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1. Introduction

In what follows we will show how one can realize the notion of "clothed " particles (Greenberg
& Schweber, 1958) for field theoretical treatments based upon the so-called instant form of
relativistic dynamics formulated by Dirac (Dirac, 1949). In the context, let us recall that the
notion points out a transparent way for including the so-called cloud or persistent effects
in a system of interacting fields (to be definite, mesons and nucleons). A constructive
step (see surveys (Shebeko & Shirokov, 2000; 2001) and refs. therein) is to express the
total field Hamiltonian H and other operators of great physical meaning, e.g., the Lorentz
boost generators and current density operators, which depend initially on the creation and
destruction operators for the "bare" particles, through a set of their "clothed" counterparts.
It is achieved via unitary clothing transformations (UCTs) (see article (Korda et al., 2007))
in the Hilbert space H of meson-nucleon states and we stress, as before, that each of such
transformations remains the Hamiltonian unchanged unlike other unitary transformation
methods (Glöckle & Müller, 1981; Kobayashi, 1997; Okubo, 1954; Stefanovich, 2001))1 for
Hamiltonian-based models. In the course of the clothing procedure a large amount of
virtual processes associated in our case with the meson absorption/emission, the NN̄-pair
annihilation/production and other cloud effects turns out to be accumulated in the creation
(destruction) operators for the clothed particles. The latter, being the quasiparticles of the
method of UCTs, must have the properties (charges, masses, etc.) of physical (observable)
particles. Such a bootstrap reflects the most significant distinction between the concepts of
clothed and bare particles.

At the same time, after Dirac, any relativistic quantum theory may be so defined that the
generator of time translations (Hamiltonian), the generators of space translations (linear
momentum), space rotations (angular momentum) and Lorentz transformations (boost
operator) satisfy the well-known commutations. Basic ideas, put forward by Dirac with his
"front", "instant" and "point" forms of the relativistic dynamics, have been realized in many
relativistic quantum mechanical models. In this context, the survey (Keister & Polyzou, 1991),
being a remarkable introduction to a subfield called the relativistic Hamiltonian dynamics,

1 Some specific features of these methods are discussed in (Shebeko & Shirokov, 2001) and (Korda et al.,
2007)
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represents various aspects and achievements of relativistic direct interaction theories. Among
the vast literature on this subject we would like to note an exhaustive exposition in lectures
(Bakker, 2001; Heinzl, 2001) of the appealing features of the relativistic Hamiltonian dynamics
with an emphasis on "light-cone quantization". Following a pioneering work (Foldy, 1961),
the term "direct" is related to a system with a fixed number of interacting particles, where
interactions are rather direct than mediated through a field. In the approach it is customary
to consider such interactions expressed in terms of the particle coordinates, momenta and
spins. Along the guideline the so-called separable interactions and relativistic center-of-mass
variables for composite systems were built up by assuming that the generators of the Poincaré
group (Π) can be represented as expansions on powers of 1/c2 or, more exactly, (v/c)2,
where v is a typical nuclear velocity (cf. the (p/m) expansion, introduced in (Friar, 1975),
where m is the nucleon mass and p is a typical nucleon momentum). Afterwards, similar
expansions were rederived and reexamined (with new physical inputs) in the framework of a
field-theoretic approach (Glöckle & Müller, 1981). There, starting from a model Lagrangian for
"scalar nucleons" interacting with a scalar meson field (like the Wentzel model (Wentzel, 1949))
the authors showed (to our knowledge first) how the Hamiltonian and the boost generator
(these noncommuting operators), determined in a standard manner (Schwinger, 1962), can
be blockdiagonalized by one and the same unitary transformation after Okubo (Okubo, 1954).
The corresponding blocks derived in leading order in the coupling constant act in the subspace
with a fixed nucleon number (the nucleon "sector" of the full space H ). In general, the work
(Glöckle & Müller, 1981) and its continuation (Krüger & Glöckle, 1999) exemplify applications
of local relativistic quantum field theory (RQFT), where the generators of interest, being
compatible with the basic commutation rules for fields, are constructed within the Lagrangian
formalism using the Nöther theorem and its consequences. Although the available covariant
perturbation theory and functional-integral methods are very successful when describing
various relativistic and quantum effects in the world of elementary particles, the Hamilton
method can be helpful too. As known, it is the case, where one has to study properties of
strongly interacting particles, e.g., as in nuclear physics with its problems of bound states for
meson-nucleon systems. Of course, any Hamiltonian formulation of field theory, not being
manifestly covariant, cannot be ab initio accepted as equivalent to the way after Feynman,
Schwinger and Tomonaga. However, in order to overcome the obstacle starting from a field
Hamiltonian H one can consider it as one of the ten infinitesimal operators (generators)
of space-time translations and pure Lorentz transformations that act in a proper Hilbert
space. Taken together they compose a basis of the Lie-Poincaré algebra (see below) to ensure
relativistic invariance (RI) in the Dirac sense, being referred to the RI as a whole.

The purpose of the present exposition is twofold. First, we consider an algebraic method
(Shebeko & Frolov , 2011) to meet the Poincaré commutators for a wide class of field theoretic
models (local and nonlocal ones taking into account their invariance with respect to space
translations). In particular, this recursive method is appropriate for models with derivative
couplings and spins ≥1 , typical of the meson theory of nuclear forces, where only some
part of the interaction density in the Dirac picture has the property to be a Lorentz scalar.
The antiparticle degrees of freedom are included together with such an important issue as
mass renormalization vs relativistic invariance in the Dirac sense. Second, special attention is
paid to finding analytic expressions for the generators in the clothed-particle representation,
in which the so-called bad terms are simultaneously removed from the Hamiltonian and the
boosts. Moreover, the mass renormalization terms introduced in the Hamiltonian at the outset

4 Advances in Quantum Field Theory
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turn out to be related to certain covariant integrals that are convergent in the field models
with proper cutoff factors. After constructing interactions between the clothed particles and
addressing an equivalence theorem for evaluation of the S-matrix we derive the approximate
eigenvalue equations for the simplest bound and scattering states. The latter can be found in
a nonperturbative way using the methods elaborated in the theory of nuclear structure and
reactions that is demonstrated by a few examples.

However, before to apply the UCT method (in particular, beyond the Lagrangian formalism
with its local interaction densities) we would like to mention the two algebraic procedures to
solve the basic commutator equations of Π (see Sec. 2). One of them, proposed in (Shebeko
& Frolov , 2011), has some touching points with the other developed in (Kita, 1966; 1968) and
essentially repeated many years after by Chandler (Chandler, 2003). In paper (Kita, 1968)
the author considers three kinds of neutral spinless bosons and nonlocal interaction between
them in a relativistic version of the Lee model with a cutoff in momentum space. A similar
model for two spinless particles has been utilized in (Chandler, 2003) with a Yukawa-type
interaction that belongs to the realm of the so-called models with persistent vacuum (see, for
instance, (Eckmann, 1970)). Certain resemblance between our and those explorations is that
we prefer to proceed within a corpuscular picture (see Chapter IV in monograph (Weinberg,
1995)), where each of the ten generators of the Poincaré group Π (and not only they) may be
expressed as a sum of products of particle creation and annihilation operators a†(n) and a(n)
(n = 1, 2, ...), e.g., bosons and/or fermions. Some mathematical aspects of the corpuscular
notion were formulated many years ago in (Friedrichs, 1953) (Chapter III). As in (Weinberg,
1995), a label n is associated with all the necessary quantum numbers for a single particle: its
momentum p n

2, spin z-component (helicity for massless particles) µ n, and species ξ n. The
operators a†(n) and a(n) satisfy the standard commutation relations such as Eqs. (4.2.5)-(4.2.7)
in (Weinberg, 1995).

In the framework of such a picture the Hamiltonian of a system of interacting mesons and
nucleons can be written as

H =
∞

∑
C=0

∞

∑
A=0

HCA, (1)

HCA =
∫

∑ HCA(1
′, 2′, ..., n′

C; 1,2,...,nA)a†(1′)a†(2′)...a†(n′
C)a(nA)...a(2)a(1), (2)

where the capital C(A) denotes the particle-creation (annihilation) number for the operator
substructure HCA. Sometimes we say that the latter belongs to the class [C.A] . Operation
∫

∑ implies all necessary summations over discrete indices and covariant integrations over
continuous spectra.

Further, it is proved (Weinberg, 1995) that the S-matrix meets the so-called cluster
decomposition principle, if the coefficient functions HCA embody a single three-dimensional
momentum-conservation delta function, viz.,

HCA(1
′, 2′, ..., C; 1,2, ...,A) = δ(p′

1 + p′
2 + ... + p′

C − p1 − p2 − ... − pA)

× hCA(p′1µ′
1ξ ′1, p′2µ′

2ξ ′2, ..., p′Cµ′
Cξ ′C; p1µ1ξ1, p2µ2ξ2, ..., pAµAξA), (3)

2 Or the 4-momentum p n = (p0
n, p n) on the mass shell p2

n = p02
n − p2

n = m2
n with the particle mass mn

5The Method of Unitary Clothing Transformations in Quantum Field Theory:
Applications in the Theory of Nuclear Forces and Reactions
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where the c-number coefficients hCA do not contain delta function.

Following the guideline “to free ourselves from any dependence on pre-existing field theories
”(cit. from (Weinberg, 1995) on p.175), the three boost operators N =(N1, N2, N3) can be
written as

N =
∞

∑
C=0

∞

∑
A=0

NCA, (4)

NCA =
∫

∑ NCA(1
′, 2′, ..., n′

C; 1,2, ...,nA)a†(1′)a†(2′)...a†(n′
C)a(nA)...a(2)a(1). (5)

In turn, the operator H, being divided into the no-interaction part HF and the interaction HI ,
owing to its translational invariance allows HI to be written as

HI =
∫

HI(x)dx. (6)

Our consideration is focused upon various field models (local and nonlocal) in which the
interaction density HI(x) consists of scalar Hsc(x) and nonscalar Hnsc(x) contributions,

HI(x) = Hsc(x) + Hnsc(x), (7)

where the property to be a scalar means

UF(Λ)Hsc(x)U−1
F = Hsc(Λx), ∀x = (t, x) (8)

for all Lorentz transformations Λ. Henceforth, for any operator O(x) in the Schrödinger (S)
picture it is introduced its counterpart O(x) = exp(iHFt)O(x) exp(−iHFt) in the Dirac (D)
picture.

2. Basic equations in relativistic theory with particle creation and annihilation

When seeking links between the coefficients in the r.h.s. of Eqs. (2) and (5) one considers the
fundamental relations of the Lie-Poincaré algebra, which can be divided into the three kinds
for:
no-interaction generators

[Pi,Pj] = 0, [Ji,Jj] = iεijk Jk, [Ji,Pj] = iεijkPk, (9)

relations linear in H and N

[P,H] = 0, [J,H] = 0, [Ji,Nj] = iεijk Nk, [Pi,Nj] = iδij H, (10)

and ones nonlinear in H and N

[H, N] = iP, [Ni,Nj] = −iεijk Jk, (11)

(i, j, k = 1, 2, 3),

where P = (P1, P2, P3) and J = (J1, J2, J3) are the linear momentum and angular momentum
operators, respectively. In this context, let us remind that in the instant form of relativistic
dynamics after Dirac (Dirac, 1949) only the Hamiltonian and the boost operators carry

6 Advances in Quantum Field Theory
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interactions with conventional partitions H = HF + HI and N = NF + NI , while P = PF

and J = JF. In short notations, we distinguish the set GF = {HF, PF, JF, NF} for free particles
and the set G = {H, PF, JF, N} for interacting particles.

In turn, every operator HCA can be represented as HCA =
∫

HCA(x)dx, if one uses the formula

δ(p − p′) =
1

(2π)3

∫

ei(p−p′)xdx.

Thus, we come to the form H =
∫

H(x)dx well known from local field models with the density

H(x) =
∞

∑
C=0

∞

∑
A=0

HCA(x). (12)

For instance, in case with C = A = 2, where H22(1
′, 2′; 1, 2) = δ(p′

1 + p′
2 − p1 −

p2)h(1
′, 2′; 1, 2), we have

H22(x) =
1

(2π)3

∫

∑ exp[−i(p′
1 + p′

2 − p1 − p2)x]h(1
′, 2′; 1, 2)a†

(

1′
)

a†
(

2′
)

a (2) a (1) . (13)

Further, we will employ the transformation properties of the creation and annihilation
operators with respect to Π. For example, in case of a massive particle with the mass m and
spin j one considers that

UF(Λ, b)a†(p, µ)U−1
F (Λ, b) = eiΛpbD

(j)
µ′µ(W(Λ, p))a†(Λp, µ′), (14)

∀Λ ∈ L+ and arbitrary spacetime shifts b = (b0, b)

with D-function whose argument is the Wigner rotation W(Λ, p), L+ the homogeneous
(proper) orthochronous Lorentz group. The correspondence (Λ, b) → UF(Λ, b)
between elements (Λ, b) ∈ Π and unitary transformations UF(Λ, b) realizes an irreducible
representation of Π on the Hilbert space H (to be definite) of meson-nucleon states. In this
context, it is convenient to employ the operators a(p, µ) = a(p, µ)

√
p0 that meet the covariant

commutation relations

[a(p′, µ′), a†(p, µ)]± = p0δ(p − p′)δµ′µ,

[a(p′, µ′), a(p, µ)]± = [a†(p′, µ′), a†(p, µ)]± = 0. (15)

Here p0 =
√

p2 + m2 is the fourth component of the 4-momentum p = (p0, p).

3. A possible way for constructing generators of the Poincaré group

Let us recall that within the Lagrangian formalism the 4-vector Pµ = (H, P) for any local field
model, where requirements of relativistic symmetry are manifestly provided at the beginning,
is determined by the Nöther integrals

P ν =
∫

T 0ν(x)dx (ν = 0, 1, 2, 3), (16)

7The Method of Unitary Clothing Transformations in Quantum Field Theory:
Applications in the Theory of Nuclear Forces and Reactions
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where T 0ν(x) are the components of the energy-momentum tensor density T µν(x) at t = 0.

Other Nöther integrals are expressed through the angular-momentum tensor density

Mβ[µν](x) = x µT βν(x)− x νT βµ(x) + Σβ[µν](x), (17)

that contains, in general, so-called polarization part Σβ[µν]3 associated with spin degrees of
freedom. Namely, the six independent integrals

Mµν =
∫

M0[µν](x)dx

∣

∣

∣

∣

t=0

(18)

are considered as the generators of space rotations

Ji = εikl Mkl (i, k, l = 1, 2, 3) (19)

and the boosts

Nk ≡ M0k = −
∫

xkT 00(x)dx+
∫

Σ0[0k](x)dx, (k = 1, 2, 3). (20)

The reminder is not accidental as far as we strive to go out beyond the traditional QFT
with local Lagrangian densities via special regularization of interactions in a total initial
Hamiltonian.

3.1 The Belinfante ansatz. Application to interacting pion and nucleon fields

Regarding an illustration of these general relations let us write, the Lagrangian density

LSCH(x) =
1

2
ψ̄H(x)(iγ µ−→∂ µ − m0)ψH(x) +

1

2
ψ̄H(x)(−iγ µ←−∂ µ − m0)ψH(x)

+
1

2
[∂ µ ϕH(x)∂ µ ϕH(x)− µ2

0 ϕ2
H(x)]− ig0ψ̄H(x)γ5ψH(x)ϕH(x), (21)

for interacting pion φ and nucleon ψ fields with the PS coupling (see, e.g.,(Schweber, 1961)).
Then, one has (omitting argument x): i) energy-momentum tensor density

T µν
SCH =

∂LSCH

∂ψ̄H µ
ψ̄ ν

H +
∂LSCH

∂ψH µ
ψ ν

H +
∂LSCH

∂ϕH µ
ϕ ν

H − gµνLSCH

≡ T µν
N + T µν

π + T µν
I , (22)

where

T µν
N =

i

2
ψ̄Hγ µ∂ νψH − i

2
γ µψH∂νψ̄H − gµνLN , (23)

T µν
π = ∂ µ ϕH∂ ν ϕH − gµνLπ , (24)

T µν
I = ig0gµνψ̄Hγ5ψH ϕH , (25)

3 Henceforth, the symbol [α, β] for any labels α and β means the property f [β,α] = − f [α,β] for its carrier f .

8 Advances in Quantum Field Theory
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and ii) polarization contribution

Σ
β[µν]
SCH =

1

2
iψ̄H{γ βΣ µν + Σ µνγ β}ψH , (26)

where

Σ µν =
i

4
[γ µ, γ ν].

In formulae (21)-(25) unlike operators O(x) in the D picture, we have operators

OH(x) = eiHtO(x)e−iHt,

in the Heisenberg picture. We prefer to employ the definitions:

{γ µ, γ ν} = 2gµν, γ†
µ = γ0γ µγ0, {γ µ, γ5} = 0, γ†

5 = γ0γ5γ0 = −γ5.

The corresponding Hamiltonian density is given by

HSCH(x) = T 00
SCH(x) = H0

f erm(x) + H0
π(x) + V0

ps(x), (27)

where

H0
f erm(x) =

1

2
ψ̄(x)[−i−→γ −→

∂ + m0]ψ(x) +
1

2
ψ̄(x)[+i←−γ ←−

∂ + m0]ψ(x), (28)

H0
π(x) =

1

2

[

π2(x) +∇ϕ(x)∇ϕ(x) + µ2
0 ϕ2(x)

]

, (29)

V0
ps(x) = ig0ψ̄(x)γ5ψ(x)ϕ(x), (30)

where, as usually, π(x) denotes the canonical conjugate variable for the pion field. One should
note that the second integral in the r.h.s. of Eq. (20) does not contribute to the model boost
since operator (26) with β = µ = 0 and ν = k is identically equal zero. Thus we arrive to the
relation

NSCH = −
∫

xT 00
SCH(x)dx = −

∫

xHSCH(x)dx, (31)

that exemplifies the so-called Belinfante ansatz:

N = −
∫

xH(x)dx, (32)

which, as it has first been shown in (Belinfante, 1940), holds for any local field model with a
symmetrized density T µν(x) = T νµ(x). Such a representation helps (Shebeko & Shirokov,
2001) to get simultaneously a sparse structure for the Hamiltonian and the generators of
Lorentz boosts in the CPR 4. We shall come back to this point later.

Further, the Hamiltonian density can be represented as

HSCH(x) = HF(x) + HI(x) (33)

4 The relation (32) also has turned out to be useful when formulating a local analog of the Siegert theorem
in the covariant description of electromagnetic interactions with nuclei (Shebeko, 1990).

9The Method of Unitary Clothing Transformations in Quantum Field Theory:
Applications in the Theory of Nuclear Forces and Reactions
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with the free part
HF(x) = Hπ(x) + H f erm(x) (34)

and the interaction density

HI(x) = Vps(x) + Hren(x), Vps(x) = igψ̄(x)γ5ψ(x)ϕ(x), (35)

where we have introduced the mass and vertex counterterms:

Hren(x) = Mmes
ren (x) + M

f erm
ren (x) + Hint

ren(x), (36)

Mmes
ren (x) =

1

2
(µ2

0 − µ2
π)ϕ2(x),

M
f erm
ren (x) = (m0 − m)ψ̄(x)ψ(x)

and
Hint

ren(x) = i(g0 − g)ψ̄(x)γ5ψ(x)ϕ(x).

One should note that the densities in Eqs. (34)-(35) are obtained from Eqs. (28)-(29) replacing
the bare values m0, µ0 and g0, respectively, by the "physical" values m, µπ and g. Such a
transition can be done via the mass-changing Bogoliubov-type transformations (details in
(Korda et al., 2007)). In particular, the fields involved can be expressed through the set
α = a†(a), b†(b), d†(d) of the creation (destruction) operators for the bare pions and nucleons
with the physical masses,

ϕ(x) = (2π)−3/2
∫

(2ωk)
−1/2[a(k) + a†(−k)]exp(ikx)dk, (37)

π(x) = −i(2π)−3/2
∫

(ωk/2)1/2[a(k)− a†(−k)]exp(ikx)dk, (38)

ψ(x) = (2π)−3/2
∫

(m/Ep)1/2 ∑
µ
[u(pµ)b(pµ)

+ v(−pµ)d†(−pµ)]exp(ipx)dp. (39)

Substituting (33) into (31), we find
N = NF + NI

with

NF = N f erm + Nπ = −
∫

xH f erm(x)dx −
∫

xHπ(x)dx

and

NI = −
∫

xHI(x)dx.

Now, taking into account the transformation properties of the fermion field ψ(x) and the pion
field ϕ(x) with respect to Π, it is readily seen that in the D picture density (33) is a scalar, i.e.,

UF(Λ, b)HSCH(x)U−1
F (Λ, b) = HSCH(Λx + b), (40)

so
UF(Λ, b)HI(x)U−1

F (Λ, b) = HI(Λx + b). (41)

10 Advances in Quantum Field Theory
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It is well known (see, e.g., Sect. 5.1 in (Weinberg, 1995)) that for a large class of theories the
property (41) with the corresponding interaction densities HI(x), being supplemented by the
condition

[HI(x′), HI(x)] = 0 f or (x′ − x)2 ≤ 0, (42)

plays a crucial role for covariant calculations of the S-matrix.

3.2 An algebraic approach within the Hamiltonian formalism

After these preliminaries, let us consider field models with the decomposition

HI = Hsc + Hnsc ≡
∫

Hsc(x)dx +
∫

Hnsc(x)dx. (43)

It means that only the density in the first integral has the property (41), i.e.,

UF(Λ, b)Hsc(x)U−1
F (Λ, b) = Hsc(Λx + b). (44)

It is the case, where the pseudoscalar (π and η), vector (ρ and ω) and scalar (δ and σ)
meson (boson) fields interact with the 1/2 spin (N and N̄) fermion ones via the Yukawa–type
couplings V = ∑b Vb = Vs + Vps + Vv in

HI = V + mass and vertex counterterms (45)

with

Vs = gs

∫

d�x ψ̄(�x)ψ(�x)ϕs(�x), (46)

Vps = igps

∫

d�x ψ̄(�x)γ5ψ(�x)ϕps(�x) (47)

and

Vv =
∫

d�x

{

gvψ̄(�x)γµψ(�x)ϕ
µ
v(�x) +

fv

4m
ψ̄(�x)σµνψ(�x)ϕ

µν
v (�x)

}

+
∫

d�x

{

g2
v

2m2
v

ψ̄(�x)γ0ψ(�x)ψ̄(�x)γ0ψ(�x) +
f 2
v

4m2
ψ̄(�x)σ0iψ(�x)ψ̄(�x)σ0iψ(�x)

}

, (48)

where ϕ
µν
v (�x) = ∂µ ϕν

v(�x) − ∂ν ϕ
µ
v(�x) is the tensor of the vector fields involved (details in

(Dubovyk & Shebeko, 2010)).

In the context we would like to remind that in "...theories with derivative couplings or spins
j ≥ 1, it is not enough to take Hamiltonian as the integral over space of a scalar interaction
density; we also need to add non-scalar terms to the interaction density to compensate
non-covariant terms in the propagators" (quoted from Chapter VII in (Weinberg, 1995)).

Then, taking into account that the first relation (11) is equivalent to the equality

[NF, HI ] = [H, NI ], (49)

we will evaluate its l.h.s.. In this connection, let us regard the operator

Hsc(t) =
∫

Hsc(x)dx (50)

11The Method of Unitary Clothing Transformations in Quantum Field Theory:
Applications in the Theory of Nuclear Forces and Reactions
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and its similarity transformation

ei�βNF Hsc(t)e
−i�βNF =

∫

Hsc(L(�β)x)dx, (51)

where L(�β) is any Lorentz boost with the parameters �β = (β1, β2, β3).

From (51) it follows that

ieiβ1 N1
F [N1

F, Hsc(t)]e
−iβ1 N1

F =
∂

∂β1

∫

Hsc(L(β1)x)dx, (52)

whence, for instance,

i[N1
F, Hsc(t)] = lim

β1→0

∂

∂β1

∫

Hsc(t − β1x1, x1 − β1t, x2, x3)dx

= −
∫

(t
∂

∂x1
Hsc(x) + x1 ∂

∂t
Hsc(x))dx,

(53)

since for the infinitesimal boost

L(�β)x = (t − �βx, x − �βt).

In turn, from (53) we get

[N1
F, Hsc] = i lim

t→0

∫

(−it[P1, Hsc(x)] + ix1[HF, Hsc(x)])dx

so

[NF, Hsc] = −
∫

x[HF, Hsc(x)]dx. (54)

By using Eq. (54) equality (49) can be written as

−
∫

x[HF, Hsc(x)]dx = [HF, NI ] + [HI , NI ] + [Hnsc, NF]. (55)

Evidently, this equation is fulfilled if we put

NI = NB ≡ −
∫

xHsc(x)dx (56)

and

[Hsc, NI ] = −
∫

xdx

∫

dx′[Hsc(x
′), Hsc(x)] = [NF + NI , Hnsc] (57)

or
∫

dx

∫

dx′(x′ − x)[Hsc(x
′), Hsc(x)]

=
∫

xdx

∫

dx′[Hnsc(x
′), HF(x) + Hsc(x)]. (58)

In a model with Hnsc = 0 the latter reduces to
∫

e−iPXIeiPXdX = 0, (59)
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where

I =
1

2

∫

rdr[Hsc(
1

2
r), Hsc(−

1

2
r)]. (60)

By running again the way from Eq. (49) to Eqs. (59)-(60) we see that the nonlinear
commutation (11)

[H, N] = iP

will take place once along with the Belinfante-type relation (56) the interaction density meets
the condition

∫

rdr[Hsc(
1

2
r), Hsc(−

1

2
r)] = 0. (61)

One should note that we have arrived to Eq. (56) being inside the Poincarè algebra itself
without addressing the Nöther integrals, these stepping stones of the Lagrangian formalism.
In the context, we would like to stress that the condition (61) is weaker compared to the
constraint

[Hsc(
1

2
r), Hsc(−

1

2
r)] = 0 (62)

imposed for all r excepting, may be, the point r = 0. But we recall it as a special case of
the microcausality requirement that is realized in local field models. Beyond such models, as
shown in Appendix B of (Shebeko & Frolov , 2011), Eqs. (56) and (49) may be incompatible. It
makes us seek an alternative to assumption (56) in our attempts to meet Eq. (55).

At this point, we put NI = NB + D to get the relationship

[HF, D] = [NB + D, Hsc] + [NF + NB + D, Hnsc], (63)

that replaces the commutator [H, N] = iP and determines the displacement D.

Further, assuming that the scalar density Hsc(x) is of the first order in coupling constants
involved and putting

Hnsc(x) =
∞

∑
p=2

H
(p)
nsc (x), (64)

we will search the operator D in the form

D =
∞

∑
p=2

D(p), (65)

i.e., as a perturbation expansion in powers of the interaction Hsc. Here the label (p) denotes
the pth order in these constants. By the way, one should keep in mind that the terms in
the r.h.s. of Eq. (64) are usually associated with perturbation series for mass and vertex
counterterms. Evidently, their incorporation may affect the corresponding higher-order
contributions with p ≥ 2 to the boost. Therefore, to comprise different situations of practical
interest let us consider field models in which Hnsc(x) = Vnsc(x) + Vren(x) with a nonscalar
interaction Vnsc =

∫

Vnsc(x)dx and some "renormalization" contribution Vren =
∫

Vren(x)dx.
The latter may be scalar or not. Of course, such a division of Hnsc(x) can be done at the
beginning in Eq. (43). But the scheme presented here seems to us more flexible.

13The Method of Unitary Clothing Transformations in Quantum Field Theory:
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By substituting the expansions (64) and (65) into Eq. (63) we get the chain of relations

[HF, D(2)] = [NF, H
(2)
nsc] + [NB, Hsc], (66)

[HF, D(3)] = [NF, H
(3)
nsc] + [D(2), Hsc] + [NB, H

(2)
nsc], (67)

[HF, D(p)] = [NF, H
(p)
nsc ] + [NB, H

(p−1)
nsc ] + [D(p−1), Hsc] + [D, Hnsc]

(p), (68)

(p = 4, 5, . . .)

for a recursive finding of the operators D(p) (p = 2, 3, ...).

Further, after such substitutions into the commutators

[Pk, Nj] = iδkj H, [Jk, Nj] = iεkjl Nl , [Nk, Nj] = −iεkjl Jl

we deduce, respectively, the following relations:

[Pk, D
(p)
j ] = iδkj H

(p)
nsc (p = 2, 3, ...) (69)

from
[Pk, Dj] = iδkj Hnsc, (70)

[Jk, D
(p)
j ] = iεkjl D

(p)
l (71)

from
[Jk, Dj] = iεkjl Dl (72)

and
[NFk, NBj] + [NBk, NFj] = 0, (73)

The remaining Poincaré commutations are fulfilled once one deals with any rotationally and
translationally invariant theory.

Now, keeping in mind an elegant method by Chandler (Chandler, 2003), we invoke on the
property (see (Friedrichs, 1953)) of a formal solution Y of the equation

[HF, Y] = X (74)

to be any linear functional F(X) of a given operator X �= 0. In other words, it means that

[HF, F(X)] = X (75)

with F(λ1X1 + λ2X2) = λ1F(X1) + λ2F(X2), where λ1 and λ2 are arbitrary c-numbers. In
addition, one can see that

[HF, F(X)] = F([HF, X]). (76)

Moreover, it turns out that
[P, F(X)] = F([P, X]), (77)

[J, F(X)] = F([J, X]), (78)

[NF, F(X)] = F([NF, X]) + iF(F([P, X])). (79)
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In order to prove the relations let us employ the Jacobi identity

[A, [B, C]] + [C, [A, B]] + [B, [C, A]] = 0 (80)

and write
[O, [HF, F(X)]] = −[F(X), [O, HF]] + [HF, [O, F(X)]]

with some operator O. Then

[O, F(X)] = F([O, X]) + F([F(X), [O, HF]]). (81)

Of course, to be more constructive one needs to have a definite realization of the functional
F(X). In this connection, we will use the representation

Y = −i lim
η→0+

∫ ∞

0
X(t)e−ηtdt (82)

of the operator Y that enters the equation (74). The existence proof for such a solution is
sufficiently delicate (see discussion in Appendix A of Ref. (Shebeko & Shirokov, 2001)).

3.3 Application to a nonlocal field model

We will show how the method proposed works in combination with introducing certain cutoff
(vertex) functions that makes an initial local model be nonlocal. In spite of our consideration
may be extended to more realistic models its main idea becomes transparent for a simple
system of "scalar nucleons" (more precisely, charged spinless bosons) and neutral scalar
bosons with the interaction density HI(x) = Vloc(x) + Vren(x) (cf. (Glöckle & Müller, 1981;
Shirokov, 2002)):

Vloc(x) = gϕs(x) : ψ†
b (x)ψb(x) : (83)

and
Vren(x) = δµs : ϕ2

s (x) : +δµb : ψ†
b (x)ψb(x) : (84)

with the mass shifts δµs = 1
2 (µ

2
0s − µ2

s ), δµb = 1
2 (µ

2
0b − µ2

b). In order to regard a nonlocal
extension of this local model let us substitute the expansions

ϕs(x) = [2(2π)3]−1/2
∫

dk

ωk
[a(k)+ a†(k−)]eikx, ψb(x) = [2(2π)3]−1/2

∫

dp

Ep
[b(p)+ d†(p−)]eipx

into Eqs. (83) and (84) to get

Vloc(x) =
g

2[2(2π)3]1/2

∫

dp′

Ep′

∫

dp

Ep

∫

dk

ωk
e−ip′x+ipx+ikx

× a(k) : [b†(p′)b(p) + b†(p′)d†(p−) + d(p′−)b(p) + d(p′−)d
†(p−)] : +H.c. (85)

and Vren(x) = δµs(x) + δµb(x) with

δµs(x) =
δµs

2(2π)3

∫

dk′

ωk′

∫

dk

ωk
: [a(k′) + a†(k′−)]e

ik′x+ikx[a(k) + a†(k−)] :, (86)

15The Method of Unitary Clothing Transformations in Quantum Field Theory:
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14 Will-be-set-by-IN-TECH

δµb(x) =
δµb

2(2π)3

∫

dp′

Ep′

∫

dp

Ep
: [b†(p′) + d(p′−)]e

−ip′x+ipx[b(p) + d†(p−)] : . (87)

It is implied that the operators a(a†), b(b†) and d(d†) meet the commutation relations

[a(k), a†(k′)] = k0δ(k − k′), (88)

[b(p), b†(p′)] = [d(p), d†(p′)] = p0δ(p − p′) (89)

with all the remaining ones being zero.

The interaction operator itself HI =
∫

HI(x)dx = Vloc + Vren with

Vloc =
∫

Vnloc(x)dx =
g

2[2(2π)3]1/2

∫

dp′

Ep′

∫

dp

Ep

∫

dk

ωk
δ(p′ − p − k)

× a(k) : [b†(p′)b(p) + b†(p′)d†(p−) + d(p′−)b(p) + d(p′−)d
†(p−)] : +H.c., (90)

Vren =
∫

[δµs(x) + δµb(x)]dx. (91)

Let us consider its nonlocal extension

HI = Vnloc + Ms + Mb, (92)

where in accordance with the representation (3) we introduce the following normally-ordered
structures:

Vnloc =
∫

Vnloc(x)dx =
∫

dp′

Ep′

∫

dp

Ep

∫

dk

ωk

×{δ(p′ − p − k)g11(p′, p, k)b†(p′)b(p) + δ(p′ + p − k)g12(p′, p, k)b†(p′)d†(p)

+δ(p′ + p + k)g21(p′, p, k)d(p′)b(p)

+ δ(p′ − p − k)g22(p′, p, k)d†(p′)d(p)}a(k) + H.c. (93)

Furthermore, the creation/destruction operators have the transformation properties like (14).
For example,

UF(Λ)a(k)U−1
F (Λ) = a(Λk). (94)

Therefore, in the Dirac picture

UF(Λ)Vloc(x)U−1
F (Λ) = Vloc(Λx), (95)

i.e., the interaction density Vloc(x) is a Lorentz scalar.

For our nonlocal model we will retain the property assuming that

UF(Λ)Vnloc(x)U−1
F (Λ) = Vnloc(Λx). (96)

It is readily seen that this relation holds if the coefficients gε′ε meet the condition

gε′ε(Λp′, Λp, Λk) = gε′ε(p′, p, k). (97)
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On the mass shells with p′2 = p2 = µ2
b and k2 = µ2

s the latter means that the functions
gε′ε(p′, p, k) can depend only upon the invariants p′p, p′k and pk.

The transition from Vloc to Vnloc can be interpreted as an endeavor to regularize the theory.
In the context, the introduction of some cutoff functions gε′ε in momentum space is aimed at
removing ultraviolet divergences typical of local field models with interactions like expression
(83).

An associated exploration carried out in (Shebeko & Frolov , 2011) with covariant cutoffs

gε′ε(p′, p, k) = vε′ε([k + (−1)ε′ p′ − (−1)ε p][k − (−1)ε′ p′ + (−1)ε p]) (98)

has allowed us to evaluate the lowest-order correction D(2) to the Belinfante operator and get
the leading-order analytic expressions for the coefficients in the "mass renormalization" terms
:

Ms =
∫

dk

ω2
k

{m1(k)a†(k)a(k) + m2(k)[a
†(k)a†(k−) + a(k)a(k−)]}, (99)

Mb =
∫

dp

E2
p

{m11(p)b†(p)b(p)+m12(p)b†(p)d†(p−)+m21(p)b(p)d(p−)+m22(p)d†(p)d(p)}.

(100)

4. The method of unitary clothing transformations in action

As shown in (Shebeko & Shirokov, 2001), the Belinfante ansatz turns out to be useful when
constructing the Lorentz boosts in the CPR, viz., the generator N ≡ N(α), being a function of
the primary operators {α} (such as a†(a), b†(b) and d†(d) for the examples regarded above)
in the BPR, is expressed through the corresponding operators {αc} for particle creation and
annihilation in the CPR. The transition {α} =⇒ {αc} is implemented via the special unitary
transformations W(α) = W(αc), viz.,

α = W(αc)αcW†(αc). (101)

These transformations satisfy certain physical requirements:

i) The physical vacuum (the H lowest eigenstate) must coincide with a new no–particle state
Ω, i.e., the state that obeys the equations

ac(�k) |Ω〉 = bc(�p, µ) |Ω〉 = dc(�p, µ) |Ω〉 = 0, ∀ �k, �p, µ (102)

〈Ω|Ω〉 = 1.

ii) New one-particle states |�k〉c ≡ a†
c (�k)Ω etc. are the H eigenvectors as well.

K(αc)|�k〉c = KF(αc)|�k〉c = ωk|�k〉c (103)

KI(αc)|�k〉c = 0 (104)

iii) The spectrum of indices that enumerate the new operators must be the same as that for the
bare ones .
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iv) The new operators αc satisfy the same commutation rules as do their bare counterparts α
that is provided via the link (101) with a unitary operator W to be obtained as in (Shebeko &
Shirokov, 2001).

4.1 The Hamiltonian and other generators of the Poincaré group in the clothed-particle

representation

A key point of the clothing procedure exposed in (Shebeko & Shirokov, 2001) is to remove the
so-called bad terms from the Hamiltonian

H ≡ H(α) = HF(α) + HI(α) = W(αc)H(αc)W
†(αc) ≡ K(αc), (105)

more exactly, from a primary interaction V(α) in HI(α) = V(α) + Vren(α). For example, these
terms b†

c bca†
c , b†

c d†
c ac, b†

c d†
c a†

c , dcd†
c a†

c enter V(αc) determined by Eq. (90) after the replacement
of the bare operators in it by the clothed ones. These terms should be removed together
with their Hermitian conjugate counterterms! to retain the hermiticity of the similarity
transformation (105). In general, such terms prevent the physical vacuum |Ω〉 (the H lowest
eigenstate) and the one-clothed-particle states |n〉c = a†

c (n)|Ω〉 to be the H eigenvectors for all
n included. Here creation operators a†

c (n) are clothed counterparts of those operators a†(n)
that are contained in expansion (2). The bad terms occur every time when any normally
ordered product

a†(1′)a†(2′)...a†(n′
C)a(nA)...a(2)a(1)

of the class [C.A] embodies, at least, one substructure which belongs to one of the classes [k.0]
(k = 1, 2, ...) and [k.1] (k = 0, 1, ...).

Strictly speaking such a departure point should be specified and sometimes modified. Indeed,
by trying to meet the requirements i) and ii) we, at first sight, leave out of consideration
such undesirable terms in Vren(α). Nevertheless, it is not accidental since the renormalization
contribution is canceled in the course of the procedure itself that is some attractive feature of
the UCT method as a whole (see below). In addition, it has turned out (Dubovyk & Shebeko,
2010) that the nonscalar contribution (the second integral in the r.h.s. of Eq. (48)) to the
operator Vv(α) is canceled too when eliminating bad terms only from its scalar part (in fact,
the first integral in the r.h.s. of Eq. (48 )). Keeping this in mind, when handling the division

HI(α) =
∫

HI(x)dx = Hsc(α) + Hnsc(α), (106)

we assume Hsc(α) = Vbad(α) + Vgood(α) to remove the bad part Vbad from the similarity
transformation

K(αc) = W(αc)[HF(αc) + HI(αc)]W
†(αc)

= W(αc)[HF(αc) + Vbad(αc) + Vgood(αc) + Hnsc(αc)]W
†(αc). (107)

Remind that term "good", as an antithesis of "bad", is applied here to those operators (e.g.,
of the class [k.2] with k ≥ 2) which destroy both the no-clothed-particle state Ω and the
one-clothed-particle states.
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For unitary transformation (UCT) W = exp R with R = −R† it is implied that we will
eliminate the bad terms Vbad in the r.h.s. of

K(αc) = HF(αc) + Vbad(αc) + [R, HF] + [R, Vbad] +
1

2
[R, [R, HF]]

+
1

2
[R, [R, Vbad]] + ... + eRVgoode−R + eR Hnsce−R (108)

(cf. Eq. (2.19) in (Shebeko & Shirokov, 2001)) by requiring that

[HF, R] = Vbad (109)

for the operator R of interest.

One should note that unlike the original clothing procedure exposed in (Shebeko & Shirokov,
2001), (Korda et al., 2007) we eliminate here the bad terms only from Hsc interaction in spite
of such terms can appear in the nonscalar interaction as well. This preference is relied upon
the previous experience (Dubovyk & Shebeko, 2010) when applying the method of UCTs in
the theory of nucleon-nucleon scattering. Now we get the division

H = K(αc) = KF + KI (110)

with a new free part KF = HF(αc) ∼ a†
c ac and interaction

KI = Vgood(αc) + Hnsc(αc) + [R, Vgood]

+
1

2
[R, Vbad] + [R, Hnsc] +

1

3
[R, [R, Vbad]] + ..., (111)

where the r.h.s. involves along with good terms other bad terms to be removed via subsequent
UCTs described in Subsec. 2.4 of (Shebeko & Shirokov, 2001) and Sec. 3 of (Korda et al., 2007).

In parallel, we have

N ≡ N(α) = NF(α) + NI(α) = W(αc)N(αc)W
†(αc) ≡ B(αc) (112)

or
B(αc) = NF(αc) + NI(αc) + [R, NF] + [R, NI ] + ..., (113)

where accordingly the division
NI = NB + D, (114)

NB = −
∫

xHsc(x)dx = Nbad + Ngood,

Eq. (113) can be rewritten as

B(αc) = NF(αc) + Nbad(αc) + [R, NF] + [R, Nbad] +
1

2
[R, [R, NF]]

+
1

2
[R, [R, Nbad]] + ... + eRNgoode−R + eRDe−R. (115)
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But it turns out (see the proof of Eq. (3.26) in (Shebeko & Shirokov, 2001)) that if R meets the
condition (109), then

[NF, R] = Nbad = −
∫

xVbad(x)dx (116)

so the boost generators in the CPR can be written likely Eq. (110),

N = B(αc) = BF + BI , (117)

where BF = NF(αc) is the boost operator for noninteracting clothed particles while BI

includes the contributions induced by interactions between them

BI = Ngood(αc) + D(αc) + [R, Ngood]

+
1

2
[R, Nbad] + [R, D] +

1

3
[R, [R, Nbad]] + ... (118)

One should note that in formulae (111) and (118) we are focused upon the R-commutations
with the first-eliminated interaction Vbad. As shown in (Shebeko & Shirokov, 2001), the
brackets, on the one hand, yield new interactions responsible for different physical processes
and, on the other hand, cancel (as a recipe!) the mass and other counterterms that stem from
Hnsc(αc) and D(αc).

But at this place we will come back to our model with Vbad = Vnloc, Vgood = 0 and R = Rnloc

to calculate the simplest commutator [Rnloc, Vnloc] in which accordingly condition (109) the
clothing operator Rnloc is determined by

[HF, Rnloc] = Vnloc. (119)

From the equation it follows (cf. Appendix A in (Shebeko & Shirokov, 2001)) that its solution
can be given by

Rnloc =
∫

dk

ωk
: F†

b R(k)Fb : a(k)− H.c. = Rnloc −R†
nloc. (120)

with the row F†
b =

[

b(p), d†(p)
]

and the column Fb (cf. Eq.(A.8) in (Shebeko & Shirokov,
2001)). The matrix R(k) is composed of the elements

Rε′ε(p′, p, k) = − ḡε′ε(p′, p, k)

ωk + (−1)ε′ Ep′ − (−1)εEp
δ(k + (−1)ε′p′ − (−1)εp). (121)

(ε′, ε = 1, 2)

Such a solution is valid if µs < 2µb. In other words, under such an inequality the operator
Rnloc has the same structure as Vnloc itself. Then, all we need is to evaluate the commutator
[Rnloc, Vnloc].

For example, our calculations result in the boson-boson interaction operator

1

2
[Rnloc, Vnloc](bb → bb) = −1

4

∫

dp′
2

Ep′
2

∫

dp2

Ep2

∫

dp′
1

Ep′
1

∫

dp1

Ep1

δ(p′
1 + p′

2 − p1 − p2)
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×g11(p′1, p1, k)g11(p′2, p2, k)

×
{

1

(p1 − p′1)
2 − µ2

s
+

1

(p2 − p′2)
2 − µ2

s

}

b†
c (p′2)b

†
c (p′1)bc(p2)bc(p1) (122)

with k = p′
1 − p1 and the respective contribution to BI ,

1

2
[Rnloc, NB](bb → bb)

=
i

4

∫

dp′
2

Ep′
2

∫

dp2

Ep2

∫

dp′
1

Ep′
1

∫

dp1

Ep1

∂

∂p′
1

δ(p′
1 + p′

2 − p1 − p2)

×g11(p′1, p1, k)g11(p′2, p2, k)

×
{

1

(p1 − p′1)
2 − µ2

s
+

1

(p2 − p′2)
2 − µ2

s

}

b†
c (p′2)b

†
c (p′1)bc(p2)bc(p1) (123)

In Eqs. (122) and (123) we encounter a covariant (Feynman-like) "propagator"

1

2

{

1

(p1 − p′1)
2 − µ2

s
+

1

(p2 − p′2)
2 − µ2

s

}

, (124)

which on the energy shell
Ep1 + Ep1 = Ep′

1
+ Ep′

2
(125)

is converted into the genuine Feynman propagator for the corresponding S matrix (cf. the first
results in (Shebeko & Shirokov, 2001)).

4.2 Relativistic interactions between clothed particles in meson-nucleon systems

Following the same scenario one can derive analytical expressions for separate contributions
to the operator

KI ∼ a†
c b†

c acbc(πN → πN) + b†
c b†

c bcbc(NN → NN) + d†
c d†

c dcdc(N̄N̄ → N̄N̄)

+ b†
c b†

c b†
c bcbcbc(NNN → NNN) + ... + [a†

c a†
c bcdc + H.c.](NN̄ ↔ 2π) + ...

+ [a†
c b†

c b†
c bcbc + H.c.](NN ↔ πNN) + ... (126)

and, in particular, the operator

K
(2)
I = K(NN → NN) + K(N̄N̄ → N̄N̄) + K(NN̄ → NN̄) + K(bN → bN) + K(bN̄ → bN̄)

+ K(bb′ → NN̄) + K(NN̄ → bb′) (127)

if one starts with the interactions by Eqs. (50)-(52). It has been done in (Shebeko & Shirokov,
2001) and (Korda et al., 2007) so many technical details of those derivations can be found
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Fig. 1. Different contributions to the πN quasipotential.

therein. Note only that the normal ordering is an essential element of them. We will
confine ourselves to the two examples that originate from the corresponding commutator
1
2 [R, V(bad)].

4.2.1 Pion-nucleon interaction operator

As a result, we show the contribution

K(πN → πN) =
∫

d�p1d�p2d�k1d�k2 VπN(�k2,�p2;�k1,�p1)a†
c (�k2)b

†
c (�p2)ac(�k1)bc(�p1), (128)

with the following covariant (Feynman-like) form:

VπN(�k2,�p2;�k1,�p1) =
g2

2(2π)3

m
√

ω�k1
ω�k2

E�p1
E�p2

δ(�p1 +�k1 − �p2 −�k2)

ū(�p2)

{

1

2

[

1

p̂1 + k̂1 + m
+

1

p̂2 + k̂2 + m

]

+
1

2

[

1

p̂1 − k̂2 + m
+

1

p̂2 − k̂1 + m

]}

u(�p1)

For brevity, the spin and isospin indices have been omitted.

The corresponding πN quasipotential in momentum space is determined by

ṼπN(�k2,�p2;�k1,�p1) =
〈

a†
c (�k2)b

†
c (�p2)Ω|K(πN → πN)|a†

c (�k1)b
†
c (�p1)Ω

〉

(129)

Graphs in Fig. 1 are topologically equivalent to the well-known time-ordered Feynman
diagrams. However, in Schrödinger picture used here, where all events are related to one
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and the same instant t = 0, such an analogy could be misleading: line directions in Fig. 1 are
given with the sole scope to discriminate between nucleon and antinucleon states. Moreover,
the energy conservation is not assumed in constructing this and other quasipotentials. Indeed,
the coefficients in front of a†

c b†
c acbc generally do not fulfill the on-energy-shell condition

E�p1
+ ω�k1

= E�p2
+ ω�k2

,

In this connection, the ”left” four-vector s1 is not necessarily equal to the ”right” Mandelstam
vector s2 = p2 + k2.

4.2.2 Nucleon-nucleon interaction operator

Accordingly (Dubovyk & Shebeko, 2010) the operator of interest has the following structure:

K(NN → NN) = ∑
b

Kb(NN → NN),

Kb(NN → NN) =
∫

∑ d�p′1 d�p′2 d�p1 d�p2Vb(1
′, 2′; 1, 2)b†

c (1
′)b†

c (2
′)bc(1)bc(2), (130)

where, for example, the c–number matrix Vb in the second order in the PS coupling is given
by

Vps(1
′, 2′; 1, 2) =

1

(2π)3

m2

√

E�p′1 E�p′2 E�p1
E�p2

δ
(

�p′1 + �p′2 − �p1 − �p2

)

vps(1
′, 2′; 1, 2), (131)

vps(1
′, 2′; 1, 2) =

g2
ps

2
ū(�p′1)γ5u(�p1)

1

(p1 − p′1)
2 − m2

ps
ū(�p′2)γ5u(�p2), (132)

omitting again the discrete quantum numbers. Here mps the mass of the clothed pion (its
physical value).

Corresponding relativistic and properly symmetrized NN quasipotential

ṼNN(�p ′
1,�p ′

2;�p1,�p2) =
〈

b†
c (�p

′
1)b

†
c (�p

′
2)Ω | KNN | b†

c (�p1)b
†
c (�p2)Ω

〉

can be written as

ṼNN(�p ′
1,�p ′

2;�p1,�p2) =
1

2

g2
ps

(2π)3

m2

2
√

E�p1
E�p2

E�p ′
1
E�p ′

2

δ(�p ′
1 + �p ′

2 − �p1 − �p2)

× ū(�p ′
1)γ5u(�p1)

1

2

{

1

(p1 − p′1)
2 − m2

ps

+
1

(p2 − p′2)
2 − m2

ps

}

ū(�p ′
2)γ5u(�p2)− (1 ↔ 2). (*)
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Meson Bonn B UCT

π g2
π/4π 14.4 13.395
Λπ 1700 2500
mπ 138.03 138.03

η g2
η/4π 3 5.0

Λη 1500 1219
mη 548.8 548.8

ρ g2
ρ/4π 0.9 1.2

Λρ 1850 1593.0
fρ/gρ 6.1 6.1

mρ 769 769

ω g2
ω/4π 24.5 17.349
Λω 1850 2494
mω 782.6 782.6

δ g2
δ/4π 2.488 5.0
Λδ 2000 2169
mδ 983 983

σ, T = 0, T = 1 g2
σ/4π 18.3773, 8.9437 22.015, 5.514
Λσ 2000, 1900 1200, 2500
mσ 720, 550 691.78, 510.62

Table 1. The best-fit parameters for the two models. The column Potential B (UCT ) taken
from Table A.1 in (Machleidt, 1989) (obtained by least squares fitting the OBEP values in
Table 1 of that survey). All masses are in MeV.

Distinctive feature of potential (*) is the presence of covariant (Feynman-like) “propagator”,

1

2

{

1

(p1 − p′1)
2 − µ2

+
1

(p2 − p′2)
2 − µ2

}

.

On the energy shell for NN scattering, that is

Ei ≡ E�p1
+ E�p2

= E�p ′
1
+ E�p ′

2
≡ E f ,

this expression is converted into the genuine Feynman propagator.

A little part of our numerical results with the best-fit values of the coupling constants gb and
cutoff parameters Λb in the meson-nucleon vertices are compared with those by the Bonn
group (Machleidt, 1989) in Table 1 and Fig. 2. They labeled by abbreviation UCT have been
obtained by solving the partial Lippmann-Schwinger equations (coupled and uncoupled) for
the R-matrix of the nucleon-nucleon scattering. Details are in (Dubovyk & Shebeko, 2010).

4.3 Deuteron properties

Besides, we would like to outline the basic elements of another our exploration that is in
progress. It is the case, where relying upon the available experience of relativistic calculations
of the deuteron static moments and the deuteron form factors (see reviews (Bondarenko et
al., 2002) and (Garcon & Van Orden, 2002) and refs. therein) one has to deal with the matrix
elements 〈P′, M′|Jµ(0)|P = 0, M〉 (to be definite in the laboratory frame). Here the operator
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Fig. 2. Neutron-proton phase parameters plotted versus nucleon kinetic energy in lab.
system. Solid curves calculated for Potential B. Dashed (dotted) - for UCT potential with
Potential B (UCT) parameters from Table 1. The rhombs show original OBEP results.

Jµ(0) is the Nöther current density Jµ(x) at x = 0, sandwiched between the eigenstates of a
"strong" field Hamiltonian H (cf., discussion in Sec. 5 of lecture (Shebeko & Shirokov, 2000)).
In the CPR with H = K(αc) (Eq. (110)) and N = B(αc) (Eq. (112)) the deuteron state |P = 0, M〉
(|P′ = q, M′〉) in the rest (the frame moving with the velocity v = q/md) meets the eigenvalue
equation

Pµ|P, M〉 = P
µ
d |P, M〉 (133)

with the three-momentum transfer q, four-momentum P
µ
d = (Ed, P), Ed =

√

P2 + m2
d, md =

mp + mn − εd and the deuteron binding energy εd > 0.

We know that such observables as the charge, magnetic and quadrupole moments of
the deuteron can be expressed through the matrix elements in question (e.g., within the
Bethe-Salpeter (BS) formalism (Bondarenko et al., 2002)) by introducing the corresponding
covariant form factors. With the aid of cumbersome numerical methods the latter have
been evaluated in terms of the Mandelstam current sandwiched between the deuteron BS
amplitudes.

Unlike this, following Shebeko & Shirokov (2000) , we consider the expansion in the
R-commutators

Jµ(0) = W J
µ
c (0)W

† = J
µ
c (0) + [R, J

µ
c (0)] +

1

2
[R, [R, J

µ
c (0)]] + ..., (134)

where J
µ
c (0) is the initial current in which the bare operators {α} are replaced by the

clothed ones {αc}. Decomposition (134) involves one-body, two-body and more complicated
interaction currents, if one uses the terminology customary in the theory of meson exchange
currents. Further, to the approximation

KI = K(NN → NN) ∼ b†
c b†

c bcbc (135)
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and
BI = B(NN → NN) ∼ b†

c b†
c bcbc (136)

(see, respectively, (122) and (123)) the eigenvalue problem (133) becomes simpler so its
solution acquires the form

|P, M〉 =
∫

dp1

∫

dp2DM([P]; p1µ1; p2µ2)b
†
c (p1µ1)b

†
c (p2µ2)|Ω〉. (137)

In this connection, let us recall the relation

|q, M〉 = exp[i�βB(αc)]|0, M〉 (138)

with �β = βn, n = n/n and tanh β = v, that takes place owing to the property

ei�βBPµe−i�βB = PνL
µ
ν (�β), (139)

where L(�β) is the matrix of the corresponding Lorentz transformation. Note also that
the label M = (±1, 0) denotes the eigenvalue of the third component of the total
(field) angular-momentum operator in the deuteron center-of-mass (details can be found in
(Dubovyk & Shebeko, 2010)). The c-coefficients DM in Eq. (137) are calculated by solving the
homogeneous Lippmann-Schwinger equation with the quasipotentials taken from (Dubovyk
& Shebeko, 2010) (see formulae (67)-(69) therein). Numerical results can be obtained either
using the angular-momentum decomposition (as in (Dubovyk & Shebeko, 2010)) or without
it.

Several our results are shown in Table 2 and Fig. 3.

Parameter Bonn B UCT Experiment
as (fm) -23.71 -23.57 -23.748±0.010
rs (fm) 2.71 2.65 2.75±0.05
at (fm) 5.426 5.44 5.419±0.007
rt (fm) 1.761 1.79 1.754±0.008

εd (MeV) 2.223 2.224 2.224575
PD (%) 4.99 4.89

Table 2. Deuteron and low-energy parameters. The experimental values are from Table 4.2 of
Ref. (Machleidt, 1989).

.

Fig. 3. Deuteron wave functions ψd
0(p) = u(p) and ψd

2(p) = w(p). Solid(dotted) curves for
Bonn Potential B (UCT) potential.
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In its turn, the operator (134) being between the two-clothed-nucleon states contributes as

ηc Jµ(0)ηc = J
µ
one−body + J

µ
two−body, (140)

where the operator

J
µ
one−body =

∫

dp′dpF
µ
p,n(p

′, p)b†
c (p)bc(p) (141)

with
F

µ
p,n(p

′, p) = eū(p′)F
p,n
1 [(p′ − p)2]γµ + iσµν(p′ − p)νF

p,n
2 [(p′ − p)2]u(p) (142)

that describes the virtual photon interaction with the clothed proton (neutron)5.

Its appearance follows from the observation, in which the primary Nöther current operator,
being between the physical (clothed) states |ΨN〉 = b†

c |Ω〉, yields the usual on-mass-shell
expression

〈Ψp,n(p
′)|Jµ(0)|Ψp,n(p)〉 = F

µ
p,n(p

′, p)

in terms of the Dirac and Pauli nucleon form factors.6

By keeping in the r.h.s. of Eq. (140) only the one-body contribution we arrive to certain
off-energy-shell extrapolation of the so-called relativistic impulse approximation (RIA) in the
theory of e.m. interactions with nuclei (bound systems). In a recent work by Dubovyk
and Shebeko the deuteron magnetic and quadrupole moments have been calculated to be
submitted to Few Body Systems.

Of course, the RIA results should be corrected including more complex mechanisms of e-d
scattering, that are contained in

J
µ
two−body =

∫

dp′
1dp′

2dp1dp2F
µ
MEC(p

′
1, p′

2; p1, p2)b
†
c (p

′
1)b

†
c (p

′
1)bc(p1)bc(p2). (143)

Analytic (approximate) expressions for the coefficients F
µ
MEC stem from the R-commutators

(beginning with the third one) in the expansion (134), which, first, belong to the class [2.2], as
in Eq. (141), and, second, depend on even numbers of mesons involved. It requires a separate
consideration aimed at finding a new family of meson exchange currents, as we hope not only
for the e-d scattering.

At last, one should note that, as before, we prefer to handle the explicitly gauge-independent
(GI) representation of photonuclear reaction amplitudes with one-photon absorption or
emission (Levchuk & Shebeko, 1993). That representation is an extension of the Siegert
theorem, in which, the amplitude of interest is expressed through the Fourier transforms of
electric (magnetic) field strengths and the generalized electric (magnetic) dipole moments
of hadronic system. It allows us to retain the GI in the course of inevitably approximate
calculations.

5 In Eqs. (140) ηc is the projection operator on the subspace H2N ∈H spanned on the two-clothed-nucleon
states |2N〉 = b†

c b†
c |Ω〉

6 Of course, all nucleon polarization labels are implied here together with necessary summations over
them in Eq. (141) and so on
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5. Summary

We propose a constructive way of ensuring the RI in QFT with cutoffs in momentum space.
In contrast to the traditional approach, where the generators of Π are determined as the
Nöther integrals of the energy-momentum tensor density , we do not utilize the Lagrangian
formalism so fruitful in case of local field models. Our purpose is to find these generators as
elements of the Lie algebra of Π starting from the total Hamiltonian whose interaction density
in the Dirac picture includes a Lorentz-scalar part Hsc(x). Respectively, the algebraic aspect
of the RI as a whole for the present exploration with the so-called instant form of relativistic
dynamics is of paramount importance.

In the context, using purely algebraic means the boost generators can be decomposed
into the Belinfante operator built of Hsc and the operator which accumulates the chain of
recursive relations in the second and higher orders in Hnsc. Thereby, it becomes clear that the
Poincaré commutations are not fulfilled if the Hamiltonian does not contain some additional
ingredients, which we call the mass renormalization terms, though beyond local field models
such a terminology looks rather conventional. The UCT method enables us to determine the
corresponding operators including their nonlocal extensions that satisfy the requirements of
special relativity and preserve certain continuity with local QFTs.

We see that our approach is sufficiently flexible being applied not merely to local field models
including ones with derivative couplings and spins j ≥ 1. Within the approach all interactions
constructed are responsible for physical (not virtual) processes in a given system of interacting
fields. Such interactions are Hermitian and energy independent including the off-energy-shell
and recoil effects (the latter in all orders of the 1/c2 - expansion). In particular, we have
managed to build up a new family such interactions in the system of π–, η–, ρ–, ω–, δ– and σ -
mesons and nucleons. Besides, the interaction operators for processes of the type NN → NN,
πN → πN, and NN ↔ πNN are derived on one and the same physical footing.

After constructing the interaction operators in the CPR we express the conventional S matrix
through the clothed-particle interactions and states that simplifies the initial field-theoretical
task. It becomes possible owing to the isomorphism between the α-algebra with the bare
vacuum and the αc-algebra with the physical vacuum when, first, the requirement iii) is
fulfilled and, second, the R - generators of unitary clothing transformations in the Dirac
picture come to zero in the distant past and future (see our talk in Durham (Shebeko, 2004)).

In the course of our current work we are trying to understand to what extent the deuteron
quenching in flight affects the deuteron electromagnetic form factors. In our opinion, the
exposed approach has promising prospects, e.g., in the theory of decaying states (after
evident refinements), certainly in quantum electrodynamics and, we believe, in quantum
chromodynamics. Such endeavors are under way.

At last, we offer not only a fresh look at constructing the interactions in question but also a
nonstandard renormalization procedure in relativistic quantum field theory. In this context,
let us remind the prophetic words by Dirac (Dirac, 1963): “I am inclined to suspect that
renormalization theory is something that will not survive in the future, and the remarkable
agreement between theory and experiment should be looked on as a fluke”.
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