

( m

Ln

)D/2−1
KD/2−1(mLn) + · · ·

+2d−1
∞

∑
n1,...,nd=1

⎛

⎝

m

L
√

n2
1 + · · ·+ n2

d

⎞

⎠

D/2−1

×KD/2−1

(

mL
√

n2
1 + · · ·+ n2

d

)]

. (11)

Then the physical mass is obtained from Eq. (6), using Eq. (11) and also taking into account the
contribution at the tree level; it satisfies a generalized Dyson–Schwinger equation depending
on the finite extension L of the confining box:

m2(L) = m2
0 +

6λ

(2π)D/2

[

d
∞

∑
n=1

( m

Ln

)D/2−1
KD/2−1(mLn) + · · ·

+2d−1
∞

∑
n1,...,nd=1

⎛

⎝

m

L
√

n2
1 + · · ·+ n2

d

⎞

⎠

D/2−1

×KD/2−1

(

mL
√

n2
1 + · · ·+ n2

d

)]

. (12)

It is not envisageable to solve the above equation analytically for the mass. However, if we
limit ourselves to the neighborhood of criticality, then we can put m2(L) ≈ 0, and we may also
use an asymptotic formula for a Bessel function with a small argument, Kν(z) ≈ 1

2 Γ(ν)(2/z)ν

(z ∼ 0). In this way, the coefficients and arguments of the Bessel functions cancel out and we
rewrite (12) as

m2(L) ≈ m2
0 +

3λ

πD/2 Γ

(

D

2
− 1

) [

d

2
E1

(

D

2
− 1; L

)

+d(d − 1)E2

(

D

2
− 1; L

)

+ · · ·+ 2d−2Ed

(

D

2
− 1; L

)]

,

(13)

where the Ep(ν; L) are generalized Epstein–Hurwitz zeta functions defined by Kirsten (1994)

Ep(ν; L) = Lν
∞

∑
n1=1

· · ·
∞

∑
np=1

(

n2
1 + · · ·+ n2

p

)−ν
, (14)

[for details, see Malbouisson et al. (2002)]. Notice that, for p = 1, Ep reduces to the Riemann
zeta function ζ(z) = ∑

∞
n=1 n−z.

Having developed the general case of a d-dimensional compactified subspace, we consider an
illustrative example. We choose d = 1, the compactification of just one dimension, along the
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Ginzburg–Landau Theory of Phase Transitions in Compactified Spaces 7

x1-axis, say, meaning that we are considering that the system is confined between two planes,
separated by a distance L (film of thickness L). Then, Eq. (13) simplifies to

m2(L) ≈ m2
0(L) +

3λ

2πD/2LD−2 Γ

(

D

2
− 1

)

ζ (D − 2) , (15)

where ζ(z) is the Riemann zeta function. This equation is well defined for D > 3, but not
for D = 3, due to the pole of the zeta function. However, we can assign it a meaning
for the significative dimension D = 3 by adopting a regularization procedure: we use the
well-known formula

lim
z→1

ζ(z) =
1

z − 1
+ γ, (16)

where γ ≈ 0.5772 is the Euler–Mascheroni constant, for ζ (D − 2) in Eq. (15) and afterwards
we suppress the pole term at D = 3 (z = 1). Then, remembering that m2

0 = α(T − T0), we get
the L-dependent critical temperature,

Tfilm
c (L) = T0 − C1

λ

αL
,

with C1 =
3γ

2π
.

(17)

We see that, for L < (3γ/2π) (λ/αT0), the critical temperature becomes negative, meaning
that the transition does not occur.

With analogous steps, we can take the cases of d = 2 and d = 3, in which the system is
confined within an infinite wire of rectangular cross section L2 ≡ A and a grain of volume
L3 ≡ V, respectively. In those cases, it is not necessary to renormalized the bare mass,
as we have done for a film, as the divergences coming from the zeta and gamma functions
completely cancel out algebraically. One obtains [Abreu et al. (2005)]

Twire
c (A) = T0 − C2

λ

αA1/2 ,

T
grain
c (V) = T0 − C3

λ

αV1/3 ,
(18)

where C2 and C3 are numerical constants. We note that, in all cases, it is found that the
boundary-dependent critical temperature decreases linearly with the inverse of the linear
dimension L, Tc(L) = T0 −Cdλ/αL, where α and λ are the Ginzburg–Landau parameters, T0 is
the bulk transition temperature and Cd is a constant depending on the number of compactified
dimensions. This is in accordance with arguments raised from finite-size scaling [Zinn-Justin
(2002)].

Such behavior suggests the existence of a minimal size of the system, below which the
transition is suppressed. It seems to be in qualitative agreement with experimental results
which indicate a minimal thickness of a film for the disapearance of superconductivity [Abreu
et al. (2004); Kodama et al. (1983)]; also, the behavior of nanowires and nanograins have been
studied [Shanenko et al. (2006); Zgirski et al. (2005)], searching for a limit on its size for the
material while retaining its superconducting character.
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3. First-order phase transitions

In the previous section, we have studied the Ginzburg–Landau Hamiltonian density,
solely containing the interaction term λϕ4, with λ > 0, which describes second-order
phase transitions. Here we pass to consider the Ginzburg–Landau model in a Euclidean
D-dimensional space, including both ϕ4 and ϕ6 interactions, in the absence of external fields;
its Hamiltonian is given by (again, in natural units, h̄ = c = kB = 1)

H =
1
2

∣

∣∂µ ϕ
∣

∣ |∂µ ϕ|+ 1
2

m2
0 |ϕ|2 −

λ

4
|ϕ|4 + η

6
|ϕ|6 , (19)

where λ > 0 and η > 0 are the physical quartic and sextic coupling constants. Near criticality,
the bare mass is given by m2

0 = α(T/T0 − 1), with α > 0 and T0 being a parameter with the
dimension of temperature. A potential of this type, with the minus sign in the quartic term,
ensures that the system undergoes a first-order transition. Recall that the critical temperature
for a first-order transition described by the Hamiltonian above is higher than T0. This will
be explicitly stated in Eq. (25) below. Our purpose will be to develop the general case of
compactifying a d-dimensional subspace, in order to compare results for films, wires and
grains with the second-order ones given above.

We thus consider the system in D dimensions confined to a region of space delimited by
d ≤ D pairs of parallel planes, as was done in the previous section, and introduce a
generalized Matsubara prescription as in Eq. (3), with periodic boundary conditions. We
again start from establishing the effective potential, related to the physical mass through a
renormalization condition, Eq. (6). This condition, however, reduces considerably the number
of relevant Feynman diagrams contributing to the mass, if we restrict ourselves to first-order
terms in both coupling constants: in fact, just two diagrams need to be considered in this
approximation, a tadpole graph with the ϕ4 coupling (1 loop) and a “shoestring” graph with
the ϕ6 coupling (2 loops).

Within our approximation, we do not take into account the renormalization conditions for the
interaction coupling constants, i.e., they are considered as already renormalized when they
are written in the Hamiltonian (the same was assumed in the previous section).

At the 1-loop approximation, the contribution of loops with only |ϕ|4 vertices to the effective
potential is obtained directly from the previous section, Eq. (5). As before, we see that only the
s = 1 term contributes to the renormalization condition in Eq. (6). It corresponds to the tadpole
diagram. It is then also clear that all |ϕ0|6-vertex and mixed |ϕ0|4- and |ϕ0|6-vertex insertions
on the 1-loop diagrams do not contribute when one computes the second derivative of similar
expressions with respect to the field at zero field: only diagrams with two external legs should
survive. This is impossible for a |ϕ0|6-vertex insertion at the 1-loop approximation. Therefore,
the first contribution from the |ϕ0|6 coupling must come from a higher-order term in the loop
expansion. Two-loop diagrams with two external legs and only |ϕ0|4 vertices are of second
order in its coupling constant, and we neglect them, as well as all possible diagrams with
vertices of mixed type. However, the 2-loop shoestring diagram, with only one |ϕ0|6 vertex
and two external legs is a first-order (in η) contribution to the effective potential, according to
our approximation.

The tadpole contribution to the effective potential was treated in the previous section, through
dimensional and Epstein–Hurwitz zeta-function regularizations and subtraction of a polar
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Ginzburg–Landau Theory of Phase Transitions in Compactified Spaces 9

term, resulting in the expression U1,R of Eq. (11), in terms of modified Bessel functions. Now,
proceeding analogously for the 2-loop shoestring diagram contribution, we arrive at

U2,R(ϕ0, L1, . . . , Ld) =
η|ϕ0|2

4(2π)D

[

d
∞

∑
n=1

( m

Ln

)D/2−1
KD/2−1(mLn) + · · ·

+2d−1
∞

∑
n1,...,nd=1

⎛

⎝

m

L
√

n2
1 + · · ·+ n2

d

⎞

⎠

D/2−1

×KD/2−1

(

mL
√

n2
1 + · · ·+ n2

d

)]2
. (20)

Then the physical mass m2(L) with both contributions is obtained from Eq. (6), using Eqs. (11),
(20) and also taking into account the contribution at the tree level; it satisfies a generalized
Dyson–Schwinger equation depending on the extensions L of each dimension of the confining
box, as in Eq. (12). We should remember that the tadpole part has a change of sign with respect
to (12), reflecting the sign of λ in the Hamiltonian (19).

A first-order transition occurs when all the three minima of the potential

U(ϕ0) =
1
2

m2(L)|ϕ0|2 −
λ

4
|ϕ0|4 +

η

6
|ϕ0|6, (21)

where m(L) is the renormalized mass defined above, are simultaneously on the line U(ϕ0) =
0. This gives the condition

m2(L) =
3λ2

16η
. (22)

For D = 3, the Bessel functions have an explicit form, K1/2(z) =
√

πe−z/
√

2z, which is to
be replaced in the expression for the renormalized mass. Performing the resulting sums, and
remembering that m2

0 = α(T/T0 − 1), we get

m2(L) = α

(

T

T0
− 1

)

+
3λ

4π

[

d

L
ln
(

1 − e−m(L)L
)

+ · · ·

+2d−1
∞

∑
n1,...,nd=1

e−m(L)L
√

n2
1+···+n2

d

√

n2
1 + · · ·+ n2

d

⎤

⎦

+
ηπ

8 (2π)3

[

d

L
ln
(

1 − e−m(L)L
)

+ · · ·

+2d−1
∞

∑
n1,...,nd=1

e−m(L)L
√

n2
1+···+n2

d

L
√

n2
1 + · · ·+ n2

d

⎤

⎦

2

. (23)
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Then, introducing the value of the mass, Eq. (22), in Eq. (23), one obtains the critical
temperature

Tc(L) = Tc

{

1 −
(

1 +
3λ2

16ηα

)−1 { 3λ

4πα

[

d

L
ln
(

1 − e
−L

√

3λ2
16η

)

+ · · ·

+2d−1
∞

∑
n1,...,nd=1

e
−L

√

3λ2
16η

√
n2

1+···+n2
d

L
√

n2
1 + · · ·+ n2

d

⎤

⎦

− η

64π2α

[

d

L
ln
(

1 − e
−L

√

3λ2
16η

)

+ · · ·

+2d−1
∞

∑
n1,...,nd=1

e
−L

√

3λ2
16η

√
n2

1+···+n2
d

L
√

n2
1 + · · ·+ n2

d

⎤

⎦

2⎫
⎪

⎬

⎪

⎭

⎫

⎪

⎬

⎪

⎭

, (24)

where

Tc = T0

(

1 +
3λ

16ηα

)

(25)

is the bulk (L → ∞) critical temperature for the first-order phase transition.

Specific formulas for particular values of d are now given. If we choose d = 1, this corresponds
physically to a film of superconducting material, and we have that the transition occurs at the
critical temperature Tfilm

c (L) given by

Tfilm
c (L) = Tc

{

1 −
(

1 +
3λ2

16ηα

)−1 [ 3λ

4παL
ln
(

1 − e
−L

√

3λ2
16η

)

− η

64π2αL2

(

ln(1 − e
−L

√

3λ2
16η )

)2]}

. (26)

In the case of a wire, d = 2, the critical temperature is written in terms of L as

Twire
c (L) = Tc

{

1 −
(

1 +
3λ2

16ηα

)−1

×
[

3λ

2παL

[

ln
(

1 − e
−L

√

3λ2
16η

)

+ ln
(

1 − e
−L

√

3λ2
16η

)

+2
∞

∑
n1,n2=1

e
−L

√

3λ2
16η

√
n2

1+n2
2

√

n2
1 + n2

2

⎤

⎦

− η

32π2αL2

(

ln
(

1 − e
−L

√

3λ2
16η

)

+ ln
(

1 − e
−L

√

3λ2
16η

)

+2
∞

∑
n1,n2=1

e
−L

√

3λ2
16η

√
n2

1+n2
2

√

n2
1 + n2

2

⎞

⎠

2⎤

⎥

⎦

⎫

⎪

⎬

⎪

⎭

. (27)
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Finally, if we compactify all three dimensions (d = 3), which leaves us with a system in the
form of a cubic “grain” of some material, the dependence of the critical temperature on its
linear dimension L is given by

T
grain
c (L) = Tc

{

1 −
(

1 +
3λ2

16ηα

)−1 { 3λ

2παL

×
[

3 ln(1 − e
−L

√

3λ2
16η ) + · · ·

+4
∞

∑
n1,...,n3=1

e
−L

√

3λ2
16η

√
n2

1+n2
2+n2

3

√

n2
1 + n2

2 + n2
3

⎤

⎦

− η

32π2αL2

[

3 ln(1 − e
−L

√

3λ2
16η ) + · · ·

+4
∞

∑
n1,...,n3=1

e
−L

√

3λ2
16η

√
n2

1+n2
2+n2

3

√

n2
1 + n2

2 + n2
3

⎤

⎦

2⎫
⎪

⎬

⎪

⎭

⎫

⎪

⎬

⎪

⎭

. (28)

Comparing Eqs. (26)-(28) with the general behavior of the critical temperature obtained in
the previous section, we see that in all cases (film, wire or grain), there is a sharp contrast
between the simple inverse linear behavior of Tc(L) for second-order transitions and the rather
involved dependence on L of the critical temperature for first-order transitions.

In Linhares et al. (2006; 2007), we have shown that our general formalism could be not of a
purely academic interest, but that it could be used to describe some experimentally observable
situations. Experimental data on the critical temperature obtained from superconducting films
and wires can be compared with our theoretical expressions. In Linhares et al. (2006), the
coupling constants λ and η have been determined as functions of the microscopic parameters
of the material, which was done generalizing Gorkov’s [Kleinert (1989)] microscopic
derivation done for the λϕ4 model, in order to include the additional interaction term ηϕ6

in the free energy. See Linhares et al. (2006; 2007) for details.

As described in Linhares et al. (2006), the transition temperature as a function of the thickness
for a film grows from zero at a nonnull minimal allowed film thickness above the bulk
transition temperature Tc as the thickness is enlarged, reaching a maximum and afterwards
starting to decrease, going asymptotically to Tc as L → ∞. Our theoretical curve is in
qualitatively good agreement with measurements, especially for thin films [Strongin et al.
(1970)]. This is illustrated in Figure 1. This behavior can be contrasted with the one shown
by the critical temperature for a second-order transition. As one can see in Figure 2, in
this case, the critical temperature increases monotonically from zero, again corresponding
to a finite minimal film thickness, going asymptotically to the bulk transition temperature
as L → ∞ [Abreu et al. (2004)]. Such behavior has been experimentally found for a variety
of transition-metal materials [Kodama et al. (1983); Minhaj et al. (1994); Pogrebnyakov et al.
(2003); Raffy et al. (1983)]. Since in this section a first-order transition is explicitly assumed,
it is tempting to infer that the transition described in the experiments of Strongin et al. (1970)
is first order. In other words, one could say that an experimentally observed behavior of
the critical temperature as a function of the film thickness may serve as a possible criterion

113Ginzburg–Landau Theory of Phase Transitions in Compactified Spaces

www.intechopen.com



12 Will-be-set-by-IN-TECH

Fig. 1. Critical temperature Tfilm
c (K) as a function of the thickness L(Å), with data

from Strongin et al. (1970) for a superconducting film made from aluminum.

Fig. 2. Critical temperature Tfilm
c (K) as a function of the thickness L(Å) for a second-order

transition, with data from Kodama et al. (1983) for a superconducting film made from
niobium.

to decide about the order of the superconductivity transition: a monotonically increasing
critical temperature as L grows would indicate that the system undergoes a second-order
transition, whereas if the critical temperature presents a maximum for a value of L larger than
the minimal allowed one, this would be signaling the occurrence of a first-order transition.
If we consider a sample of superconducting material in the form of an infinitely long wire
with a cross section L2, the same arguments and rescaling procedures used for films apply. In
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this case, the theoretical curve Twire
c vs. L, together with Al data from Shanenko et al. (2006);

Zgirski et al. (2005) agree quite well, for not extremely thin wires. One may conclude that the
phase transition of these superconducting aluminum wires is first order, just as for aluminum
films. The interested reader will find details in Linhares et al. (2006; 2007).

4. Coupling-constant corrections for second-order transitions

We have so far discussed the critical properties of confined superconducting matter under the
assumption that the coupling constants, as they appear in the Hamiltonian, are the physical
ones. It is however expected that the compactification of spatial dimensions as we have
described also has an influence on the coupling constants and consequently on the behavior
of the transition temperature with respect to the size of the compactified space. To undertake
such study, we shall consider the four-point function at zero external momenta, which is the
basic object for our definition of the renormalized coupling constant. We shall analyze it in
the O(N)-symmetric version of the D-dimensional Ginzburg–Landau model, described by the
Hamiltonian density

H = ∂µ ϕa∂µ ϕa + m2
0(T)ϕa ϕa +

λ

N
(ϕa ϕa)

2 , (29)

and take the large-N limit. In Eq. (29), λ is the coupling constant and m2
0(T) = α(T − T0) is

the bare mass, as before. The compactification procedure is the same as that implemented in
section 2 and we look for the 1-loop contribution from ϕ4 vertices for the effective potential
after compactification of d dimensions. We may use directly Eq. (10), taking care that the
convention for the coupling constant has changed: λ/4 → λ. The mass is obtained from the
normalization condition (6) and the coupling constant from

∂4

∂ϕ2
0

U(ϕ0)

∣

∣

∣

∣

∣

ϕ0=0

=
λ

N
, (30)

where U is the sum of the tree-level and 1-loop contributions to the effective potential.

The coupling constant is defined in terms of the 4-point function for zero external momenta,
which, at leading order in 1/N, is given by the sum of all chains of 1-loop diagrams, which
has the formal expression

Γ
(4)
D (p = 0, m, L) =

λ/N

1 + λΠ(m, L)
, (31)

where Π(m, L) ≡ Π(p = 0, m, L) corresponds to the one-loop four-point diagram, after
compactification. Next, we use the renormalization condition (30), from which we deduce
formally that the one-loop four-point function Π(m, L) is obtained from the coefficient of
the fourth power of the field (s = 2) in Eq. (10). A divergent (for even dimensions) term
is subtracted to give the finite one-loop four-point function ΠR(m, L), which corresponds
to (11). Such subtraction is performed even in the case of odd dimensions, where no pole
singularity occurs (finite renormalization). From the properties of Bessel functions, we see
that ΠR(m, L) → 0 as L → ∞, whereas it diverges when L → 0. We conclude that the
renormalized one-loop four-point function is positive for all values of D and L.
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Let us define the the L-dependent renormalized coupling constant λR(m, L), at leading order
in 1/N, as

N Γ
(4)
D,R(p = 0, m, L) ≡ λR(m, L) =

λ

1 + λΠR(m, L)
. (32)

In the absence of constraints, the L → ∞ limit of Γ
(4)
D,R(p = 0, m, L) defines the corresponding

renormalized coupling constant λR(m). We get simply that λR(m) = λ. This means that a
renormalization scheme has been chosen so that the constant λ appearing in the Hamiltonian
corresponds to the renormalized coupling constant in the absence of boundaries.

The physical mass is obtained at 1-loop from (12), with λ/4 → λ, and (6), after also changing
λ → λR(m, L), given by (32). One should remember, however, that λR(m, L) is itself a function
of m = m(T, L). Therefore, m(T, L) is given by a complicated set of coupled equations. Just
like in the situation in section 2, without the corrections in λ, it has no analytical solution
in general. Nevertheless, as before, if we limit ourselves to the neighborhood of criticality,
m2(T, L) ≈ 0, the behavior of the system can be studied by using the approximation Kν(z) ≈
1
2 Γ(ν)(2/z)ν, for z ∼ 0. The same kind of simplifications occurs and we regain Eq. (13), with
λ → λR(D, L) given by

λR(D, L) ≈ λ
{

1 + λC(D)L4−D [dζ(D − 4) + 2d(d − 1)E2 (D/2 − 2, 1)

+ · · ·+ 2d−1Ed (D/2 − 2, 1)
]}−1

, (33)

where C(D) = 1
8πD/2 Γ

(

D
2 − 2

)

. It then ensues that we obtain the critical temperature as a
function of L. Taking D = 3, we have a similar situation as that of section 2. We find modified

02 04 06 08 1
l
-1

02
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08

1

tc

d=1

d=2

d=3

.

.

.

.

. . . .

Fig. 3. Reduced transition temperature (tc) as a function of the inverse of the reduced
compactification length (l), for films (d = 1), square wires (d = 2) and cubic grains (d = 3).
The full and dashed lines correspond to results with and without correction of the coupling
constant, respectively.
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L-dependent transition temperatures, which are given by

Tfilm
c (L) = T0 −

48πC1λ

48παL + λαL2 ;

Twire
c (A) = T0 −

48πC2λ

48πα
√

A + E2λαA
; (34)

T
grain
c (L) = T0 −

48πC1λ

48παV1/3 + E3λαV2/3 ,

with C1, C2 and C3 as before and where E2 and E3 are constants, resulting from sums involving
the Bessel functions [Malbouisson et al. (2009)]. We see that the critical temperature has the
same kind of dependence on the size extension L for d = 1, 2, 3, only constants differ in each
case. The functional behavior does not depend on the number of compactified dimensions,
only on the dimension of the Euclidean space, which we have computed for D = 3. One
can also notice that the minimal size of the compact superconductor has lesser values than
those computed without taking into account corrections to the coupling constant. This can
be seen in Figure 3, where we have plotted the reduced transition temperature tc = Tc/T0
as a function of the inverse of the reduced compactification length l = L/Lmin, where Lmin
is the corresponding minimal allowed linear extension without coupling constant boundary
corrections.

5. Infrared fixed-point structure for the λϕ4 model

5.1 The system in the absence of an external magnetic field

In this subsection, we study the fixed-point structure of the compactified model described by
the Hamiltonian density in Eq. (29) in the large-N limit. We start from the four-point function
at the critical point (m = 0) and for small external momenta, before compactification, which is
given by

Γ
(4)
cr (p) =

λ/N

1 + λΠcr(p)
. (35)

In the equation above, Πcr(p) is the one-loop four-point function at the critical point;
introducing a Feynman parameter x, it is written in the form

Πcr (p) =
∫ 1

0
dx

∫

dDk

(2π)D

1

[k2 + p2x(1 − x)]
2 . (36)

Performing the Matsubara replacements (3) for d dimensions, Eq. (36) becomes (ωi = 2πni/L)

Πcr(p, L) =
1
Ld

∞

∑
n1,...,nd=−∞

∫ 1

0
dx

∫

dD−dq

(2π)D−d

× 1
[

q2 + ω2
n1 + · · ·+ ω2

nd
+ p2x(1 − x)

]2 , (37)

and we define the effective L-dependent coupling constant in the large-N limit as

λ(p, L) ≡ lim
N→∞

NΓ
(4)
D (p, L) =

λ

1 + λΠ(p, L)
. (38)
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The sum over the ni and the integral over q above can be treated using the formalism
developed in Khanna et al. (2009) and described in section 2. We obtain

Πcr(p, L) = (2π)−D/2
∫ 1

0
dx

⎡

⎣2−D/2

(

1

(2π)2 p2x(1 − x)

)D/2−2

Γ

(

2 − D

2

)

+d
∞

∑
n=1

(

√

p2x(1 − x)

2πLn

)D/2−2

KD/2−2

(

Ln

2π

√

p2x(1 − x)

)

+ · · ·

+2d−1
∞

∑
n1,...,nd=1

⎛

⎝

√

p2x(1 − x)

2πL
√

n2
1 + · · ·+ n2

d

⎞

⎠

D/2−2

×KD/2−2

(

L

2π

√

p2x(1 − x)
√

n2
1 + · · ·+ n2

d

)]

, (39)

which, replaced in Eq. (38), gives the boundary-dependent four-point function in the large-N
limit. We can write Eq. (39) in the form

Π(p, L) = A(D)|p|D−4 + Bd(D, L), (40)

with the d-independent coefficient of the |p|-term being

A(D) = (2π)4−3D/2 2−D/2b(D)Γ

(

2 − D

2

)

, (41)

and where we have defined

b(D) =
∫ 1

0
dx [x(1 − x)]D/2−2 = 23−D

√
π

Γ
(

D
2 − 1

)

Γ
(

D−1
2

) , for Re(D) > 2. (42)

We remark that, for the physically interesting dimension D = 3, b(3) = π. This implies that
A(3) = π/4.

If an infrared-stable fixed point exists for any of the models with d compactified dimensions,
it is possible to determine it by a study of the infrared behavior of the Callan–Symanzik β
function. Therefore, we investigate the above equations for |p| ≈ 0. With this restriction,
we may use the asymptotic formula for small values of the argument of the Bessel functions,
and the expressions for Bd simplify considerably [see the reasoning leading to Eq. (13)]. The
result is expressed in terms of one of the multidimensional Epstein–Hurwitz zeta functions of
Eq. (14). In this limit, the p2-dependence of the Bessel functions exactly compensates the
one coming from the accompanying factors. Thus, the remaining p2-dependence is only
that of the first term of (39), which is the same for all number of compactified dimensions
d. For general and detailed expressions, see Linhares et al. (2011). One can also construct
analytical continuations and recurrence relations for the multidimensional Epstein functions,
which permit to write them in terms of modified Bessel and Riemann zeta functions [Khanna
et al. (2009); Kirsten (1994)]. We thus are able to derive expressions for each particular value of
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d, from 1 to D, in the |p| ≈ 0 limit, but let us restrict ourselves to the most expressive values,
corresponding to materials in the form of a film, a wire, or a grain.

Therefore, for a film, we obtain

Bd=1(D, L) ∼ (2π)−D/22D/2−3L4−DΓ

(

D

2
− 2

)

ζ(D − 4). (43)

The above expression is valid for all odd dimensions D > 5, due to the poles of the Γ and
ζ functions. We can obtain an expression for smaller values of D by performing an analytic
continuation of the Riemann zeta function ζ(D − 4) by means of its reflection property,

ζ(z) =
1

Γ (z/2)
Γ

(

1 − z

2

)

πz−1/2ζ (1 − z) . (44)

Then Eq. (43) leads to an expression valid for 2 < D < 4 given by

Bd=1(D, L) = 2−3π(D−9)/2L4−DΓ

(

5 − D

2

)

ζ(5 − D). (45)

For D = 3, we have Bd=1(3, L) = L/48π. For d = 2 and d = 3, similar expressions are
obtained. An analysis of the singularity structure of the quantities Bd shows that their domain
of existence can be extended to 2 < D < 4 [Linhares et al. (2011)].

To discuss infrared properties of these compactified models, we insert Eq. (40) in Eq. (38) and
we get the (p, L)-dependent coupling constant

λ (|p| ≈ 0, D, L) ≈ λ

1 + λ
[

A(D)|p|D−4 + Bd (D, L)
] . (46)

Let us take |p| as a running scale, and define the dimensionless coupling constant

g = λ (p, D, L) |p|D−4. (47)

We recall that in these expressions p is a D-dimensional vector. The Callan-Symanzik β
function controls the rate of the renormalization-group flow of the running coupling constant
and a (nontrivial) fixed point of this flow is given by a (nontrivial) zero of the β function. For
|p| ≈ 0, it is obtained straightforwardly from Eq. (47),

β(g) = |p| ∂g

∂|p| ≈ (D − 4)
[

g − A(D)g2
]

, (48)

from which we get the infrared-stable fixed point

g∗(D) =
1

A(D)
. (49)

We see that the L-dependent Bd-part of the subdiagram Πcr does not play any role in
this expression and, as remarked before, A(D) is the same for all number of compactified
dimensions, so is g∗ only dependent on the space dimension.
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5.2 The system with an external magnetic field

We now take the N-component Ginzburg–Landau model of the previous subsection to
describe the behavior of d-confined systems, now in the presence of an external magnetic
field, at leading order in 1/N. The Hamiltonian density (29) is then modified to

H =
[(

∂µ − ieAext
µ

)

ϕa

]

[(

∂µ − ieAext,µ) ϕa
]

+ m2 ϕa ϕa +
λ

N
(ϕa ϕa)

2, (50)

where m2 = α(T − Tc), with α > 0. For D = 3, from a physical point of view, such
Hamiltonian is supposed to describe type-II superconductors. In this case, we assume that the
external magnetic field H is parallel to the z-axis and we choose the gauge Aext = (0, xH, 0).
In the present D-dimensional case, we assume analogously a gauge Aext = (0, x1H, 0, 0, . . . , 0),
with {xi} = x1, x2, . . . , xD, meaning that the applied external magnetic field lies on a fixed
direction along one of the coordinate axis; for simplicity, in the calculations that follow, we
have adopted the notation x1 ≡ x, x2 ≡ y. If we consider the system in unlimited space, the
field ϕ should be written in terms of the well-known Landau-level basis,

ϕ(r) =
∞

∑
ℓ=0

∫ dpy

2π

∫

dD−2 p

(2π)D−2 ϕ̃ℓ,py ,pχℓ,py ,p(r), (51)

where χℓ,py ,p(r) are the Landau-level eigenfunctions given in terms of Hermite polynomials
Hℓ by

χℓ,py ,p(r) =
1√
2ℓℓ!

(ω

π

)1/4
ei(p·r+pyy)e−ω(x−py/ω)2/2Hℓ

(√
ωx − py√

ω

)

, (52)

with energy eigenvalues Eℓ (|p|) = |p|2 + (2ℓ+ 1)ω + m2 and ω = eH is the so-called
cyclotron frequency. In the above equation, p and r are (D − 2)-dimensional vectors.

In the following, we consider only the lowest Landau level ℓ = 0. For D = 3, this assumption
usually corresponds to the description of superconductors in the extreme type-II limit. Under
this assumption, we obtain that the effective |ϕ|4 interaction in momentum space and at the
critical point (m = 0) is written as

λ(p, L; ω) =
λ

1 + λωe−(1/2ω)(p2
1+p2

2)Π(p, L; ω)
, (53)

where the single 1-loop four-point function, Π(p, L; ω), is given by

Π(p, L; ω) =
1
Ld

d

∑
i=1

∞

∑
ni=−∞

∫ 1

0
dx

∫

dD−d−2q

(2π)D−d−2

×
[

q2 + ω2
n1
+ · · ·+ ω2

nd
+ p2x(1 − x)

]−2
. (54)

This is the same kind of expression that is encountered in the previous subsection, Eq. (37),
with the only modification that D → D − 2. The analysis is then performed along the same
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lines and we obtain, analogously,

Π(p, L; ω) = (2π)1−D/2

[

21−D/2 1

(2π)2 c(D)Γ

(

3 − D

2

)

(

p2
)D/2−3

+
∫ 1

0
dx d

∞

∑
n=1

(

√

p2x(1 − x)

2πLn

)D/2−3

KD/2−3

(

Ln

2π

√

p2x(1 − x)

)

+ · · ·+ 2d−1
∫ 1

0
dx

∞

∑
n1,...,nd=1

⎛

⎝

√

p2x(1 − x)

2πL
√

n2
1 + · · ·+ n2

d

⎞

⎠

D/2−3

×KD/2−3

(

1
2π

√

p2x(1 − x)
√

n2
1 + · · ·+ n2

d

)]

, (55)

where

c(D) =
∫ 1

0
dx (x(1 − x))D/2−3 = 25−D

√
π

Γ
(

D
2 − 2

)

Γ
(

D−3
2

) , for Re(D) > 4. (56)

As for the infrared behavior of the β function, it suffices to study it in the neighborhood of
|p| = 0, so that we can again use the asymptotic formula for Bessel functions for small values
of the argument, as before. It turns out that in the |p| ≈ 0 limit, the bubble Πcr is written in
the form

Πcr(|p| ≈ 0, L; ω) = A1(D) |p|D−6 + Cd(D, L), (57)

with

A1(D) = (2π)−D/2−1 21−D/2c(D)Γ

(

3 − D

2

)

, (58)

and where the quantity Cd(D, L) is obtained by simply making the change D → D − 2 in the
formula for Bd(D, L) in the preceding subsection.

Let us remind Eq. (53) and define the dimensionless coupling constant

g(1) = ωλ(p1 = p2 = 0, D, L)|p|D−6, (59)

where we remember that in this context p is a (D − 2)-dimensional vector. As before, we
take as a running scale |p| and after performing manipulations entirely analogous to those
in the previous subsection and recalling Eq. (56), we have the extended domain of validity
4 < D < 6 for the quantities Cd=1(D; L), for all d = 1, 2, 3. We then get the β function for
|p| ≈ 0,

β(g) = |p| ∂g(1)

∂|p| ≈ (D − 6)
[

g(1) − A1(D)
(

g(1)
)2
]

, (60)

from which the infrared-stable fixed point is obtained:

g
(1)
∗ (D) =

1
A1(D)

. (61)
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6. Concluding remarks

Investigations on the dependence of the critical temperature for films with its thickness have
been done in other contexts and approaches, different from the one we adopt. For instance,
in Zinn-Justin (2002), an analysis of the renormalization group in finite-size geometries can be
found and scaling laws have been studied. Also, such a dependence has been investigated
in Asamitsu et al. (1994); Minhaj et al. (1994); Quateman (1986); Raffy et al. (1983) from
both experimental and theoretical points of view, explaining this effect in terms of proximity,
localization and Coulomb interaction. In particular, Quateman (1986) predicts, as our model
also does, a suppression of the superconducting transition for thicknesses below a minimal
value. More recently, in Shanenko et al. (2006) the thickness dependence of the critical
temperature is explained in terms of a shape-dependent superconducting resonance, but no
suppression of the transition is predicted or exhibited.

In this chapter, we have adopted a phenomenological approach, discussing the
(

λ|ϕ|4
)

D and
(

−λ|ϕ|4 + η|ϕ|6
)

D theories compactified in d ≤ D Euclidean dimensions. We have presented
a general formalism which, in the framework of the Ginzburg–Landau model, is able to
describe phase transitions for systems defined in spaces of arbitrary dimensions, some of
them being compactified. We have focused in particular on the situations with D = 3 and d =
1, 2, 3, corresponding (in the context of condensed-matter systems) to films, wires and grains,
respectively, undergoing phase transitions which may be described by Ginzburg–Landau
models. This generalizes previous works dealing with first- and second-order transitions in
low-dimensional systems [Abreu et al. (2005); Linhares et al. (2006); Malbouisson et al. (2002)].

We have observed the contrasting behavior of the critical temperature on the size of the
system, whether the transition is first- or second-order. This may indicate that from this shape
dependence one can infer the order of the transition the system undergoes.

In what a renormalization group approach is concerned, we have discussed the infrared
behavior and the fixed-point structure of the compactified O(N) λϕ4 in the large-N limit.
We have shown that, whether in the absence or presence of an external magnetic field, the
existence of an infrared-stable fixed point depends only on the space dimension D, not on the
number of compactified dimensions.
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