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1. Introduction 

Renal cell carcinoma (RCC) incidence accounts for about 3 to 10 cases per 100,000 
individuals with a predilection for adult males over 60 year old (1.6:1 male/female ratio) 
(Chow, 2010; Nese, 2009). In Europe, about 60,000 individuals are affected by RCC every 
year, with a mortality rate of about 18,000 subjects and an incidence rate for all stages 
steadily rising over the last three decades. Although inherited forms occur in a number of 
familial cancer syndromes, as the well-known von Hippel-Lindau (VHL) syndrome, RCC is 
commonly sporadic (Cohen & McGovern, 2005; Kaelin, 2007) and, as recently highlighted by 
the National Cancer Institute (NCI), influenced by the interplay between exposure to 
environmental risk factors and genetic susceptibility of exposed individuals (Chow et al., 
2010). Being poorly symptomatic in early phases, many cases become clinically detectable 
only when already advanced and, as such, therapy-resistant (Motzer, 2011). Based on 
histology, RCC can be classified into several subtypes, i.e., clear cell (80% of cases), papillary 
(10%), chromophobe (5%) and oncocytoma (5%), each one characterized by specific histo-
pathological features, malignant potential and clinical outcome (Cohen & McGovern, 2005). 
Patient stratification is normally achieved using prognostic algorithms and nomograms 
based on multiple clinico-pathological factors such as TNM stage, Fuhrman nuclear grade, 
tumor size, performance status, necrosis and other hematological indices (Flanigan et al., 
2011), although the most efficient predictors of survival and recurrence are based on nuclear 
grade alone (Nese et al., 2009). As recently reviewed by Brannon et al. (Brannon & Rathmell, 
2010), a finer RCC subtype classification could be obtained exploiting the vast amount of 
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genomic and transcriptional data that have been presented in numerous studies. For 
instance, several authors proposed a molecular classification of RCC based on differential 
gene expression profiles, with any subtype characterized by the activation of distinct gene 
sets (Brannon, 2010; Furge, 2004; Skubitz, 2006; Sültmann, 2005; Zhang, 2008), while others 
identified RCC-specific biomarkers (e.g. CA9, ki67, VEGF proteins, phosphorylated AKT, 

PTEN, HIF-1). Lately, it has been reported that microRNAs, a small class of non coding 
RNA molecules, could contribute to RCC development at different levels and may represent 
a new group of potential tumor biomarkers (Redova et al., 2011). Despite the numerous 
efforts in dissecting the molecular features of RCC through functional genomics, not a single 
transcriptional signature or biomarker has gained approval for clinical application yet 
(Arsanious, 2009; Eichelberg, 2009; Lam, 2007; Yin-Goen, 2006), so that the identification of 
novel molecular markers to improve early diagnosis and prognostic prediction and of 
candidate targets to develop new therapeutic approaches remains of primary importance for 
this pathology.  

Among the RCC histotypes, clear cell renal carcinoma (ccRCC) is the most frequent and 
aggressive subtype and is characterized by a specific pattern of chromosomal alterations 
(Yoshimoto et al., 2007) that represents a molecular fingerprint potentially useful for 
diagnostic and prognostic applications (Klatte et al., 2007). Nowadays, the standard clinical 
treatment comprises surgical resection followed by IFN- and/or IL2-based immunotherapy, 
although therapy toxicity still represents a major problem (Molina & Motzer, 2011). The 
development of approaches targeting specific biological pathways, typically deregulated in 
this tumor, is opening the way to new opportunities for therapeutic intervention (Pal et al., 
2010). One of the most investigated processes is the hypoxia pathway (Cohen & 
McGovern2005; Kaelin, 2007; Wouters & Koritzinsky, 2008) that is genetically linked to 
ccRCC through one of its key players, i.e., the VHL (von Hippel-Lindau) gene, completely 
inactivated in all inherited forms and in 80% of sporadic cases. Cloned in 1993, the VHL 
gene (located at the 3p25.3 locus) is currently known as the main tumor suppressor gene 
involved in the very early steps of RCC pathogenesis (Banks et al., 2006). Normally, the VHL 

function is to ubiquinate the two hypoxia-inducible factors HIF-1 and HIF-2, addressing 
them to proteasome degradation (Kaelin, 2008). In ccRCC, the bi-allelic VHL inactivation, by 
combination of deletion and mutation/methylation (Banks et al., 2006), prevents the 

degradation of HIF-1 and HIF-2 that, in turn, can activate the transcription of a series of 
hypoxia-inducible genes, such as VEGF, VEGFR, EGFR, PDGF, IGF, GLUT-1, CXCR4, TGF-

, CA9 and EPO, involved in processes like angiogenesis, survival, cell motility, pH-
regulation and glucose metabolism (Baldewijns et al., 2010). The complete loss of VHL 
function results in the up-regulation of a panel of genes that contributes to the ccRCC 
phenotype and represents a list of potential prognostic markers (Klatte et al., 2007) and/or 

therapeutic targets (Gong et al., 2010). Additionally, the transcription factor HIF-1 is 
commonly activated in cancer (Semenza, 2008) and is linked to oncogenic/tumor suppressor 
molecules implicated in cross-communication, such as the tubular sclerosis complex (TSC) 
and the mammalian target of rapamycin (mTOR) (Maxwell, 2005). As such, ccRCC 
represents an ideal model for developing novel targeted therapies directed against the 
hypoxia pathway and many molecules are already used in clinical trials targeting either 

HIF-1, or the upstream pathways regulating HIF (as the Akt-mTOR signal transduction 
pathway), or the downstream genes induced by HIF (e.g., VEGF and VEGFR) (Baldewijns et 
al., 2010). Intriguingly, recent evidences indicate that also 20% of RCC sporadic cases with 
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wild-type VHL (and active VHL function) present a peculiar pattern of altered genes, 
suggesting the involvement of other, still partially unknown, alternative regulatory 
mechanisms (Gordan et al., 2008). 

At DNA level, studies based on traditional cytogenetic and comparative genomic 
hybridization (CGH) techniques identified a panel of chromosomal aberrations typical of 
ccRCC (Höglund, 2004; Klatte, 2009). Moreover, high-density single nucleotide 
polymorphism (SNP) array technology, interrogating thousands of SNP markers distributed 
throughout the whole human genome, has significantly improved the detection of 
chromosomal aberrations and offered the opportunity to detect regions with loss of 
heterozygosity (LOH), an important information for the identification of novel tumor 
suppressor genes. SNP-arrays have been widely applied to characterize tumor genomic 
instability (Brenner & Rosenberg, 2010; Lisovich, 2011) and recently to perform the genome-
wide DNA profiling of ccRCC tissue samples (Beroukhim, 2009; Chen, 2009; Cifola, 2008). 
Overall, ccRCC is characterized by recurrent genetic anomalies at characteristic 
chromosomes, such as deletions with LOH on chromosomes 3p (involving also the VHL 
locus), 6q, 8p, 9p, and 14q, and duplications of chromosomes 5q and 7. Many evidences 
suggest that this peculiar pattern of genomic instability represents a tumor-specific 
molecular fingerprint that has a role in cancer pathogenesis and may be useful in diagnostic 
and prognostic applications (Gunawan, 2001; Klatte, 2009; Perego, 2008). Furthermore, a 
comprehensive study showed that cytogenetic alterations could be associated to ccRCC 
tumorigenesis and malignant progression (Zhang et al., 2010b). 

Advances in high-throughput genome-wide profiling technologies allowed an 

unprecedented comprehensive view of the cancer genome landscape. In particular, high-

density microarrays and sequencing-based strategies have been widely used to identify 

genetic (gene dosage, allelic status, and mutations in gene sequence) and epigenetic (DNA 

methylation, histone modification, and microRNA) aberrations in cancer (Majewski & 

Bernards, 2011). The integrative approach of analyzing parallel dimensions has enabled the 

identification of genes that are often disrupted by multiple mechanisms but at low 

frequencies by any one mechanism and of pathways that are often disrupted at multiple 

components but at low frequencies at individual components (Chari et al., 2010). In these 

last years, there is an increasing tendency to combine genome-wide DNA copy number 

(CN) analysis with transcriptional profiles to investigate how alterations in DNA content 

(aneuploidy) can influence global expression patterns. In cancer research, this combined 

approach helps filtering the large amount of array-based data and, by narrowing down the 

hundreds of differentially expressed genes to those whose altered expression is attributable 

to underlying chromosomal alterations, allows highlighting candidate genes that are 

actively involved in the causation or maintenance of the malignant phenotype. This 

approach was applied in a wide range of tumor types, including breast (Hyman, 2002; 

Pollack, 2002), bladder (Harding et al., 2002), prostate (Saramäki et al., 2006), pancreas 

(Heidenblad et al., 2005), rectal (Grade et al., 2006) and melanoma (Akavia et al., 2010), 

demonstrating a strong genome-wide correlation between aneuploidy-associated genomic 

imbalances and global gene expression levels. Most studies focused on amplified and over-

expressed genes and calculated that a fraction ranging from 44% to 62% of amplified genes 

showed concomitant up-regulated expression levels (Hyman et al., 2002). This suggests the 

presence of an aneuploidy-induced deregulation of the cancer transcriptome that occurs in 
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addition to the transcriptional and mutational deregulation of oncogenes and tumor 

suppressor genes. This combined approach is exemplified in the study by Garraway et al., in 

which the analysis of CN data obtained by SNP arrays drives the investigation of pre-

existing gene expression profiles (Garraway et al., 2005). Specifically, CN data were used to 

organize cancer samples into subgroups characterized by specific chromosomal aberrations 

associated to contiguous SNP chromosomal clusters. This genomic-based sub-grouping 

constituted the new phenotypic labeling of the samples in the gene expression analysis, i.e. 

samples from the NCI-60 cancer cell lines panel were re-grouped into two new classes based 

on the presence or absence of amplification at 3p14-p13 before performing the supervised 

analysis. The differential expression profiles, inside the SNP cluster characterizing the 

amplification at 3p14-p13, identified MITF gene as a novel melanoma-specific oncogene. 

This study clearly demonstrated the usefulness of an integrative approach to investigate 

candidate regions and genes specifically involved in tumor etiology and potentially useful 

as novel specific cancer biomarkers. 

Clearly, to allow the rapid development of these innovative analytical procedures, it is 
necessary to implement novel and even more sophisticated mathematical and statistical 
algorithms. For instance, an important issue is to understand how combining and 
comparing microarray expression data of single genes with DNA copy number data of 
whole chromosomal regions. Thus, there is an increasing interest for developing 
computational tools able to link single differentially expressed genes to their chromosomal 
location, in order to calculate differentially expressed chromosomal regions and thus 
assemble regional transcriptional activity maps (Akavia, 2010; Schäfer, 2009). To address the 
integrative analysis of gene expression and copy number data in tumor samples, we recently 
developed a computational tool named Position RElated Data Analysis (preda, Ferrari et al., 
2011). preda is particularly suited for the identification of chromosomal regions with 
concomitant and coordinated copy number and transcriptional imbalances (SODEGIRs, 
Bicciato et al., 2009), thus providing an opportunity for upgrading the information content 
of genomic data and for discovering novel cancer biomarkers.  

In this chapter, we describe a general framework for depicting the molecular portrait of 
ccRCC through the integrative analysis of gene expression and copy number profiles 
obtained from publicly available datasets. The chapter is structured in Methods, Results and 
Discussion and addresses three major issues: i) the analysis and the functional 
characterization of a large compendium of gene expression data; ii) the identification of 
chromosomal alterations in ccRCC samples from SNP copy number data; iii) the integrative 
analysis of gene expression and copy number data. 

2. Methods 

2.1 Gene expression analysis of ccRCC 

To characterize the transcriptional portrait of ccRCC, we retrieved 12 datasets containing 
microarray gene expression data of clear cell renal carcinoma and normal samples annotated 
with clinical information. All data were measured on several releases of the Affymetrix 
Human Genome HG-U133 arrays (i.e., HG-U133A; HG-U133 Plus 2.0, HG-U133A 2.0 and 
HT-HG-U133A) and have been downloaded from the public microarray data repositories 
Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/; 11 datasets) and 
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ArrayExpress (http://www.ebi.ac.uk/arrayexpress/; 1 dataset). Prior to analysis, we re-
organized all datasets by manually annotating and tagging all samples, and re-named any 
original dataset after the first author’s name of the corresponding publication. This re-
organization resulted in a compendium of 426 samples comprising 320 ccRCCs and 106 
normal renal tissues (Table 1). ccRCC samples have been further annotated according to 
nuclear grade and divided into a low-grade (n=197) and a high-grade (n=123) class, with the 
low-grade class comprising 29 G1 and 168 G2 samples and the high-grade class including 97 
G3 and 26 G4 samples. 

 

Microarray 
repository code 

Dataset 
name 

Samples 
References 

ccRCC normal 

GSE781a Lenburg 9 8 Lenburg et al., 2003 

GSE15641a Jones --- 23 Jones et al., 2005 

GSE6344a Gumz --- 10 Gumz et al., 2007 

GSE7023b Furge --- 13 Furge et al., 2007 

GSE14762b Wang --- 12 Wang et al., 2009 

GSE2109b Bittner 188 --- 
International Genomics 
Consortium  

GSE11151b Yusenko --- 3 Yusenko et al., 2009 

E-TAM-282b Cifola 16 11 Cifola et al., 2008 

GSE17895b Dalgliesh 83 13 Dalgliesh et al., 2010 

GSE12606b Stickel 3 3 Stickel et al., 2009 

GSE11904c Gordan 21 --- Gordan et al., 2008 

GSE14994d Beroukhim 26e 11 Beroukhim et al., 2009 

Table 1. Independent datasets included in the ccRCC compendium. The Affymetrix 
platforms used to obtain the original data are: aHG-U133A, bHG-U133 Plus 2.0, cHG-U133A 
2.0, and dHT-HG-U133A. Samples from Beroukhim dataset (e) were used only in the 
integrative analysis of gene expression and copy number, since no grading annotation was 
available. 

The integration and normalization of gene expression signals, obtained using different types 
of microarray in different experiments, is the most critical step for the meta-analysis of 
public available data since their direct integration may result in misleading results, due to 
dissimilar experimental conditions, laboratory-dependent bias, etc. Although Robust 
Multiarray Analysis (RMA; Irizarry et al., 2003) is the most effective signal quantification 
method, it cannot be applied to data obtained from different platforms (e.g., the HG-U133A 
and the HG-U133 Plus 2.0 arrays), due to differences in number, type and physical position 
of probes. As such, we implemented a procedure, called the Virtual Chip, to create a custom 
and virtual microarray grid that integrates the geometry and probe content of two or more 
types of Affymetrix arrays (Fallarino et al., 2010). Once defined the virtual grid, all raw data 
(represented by the so called CEL files) are re-organized to match a single platform, i.e. the 
virtual chip. At this point, raw data, originally from different types of microarrays, become 
homogeneous in terms of platform and can be preprocessed and normalized adopting 
standard approaches, as RMA. The Virtual Chip method allows combining data directly at 
the level of probe fluorescence intensity and presents the advantage that gene expression 
signals are generated with a single step of background correction, normalization and 
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summarization. The construction of the virtual grid is inspired by the generation of custom 
Chip Definition Files (CDFs), i.e., of ad-hoc probe designs and array topologies. In custom 
CDFs, probes matching the same transcript, but belonging to different probe sets, are 
aggregated into putative custom-probe sets, each one including only those probes with a 
unique and exclusive correspondence with a single transcript. Similarly, probes matching 
the same transcript but located at different coordinates on different types of arrays may be 
merged in custom-probe sets and arranged in a virtual platform grid, whose geometry can 
be arbitrarily set. As for any other microarray geometry, this virtual grid may be used as a 
reference to create a virtual CDF file containing the probes of the Virtual Chip and their 
coordinates on the virtual platform. The probes included in the virtual CDF are those shared 
among the platforms of interest, with the additional condition of generating custom probe 
set of at least 4 probes. The virtual CDF can be derived from any custom CDF, e.g., those 
developed by Dai and publicly accessible at the Molecular and Behavioral Neuroscience 
Institute Microarray Lab (Dai et al., 2005). Finally, the virtual CDF can be used as the 
geometry file in RMA as far as the original CEL files are properly re-mapped to match the 
topology described in the virtual CDF. Re-mapped CEL files, called virtual CEL files, are 
homogeneous in terms of platform and gene expression data can be generated with a single 
step of background correction, normalization and summarization directly from the 
fluorescence signals of all microarrays composing the meta-dataset. In this particular case, 
expression values of the meta-dataset were generated from intensity signals using the 
combined HG-U133A/HG-U133 Plus 2.0/HG-U133A 2.0/HT-HG-U133A virtual-CDF file, 
the custom definition files for Affymetrix human arrays based on Entrez (version 12.1.0; 
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/12.1.0/entrezg
.asp), and the transformed virtual-CEL files. Intensity values of meta-probe sets have been 
background adjusted, normalized using quantile normalization, and gene expression levels 
calculated using median polish summarization (RMA algorithm; Irizarry et al., 2003). The 
final meta-dataset comprised gene expression values for a total of 11809 Entrez gene IDs and 
426 samples. 

The meta-dataset was analyzed using the Analysis of Variance (ANOVA) package of Partek 
Genomics Suite software (Version 6.5, http://www.partek.com/; Partek Inc., St Louis, MO, 
USA) to identify a list of differentially expressed genes (DEGs) between ccRCC samples and 
normal renal tissues. Specifically, genes have been defined as differentially expressed if the 
average expression values in the two groups differed of at least 2-folds and the False 
Discovery Rate (FDR; Benjamini-Hochberg method) of the statistical comparison was less 
than 0.05. Differentially expressed genes have been functionally characterized in term of 
Gene Ontology (GO) biological process (BP) using DAVID tool ( http://david.abcc. 
ncifcrf.gov/; (Huang, 2009a, 2009b) with an FDR≤0.001. Ingenuity Pathways Analysis (IPA, 
version 9.0) has been applied to assess functional connections that are statistically 
overrepresented among the differentially expressed genes. Briefly, in IPA, a p-value, 
calculated by a right tailed Fisher's Exact Test, quantifies the probability of observing the 
fraction of the focus genes in the canonical pathway as compared to the fraction expected by 
chance in the reference set, with the assumption that each gene is equally likely to be picked 
by chance. Finally, we investigated whether expression levels in ccRCCs and normal tissues 
were associated with elevated expression of biologically relevant gene sets using Gene Set 
Enrichment Analysis (GSEA, http://www.broadinstitute.org/gsea/index.jsp; Subramanian 
et al., 2005) on the meta-dataset. In particular, 217 BioCarta and 186 KEGG gene sets were 
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taken from the Molecular Signatures Database (http://www.broadinstitute.org/ 
gsea/msigdb/index.jsp; version 3.0) and a list of 145 genes associated to HIF and VHL 
genes was downloaded from the NCBI Pathway Interaction Database (http://pid.nci.nih.gov). 
Gene sets have been considered significantly enriched at FDR≤0.25 when using 
Signal2Noise as metric and 1,000 permutations of phenotype labels. 

2.2 Genomic copy number analysis of ccRCC 

To assess copy number alterations in ccRCC, we used two datasets composed of 27 sporadic 
ccRCC samples profiled by Affymetrix Human Mapping 100K SNP arrays and downloaded 
from AE (E-TAM-283, E-TAM-284; Cifola et al., 2008) and 26 sporadic ccRCC samples 
profiled by Affymetrix Human Mapping 250K Sty SNP array and downloaded from GEO 
(GSE14994; Beroukhim et al., 2009). The genomic copy number values were quantified using 
Partek Genomics Suite and the presence of copy number alterations, i.e., chromosomal 
segments affected by amplification or deletion, was calculated using Partek Genomic 
Segmentation (GS) algorithm. Partek baseline generated from 90 Mapping 100K Hind/Xba 
HapMap trio samples (available at Affymetrix website; http://www.affymetrix.com/ 
support/technical/sample_data/hapmap_trio_data.affx) and 270 Mapping 250K Sty 
HapMap samples (available at GEO, GSE5173) were used as diploid reference. In the 
Genomic Segmentation analysis, the cut-off values to identify gains and losses were set to 
2.3 and 1.7, respectively, each segment was computed using a minimum of 10 consecutive 
filtered probe sets, and the threshold p-value and the signal to noise ratio were set to 0.001 
and 0.5, respectively.  

2.3 Integrative analysis of gene expression and genomic copy number in ccRCC 

To address the integrative analysis of gene expression and copy number data we applied preda 
(Position RElated Data Analysis) tool, an R package for detecting regional variations of 
genomic features from high-throughput data (Ferrari et al., 2011). preda is particularly suited 
for the identification of chromosomal regions with coordinated copy number and 
transcriptional imbalances (SODEGIRs, Bicciato et al., 2009). In preda, custom-designed data 
structures allow to efficiently manage different types of genomics signals and annotations, 
different choices of smoothing functions and statistics empower a variety of flexible and robust 
workflows, and tabular and graphical representations facilitate downstream biological 
interpretation of results. The computational framework directly integrates copy number and 
gene expression profiles at genome-wide level, by statistically assessing the gene dosage and 
transcription statuses on common genomic positions. We applied preda to both Cifola and 
Beroukhim datasets (Table 1). Briefly, Cifola dataset comprises a subset of 11 ccRCC cases 
profiled by both Affymetrix Human Mapping 100K and HG-U133 Plus 2.0 arrays (Cifola et al., 
2008), while Beroukhim dataset includes 26 ccRCC and 11 normal samples analyzed using 
both Affymetrix Human Mapping 250K and HT-HG-U133A arrays (Beroukhim et al., 2009). 
Copy number log-ratios were calculated using CNAG software (version 3.3.0.1, 
http://www.genome.umin.jp/; Nannya, 2005; Yamamoto, 2007), while gene expression levels 
were estimated using RMA algorithm. Both types of data were used as input to preda to 
identify regions harboring both down-regulated genes and CN loss or both up-regulated 
genes and CN gain (SODEGIR deleted and SODEGIR amplified signatures, respectively). To 
further validate the presence of areas of deletion and amplification in a larger panel of 
samples, we intersected the list of genes associated to the SODEGIR signatures with the list of 
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differentially expressed genes obtained from the ANOVA comparison of the 320 ccRCCs with 
the 106 normal samples of the meta-dataset (Table 1). Differentially expressed genes and genes 
comprised in the SODEGIR signatures were annotated using GeneDistiller 2 tool 
(http://www.genedistiller.org; Seelow et al., 2008). Literature mining was performed using 
PubMatrix tool (http://pubmatrix.grc.nia.nih.gov/; Becker et al., 2003) and applying specific 
keywords such as cancer, renal cell carcinoma, amplification, methylation, oncogene, tumor 
suppressor and biomarker. 

3. Result 

3.1 Differential gene expression profiling of ccRCC 

The aim of this analysis was to functionally characterize the transcriptional profiles that 
differentiate cancer specimens from normal tissues. We based our initial analysis on the 
weight of gene expression data, taking advantage of bioinformatics techniques that allow 
direct interrogation of differentially expressed genes for activation of specific signaling 
pathways. The cohort of 426 samples composing the meta-dataset was analyzed by ANOVA 
to identify a list of differentially expressed genes between ccRCC and normal renal tissues. 
This comparison resulted in 1036 genes specifically modulated more than 2 folds in ccRCC 
cancers and that showed 95% of statistical confidence for differential expression. The fold 
change distribution ranged from -210 to 41, although the majority of DEGs showed an 
expression modulation varying from 2 to 4 folds. As depicted in the clustering map of 
Figure 1, the 534 up-regulated and 502 down-regulated genes grouped the meta-dataset 
samples into two clearly defined differential patterns of transcriptional activation in tumor 
samples as compared to normal tissues. 

The functional and biological characterization of the 1036 differentially expressed genes 
using Gene Ontology (GO) annotation highlighted that the most significant processes and 
pathways altered in ccRCC are consistent with the important role of aerobic metabolism 
typically associated to epithelial cancers (Figure 2). In particular, we observed a down 
regulation of genes associated to metabolism and transport counteracted by the up 
regulation of genes associated to signal transduction and cell communication. The GO 
functional characterization indicated that ccRCC decrements the expression of genes related 
to oxido-reductase activity, amine catabolism, amine and exose biosynthesis, fatty acid 
metabolism, excretion and secretion, response to hormone, ion transport (Figure 2, panel A) 
while induces the transcription of genes related to the immune response, response to 
wounding, defense response, angiogenesis, response to oxygen level, cell proliferation, 
chemotaxis, cell adhesion and motility, and T-cell activation (Figure 2, panel B). 

A further functional characterization of the differentially expressed genes using the 
knowledge database of Ingenuity Pathway Analysis (IPA) pointed out cancer and genetic 
disorder as the most significant enriched categories (p-value≤0.0001 and more than 200 
genes). Specifically, IPA analysis associated the modulated genes to the categories of renal 
cancer (ACAT1, BTG2, C7orf68, CA9, CD70, CDH6, CLCNKB, CP, CSF1R, DEFB1, EDNRA, 
EGF, EPCAM, FGFR3, GPC3, IGF2BP3, IGFBP2, INHBB, KDR, KNG1, MME, MMP9, MUC1, 
MYC, NR3C1, PDGFRA, RRM2, SFRP1, SLC6A3, TIMP1, TOP2A, TUBA1A, TUBB2A, 
VEGFA), cancer progression (AHR, BCL6, CCND1, CDKN1B, CXCL12, IFI16, KIF2A, MYC, 
NR4A1, PLAGL1, TGFB1), angiogenesis (ANGPTL3, ANGPTL4, ANXA3, APOH, AQP1, 
ARHGAP24, BTG1, COL4A2, COL4A3, CXCR4, EGF, ITGA5, KDR, MTDH, SERPINE1, 
SPARC, VASH1, VEGF), cell cycle (AHR, CCND1, DEGS1, NEFL, CDKN1B, MMP9), cell 
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binding (ABCA1, CAV1, CD2, COL4A3, CXCL12, CXCR4, FGF1, GPC3, IGFBP3, ITGA5, 
ITGAM, ITGB2, KNG1, SCARB1, SDC1, SERPINE1, SLC6A3, SPARC, ST6GAL1, TGFB1, 
TLR2, UMOD, VCAM1, VEGFA, VWF), cell adhesion (ADAM10, ADAM9, ANGPT2, C3, 
CCL5, CD93, CDH13, CR2, CXCL12, CYFIP2, FXYD5, INHBB, ITGA4, ITGA5, ITGAM, 
ITGB2, KDR, KLK6, MARCKS, PECAM1, PLAU, PLXND1, POSTN, ROCK1, SERPINE1, 
SLIT2, TGFB1, TIMP1, VCAM1, VEGFA, ZEB2), chemotaxis (ADAM10, CCL20, CCL5, CD36, 
CDH13, CXCL11, CXCL12, CXCR4, EGF, HMGB2, KDR, PDGFRA, PLAU, RARRES2, 
SERPINE1, SLIT2, TGFB1, TLR2, VEGFA), and fragmentation of DNA (ABCB1, AIFM1, 
BNIP3, CLU, DNASE1L3, EGF, FAS, NOX4, SFRP1, SOD2). Moreover, the IPA network 
analysis resulted in 20 networks including, each one, more than 13 focus molecules and 
confirmed the previous GO findings of functional activities in mechanisms related to cell 
death, cell to cell signaling and interaction, cellular movement, and cancer. Table 2 enlists the top 
four networks that are mainly enriched in up regulated genes.  

ccRCC normal  

Fig. 1. Clustering map of ccRCC and normal samples based on the list of 1036 differentially 
expressed genes identified by ANOVA in the comparison between cancer and normal 
specimens. Each row represents a single gene and each column an experimental sample. 
Samples are separated into two main groups enriched for ccRCC (upper yellow bar) and 
normal tissues (upper blue bar). The map has been obtained using the hierarchical 
clustering of dChip (Li & Wong, 2001) with Pearson correlation and centroid as distance 
metric and linkage, respectively. 
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Fig. 2. Functional characterization in terms of GO Biological Process of the 502 down-
regulated genes (panel A) and of the 534 up-regulated genes (panel B). On the X-axis the 
log(FDR) of DAVID enrichment test is reported. 

To gain further insight into the biological pathways engaged in ccRCC phenotype, we used 
bioinformatics classifiers, or gene signatures, that register a modulated activity (either 
activation or inactivation) of specific signaling pathways in tumor samples. In particular, 
Gene Set Enrichment Analysis (GSEA) allowed identifying 25 inactivated and 50 activated 
pathways in cancer samples. The inactivated signaling modules relate to aminoacid 
metabolism, glucose and lipid metabolism, molecule transport, drug metabolism, glycolysis 
and gluconeogenesis, oxidative metabolism and immune signaling (Table 3). 
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Molecules in Network Scorea 
Focus 

Moleculesb 
Top Functions 

ACTN1, ANGPTL4, ARPC1B, 
BARD1, BTG1, CASP1, CASP4, CD2, 
CD70, CLU, CORO1C, CSTA, 
DNASE1L3, EDN1, GLIPR1, GLUL, 
GPR65, IFIH1, IL7, IL7R, KDM3A, 
LGALS1, MAL, NOL3, NR3C1, 
PLAGL1, PLP2, SCARB1, SERPINB1, 
SERPINE1, STAT5a/b, 
TMSB10/TMSB4X, TNFAIP6, 
TNFAIP8, TNFRSF1B 

34 34 

Cell Death, 
Inflammatory 

Response, Cellular 
Growth and 
Proliferation 

APOH, BCR, CCL5, CD14, COL4A1, 
COL4A2, DDX58, Fibrinogen, HLA-F, 
IFN Beta, IL12 (complex), ISG15, 
ITGAM, ITGB2, KNG1, LY96, MMP9, 
NFkB (complex), P38 MAPK, PLAT, 
PLAU, POSTN, PYCARD, ROCK1, 
TAP1, TGFB1, TIMP1, TLR1, TLR2, 
TLR3, TLR7, TNIP1, TRAF3IP2, 
TRIB3, VCAM1 

26 30 

Cell-To-Cell Signaling 
and Interaction, 
Inflammatory 

Response, 
Hematological System 

Development and 
Function 

ADAM10, AHR, Akt, ANXA1, 
BAZ1A, C3, C3AR1, CASR, CDH13, 
CR2, CXCL12, CXCR4, EGF, 
EIF4EBP1, ERBB4, ERK1/2, GJB1, 
IGFBP2, IGFBP3, IL1RL1, ITGA5, 
KDR, KL, LDL, MYOF, PI3K 
(complex), PLG, PRKCZ, PTPRC, Ras 
homolog, RCAN1, SLC6A3, TCF4, 
VDR, VEGFA 

26 30 

Cellular Movement, 
Inflammatory Disease, 
Cellular Growth and 

Proliferation 

ACTG2, AGTR1, ANK2, AUH, 

BDKRB2, CCNDBP1, CLMN, 

COL5A1, COL5A2, COL5A3, CSDA, 

CTH, FBL, GNL2, ID2, IL7, MYH10, 

NAP1L1, NCL, NTRK2, PLK2, 

PMP22, PTPN3, RB1, RRAD, S100A2, 

SPTBN1, TNFRSF1B, TOP2A, TP53, 

TP73, TP53I3, TSPAN1, TUBA1A, 

UBE2D1 

16 23 
Cancer, Neurological 

Disease, Cellular 
Development 

Table 2. Top four significant networks identified by the IPA network analysis on the list of 
differentially expressed genes (red, up-regulated DEG; green, down-regulated DEG; black, 
not regulated). a The score column indicates the -log(p-value), while b the focus molecules 
column quantifies the number of modulated genes in the network. 

Among the most activated pathways (Table 4), we found association to cancer (renal cell 
carcinoma and chronic myeloid leukemia) and oncogenic signatures characterized by the 
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presence of several well-known cancer genes (CCND1, MYC, RB1, TP53, RUNX1, AKT2, 
KRAS, CRKL, CSK, MDM2, NRAS, MET, RAP1A, APC, SHC1, PTEN, ATR, ATM, VAV1, 
LYN, ROCK1). Some of these signatures are inter-connected through key genes, as the 
tumor suppressor gene TP53 and the oncogene MYC. As expected, given the fundamental 
role of hypoxia in renal cell carcinoma, the HIF and VHL gene set resulted activated in 
ccRCC, as illustrated by the high ES score and by the clear-cut pattern of expression of HIF- 
and VHL- regulated genes in ccRCCs and normal tissues (Table 4 and Figure 3). Among the 
most active players of this signature, there are genes associated to angiogenesis (EDN1, 
VEGFA), cell survival (ATM, MYC), glucose influx (SLC2A1), pH control (CA9), oxidative and 
iron metabolism (PGK1, HK2, CP, HMOX1) and HIF processing (EGLN3, EGLN1). Additional 
gene sets were related to cell fate and survival, cell to cell signaling and kinase signaling. 
Furthermore, several pathways activated in ccRCC are associated to immune signaling, 

 

Biological context GSEA gene set ES FDR 

Amino acid 
metabolism 

Valine leucine and isoleucine degradation -0.807 0.141 

Propanoate metabolism -0.804 0.168 

Beta alanine metabolism -0.769 0.138 

Glycine serine and threonine metabolism -0.723 0.133 

Arginine and proline metabolism -0.695 0.153 

Tryptophan metabolism -0.655 0.152 

Histidine metabolism -0.654 0.157 

Alanine aspartate glutamate metabolism -0.604 0.144 

Lysine degradation -0.580 0.140 

Selenoamino acid metabolism -0.572 0.145 

Cysteine and methionine metabolism -0.492 0.174 

Differentiation 
Taste transduction -0.601 0.227 

Cardiac muscle contraction -0.462 0.198 

Drug metabolism 
Drug metabolism cytochrome P450 -0.662 0.137 

Metabolism of xenobiotics by cytochrome P450 -0.638 0.139 

Glyco-metabolism 
Pyruvate metabolism -0.624 0.141 

Glycolysis and gluconeogenesis -0.504 0.227 

Immuno signaling Vibrio cholerae infection -0.465 0.185 

Lipid metabolism 
Glycerolipid metabolism -0.517 0.152 

Fatty acid metabolism -0.691 0.150 

Mitochondrial 
metabolism 

Citrate cycle TCA cycle -0.718 0.196 

Molecule transport 
Aldosterone regulated sodium reabsorption -0.612 0.213 

Peroxisome -0.588 0.143 

Oxidative 
metabolism  

Butanoate metabolism -0.763 0.171 

Retinol metabolism -0.641 0.168 

Table 3. List of pathways identified as inactivated in the cancer phenotype by GSEA. All 
pathways belong to gene sets derived from the KEGG pathway database. The ES and FDR 
columns indicate the enrichment score (i.e., the degree to which a gene set is 
overrepresented at the top or bottom of a ranked list of genes) and the statistical significance 
(i.e., the estimated probability that a gene set with a given ES represents a false positive 
finding). 
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including for instance NFKB, TOLL like receptor, T cell receptor, and NK cell, in which also 
many cytokines (i.e. IL18, CCL5, IL8, CCL4, IL7) and their receptors (i.e. IL7R, IL2RG) are 
involved. Finally, the enrichment analysis evidenced a role for genes involved in DNA repair 
and replication (e.g. MSH2, POLD2, RFC2, RFC4, RFC5, PCNA, SSBP1, LIG1). 

 
 

Biological context GSEA gene set ES FDR 

Angiogenesis VEGF pathway 0.478 0.222 

Cancer 
Chronic myeloid leukemia 0.410 0.216 

Renal cell carcinoma 0.441 0.206 

Cell differentiation 

Notch signaling pathway 0.388 0.245 

Calcineurin pathway 0.539 0.235 

Dorso ventral axis formation 0.586 0.232 

Cell fate and 
survival 

Apoptosis 0.372 0.232 

Raccycd pathway 0.479 0.243 

PTEN pathway 0.550 0.220 

Chemical pathway 0.555 0.246 

PML pathway 0.601 0.192 

Cell to cell signaling 

Systemic lupus erythematosus 0.510 0.233 

Viral myocarditis 0.544 0.155 

Leishmania infection 0.621 0.196 

Graft versus host disease 0.682 0.148 

Asthma 0.687 0.166 

Allograft rejection 0.711 0.180 

DNA repair 

Nucleotide excision repair 0.513 0.152 

DNA replication 0.682 0.205 

Mismatch repair 0.687 0.242 

Glyco-metabolism 
Type I diabetes mellitus 0.636 0.173 

Glycosaminoglycan biosynthesis chondroitin 
sulfate 

0.666 0.157 

Hypoxia HIF and VHL 0.518 0.197 

Immuno signaling 

T cell receptor signaling pathway 0.413 0.227 
NFKB pathway 0.449 0.232 
Natural killer cell mediated cytoxicity 0.457 0.211 
HIVNEF pathway 0.460 0.240 
TOLL like receptor signaling pathway 0.486 0.224 
HCMV pathway 0.503 0.241 
NOD like receptor signaling pathway 0.510 0.235 
Cytosolic DNA sensing pathway 0.540 0.230 
IL7 pathway 0.565 0.239 
CSK pathway 0.577 0.248 
Autoimmune Thyroid disease 0.596 0.237 
Intestinal immune network for IGA production 0.609 0.207 
NKT pathway 0.618 0.227 
NKCELLS pathway 0.645 0.219 
NO2IL12 pathway 0.684 0.237 
TH1TH2 pathway 0.733 0.221 

www.intechopen.com



 
Emerging Research and Treatments in Renal Cell Carcinoma 

 

36

Kinase signaling 
PAR1 pathway 0.419 0.241 

P38MAPK pathway 0.459 0.219 

Molecule transport Snare interactions in vesicular transport 0.455 0.232 

Oncogenic signaling

MTOR signaling pathway 0.431 0.226 

FCER1 pathway 0.443 0.239 

WNT pathway 0.458 0.230 

GCR pathway 0.471 0.245 

P53 signaling pathway 0.559 0.166 

GSK3 pathway 0.566 0.236 

ARF pathway 0.572 0.231 

ATRBRCA pathway 0.627 0.185 

Transcription RNA degradation 0.482 0.231 

Table 4. List of pathways identified as activated in the cancer phenotype by GSEA. All 
pathways belong to gene sets derived from BioCarta and KEGG pathway databases, with 
the exception of the HIF and VHL list that has been derived from NCBI Pathway Interaction 
Database. The ES and FDR columns indicate the enrichment score (i.e., the degree to which a 
gene set is overrepresented at the top or bottom of a ranked list of genes) and the statistical 
significance (i.e., the estimated probability that a gene set with a given ES represents a false 
positive finding). 

ccRCC normal  

Fig. 3. Standardized gene expression levels of the 145 genes composing the HIF and VHL 
signaling pathway in ccRCC (upper yellow bar) and normal samples (upper blue bar). Each 
row represents a single gene and each column an experimental sample. Genes are ordered 
according to GSEA enrichment score. The map has been obtained using the hierarchical 
clustering of dChip (Li & Wong, 2001). 

We finally investigated whether exists a grade-dependent specific transcriptional signature 

and compared the two groups of ccRCC cases previously classified as high (G3 and G4) and 

low grade (G1 and G2) classes. ANOVA differential analysis identified 44 differentially 

expressed genes (10 up-regulated and 34 down-regulated genes in high grade) that have 

been grouped according to their cellular localization to highlight putative grade-dependent 

clinical biomarkers (Table 5). Among the modulated genes, we found transporters (COPG, 

SLC27A2, FABP4, SLCO2A1, SLC17A4, SLC47A1, SLC17A3, SLC6A3), enzymes (SOD2, 
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BHMT, HAO2, ADH1B, MGAM, FMO2, ALDOB, GBA3, BBOX1, ABP1, DNASE1L3), G-

protein coupled receptors (EDNRB, AGTR1, RGS5), growth factors (IGFBP1, PDGFD), 

transmembrane receptors (TMEM204, OSMR) and five transcription regulators (TFPI2, 

PPP1R1A, EMX2, NAT8, RCAN2). 

 

Cellular location Up-regulated Down-regulated 

Cytoplasm 
PPP1R1A, COPG, 
KRT19, SOD2  

PCK1, FABP4, BBOX1, GBA3, 
C13orf15, C5orf23, ALDOB, SCGN, 
ADH1B, HAO2, BHMT, APOLD1 

Endoplasmic Reticulum 
Membrane 

 FMO2, SLC27A2, SLC17A3 

Extracellular Space 
SPOCK1, IGFBP1, 
TFPI2, MT1X 

EMCN, ABP1, PDGFD, UMOD 

Nucleus  
DNASE1L3, EMX2, XIST, AUTS2, 
RCAN2 

Plasma Membrane RARRES, OSMR 
SLC6A3, AGTR1, RGS5, SLC47A1, 
SLC17A4, EDNRB, SLCO2A1, 
TMEM204, MGAM, NAT8 

Table 5. Cellular location of the 44 differentially expressed genes identified between high 
and low grade samples. 

Despite the intrinsic heterogeneity of the meta-dataset (due to the combination of 

different experimental sets), when applied to cluster the 320 ccRCC samples, the grade-

dependent specific transcriptional signature was able to segregate the high-grade 

phenotypes in an homogenous group characterized by a general down regulation of gene 

expression (Figure 4). 

low grade high grade  

Fig. 4. Clustering map of high and low grade ccRCC samples based on the list of 44 
differentially expressed genes identified by ANOVA in the comparison between high and 
low grade samples. Each row represents a single gene and each column an experimental 
sample. Samples are separated into two main groups enriched for low (upper blue bars) and 
high grade (upper orange bars). The map has been obtained using the hierarchical clustering 
of dChip (Li and Wong2001) with Pearson correlation and centroid as distance metric and 
linkage, respectively. 
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3.2 Copy number profiling of ccRCC 

Genetic studies on ccRCC clinical samples characterized some recurrent alterations in 
precise chromosomal regions (i.e. deletions of chromosomes 3p, 6q, 8p, 9p, 14q, and 
amplifications of chromosomes 5q and 7). To confirm the copy number signature of ccRCC, 
we analyzed the CN profile of two independent datasets by SNP array technology with 
different resolution level. As showed in Figure 5, the genome-wide assessment of copy 
number alterations characterizing 27 and 26 sporadic ccRCC samples profiled by Affymetrix 
Human Mapping 100K and 250K Sty Array, respectively, revealed that all autosomes were 
affected by either CN gain or loss or both of them. In Cifola dataset (panel A), the most 
frequently amplified regions were on chromosomes 4q, 5 (p and q arms), 7 (p and q arms), 
11p and 12q, whereas the most recurrent deleted region was identified on chromosome 3p. 
The longest recurrent amplifications resulted on chromosomes 1 (p and q arms), 2 (p and q 
arms), 3q, 11q, 16q, 18q and 19p, often spanning two or more consecutive megabases. These 
DNA alterations presented frequencies ranging from 6 to 12 samples. Similarly, the CN 
profile of Beroukhim dataset (panel B), obtained with a denser SNP array, showed that the 
most frequently amplified regions were on chromosomes 5 (p and q arms), 7 (p and q arms), 
11p, 12q, 19 and 20, whereas the most recurrent deleted regions were identified on 
chromosomes 3p, 6, 8q, 9 and 14. Overall, we observed that the CNA profile obtained from 
the two datasets were globally overlapping, so confirming the typical ccRCC genomic 
signature. Due to the higher density of SNP array used in their study, Beroukhim et al. were 
able to better discriminate some CNAs as compared to Cifola dataset (i.e. the loss on 
chromosomes 8p, 11q, 14q, 15, and the gain on chromosomes 11p, 12, 19, 20). 

A. B. 

 

Fig. 5. Visualization of the CNA frequencies occurring in Cifola (panel A) and Beroukhim 
datasets (panel B). Regions of DNA copy number gain (red bar) and copy number loss (blue 
bar) are represented along each chromosome (from 1 to 22, ordered horizontally). X 
chromosome was omitted from this analysis. 

3.3 Integrative analysis of gene expression and copy number data 

In order to identify chromosomal regions with coordinated copy number and 
transcriptional imbalances (SODEGIRs), we performed the integrative analysis on the two 
independent datasets with paired gene expression and copy number data (namely, Cifola 
and Beroukhim). In Cifola dataset, preda analysis revealed segments of amplified 
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SODEGIR located at 5q21.3-q35.3 (from 130 to 180Mb) and a single deleted SODEGIR at 
3p14.1-p22.3 (from 35 to 60 Mb) (Figure 6, panel A). Similar imbalanced regions were 
found for chromosomes 3 and 5 in Beroukhim dataset (Figure 6, panel B), although the 
lower probe density of the gene expression platform utilized in this study (i.e., the HG-
U133A arrays) did not allow a finer resolution of the chromosomal segments as compared 
to Cifola dataset. 
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Fig. 6. SODEGIR amplified (red) and deleted (green) chromosomal regions identified by 

preda in the integrative analysis of gene expression and copy number data for Cifola (panel 

A) and Beroukhim dataset (panel B). 

To further study the influence of gene dosage associated to structural position as one of the 
mechanism of transcriptional regulation, the genes located at SODEGIR signature (199 and 
147 genes in deleted and amplified SODEGIRs, respectively) were intersected with the list of 
differentially expressed genes, identified by ANOVA in the comparison between ccRCC and 
normal tissues of meta-dataset. Overall, we found that 68% of the genes associated to the 
deleted signature (136 out of 199 genes) resulted down-regulated in the meta-dataset, while 
61% of the genes associated to amplified signature (90 out of 147 genes) were up regulated 
at a statistically significant level. The most differentially down-regulated genes ranged from 
-2 to -10 fold changes (PTH1R, ACY1, ACOX2, IL17RB, HYAL1, UQCRC1, ACAA1, 
DNASE1L3, SEMA3G, ABHD14A, AMT, APEH, ALS2CL, CISH, MYL3, SEMA3B, HIGD1A, 
PLXNB1, PDHB), while the most up regulated ranged from 2 to 3.5 fold changes (TNFAIP8, 
LOX, SPARC, CSF1R, TCERG1, LOXL2, SPARCL1, YIPF5, RPS14, ABLIM3, TNIP1, STK10, 
CLK4). IPA annotation grouped these genes in the biological categories of transcription and 
translation regulator, transmembrane receptor, enzyme and kinase (Table 6), while Gene Distiller 
and PubMatrix highlighted that genes of the deleted SODEGIR are associated to tumor 
suppressor function (DLEC1, TMEM158, PTHR1, SEDT2, LIMD19, FAM107A, BAP1), 
epigenetic modification (STAC, CTDSPL, DLEC1, PRSS50, SEDT2, IP6K1, SEMA3B, TUSC2, 
PARP3, PRKCD) and chromosomal deletion (DLEC1, LIMD1, LTF, RBM6, IRFd2, TUSC2, 
COL7A1), and genes of the amplified SODEGIR are enriched in oncogenes (CSF1R, PDGFRB, 
LOX, DUSP1, SPARC, ITK, FLT4, GNB2L1, LARS, CD74, F12, MAML1, SQSTM1) and 
associated to gene amplification (CSF1R, PDGFRB, LOX, NSD1). 
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Biological category 
Deleted SODEGIR 

3p14.1-p22 
Amplified SODEGIR 5q21.3-

q35.3 

Transcription and 
translation regulator 

RAD54L2, LIMD1, ZNF197, 
ZNF35, SMARCC1, EIF1B 

TCERG1, FEM1C, CNOT8, 
ZNF354A, NSD1, SQSTM1, 
MED7, MAML1, SOX30, 
MXD3, RPS14 

Transmembrane 
receptor 

DAG1, NISCH, PLXNB1, 
IL17RB 

CD74, FLT4 

Enzyme 

HEMK1, ARIH2, TKTL1, 
GMPPB, PARP3, MLH1, 
DHX30, SETD2, LARS2, 
ABHD5, P4HTM, ABHD6, 
CYB561D2, RPP14, ENTPD3, 
PLCD1, EXOSC7, ALAS1, 
PDHB, AMT, ABHD14A, 
DNASE1L3, ACAA1, 
UQCRC1, HYAL1, ACOX2 

LOX, LOXL2, DDX41, LTC4S, 
GM2A, THG1L, GNB2L1, 
DPYSL3, MGAT1, LARS, 
MGAT4B, HINT1, 
HNRNPAB, PGGT1B, G3BP1, 
GFPT2, PPIC, B4GALT7  

Kinase 

MAP4K2, PRKAR2A, MST1R, 
OXSR1, ULK4, PRKCD, 
CAMKV, ACVR2B, NPRL2, 
MAPKAPK3, NME6, IP6K1 

CSF1R, STK10, CLK4, ITK, 
PDGFRB, CSNK1A1, HK3, 
CSNK1G3, MAPK9 

Table 6. Biological function of the subset of differentially expressed genes located into 
SODEGIRs.  

4. Discussion 

In this chapter we illustrated the identification of distinct molecular profiles in ccRCC 

samples using experimental data available in public repositories and published in peer-

reviewed articles (Brannon & Rathmell, 2010). To exemplify how genomic data can be 

exploited to functionally characterize the molecular characteristics of renal carcinoma, we 

downloaded more than 500 ccRCC samples from public repositories of genomic data and, 

after manual selection, we created a compendium (meta-dataset) of gene expression and 

copy number profiles in 320 ccRCCs, annotated with the nuclear grade information, and 106 

normal samples mainly representing adjacent renal tissues from the same surgical specimen. 

The bioinformatics analysis of gene expression profiles allowed the identification of lists of 

differentially expressed genes and of gene signatures activated in the cancer phenotype. 

Additionally, the comprehensive analysis of copy number profiles highlighted characteristic 

chromosomal aberrations affecting ccRCC cases and the integration of gene expression and 

copy number data revealed the presence of chromosomal regions with concomitant 

transcriptional and gene dosage imbalances. 

As recently reviewed by Pal et al. (Pal et al., 2010), several gene expression and proteomic 

studies carried out on fresh and archival ccRCC tissues (Perroud, 2009; Seliger, 2009) 

evidenced a series of molecular processes and pathways involved in ccRCC tumorigenesis 

(Banumathy & Cairns, 2010) and indicated that ccRCC progression is strictly associated to 
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the adaptation of cancer cells to low oxygen levels (Baldewijns, 2010; Bristow & Hill, 2008) 

and to their continuous proliferation even in the presence of compromised DNA repair 

mechanisms (Semenza, 2008). These results find an additional confirmation from the 

analysis of genomic data presented in this chapter. Indeed, the application of different 

bioinformatics tools resulted in a list of genes (e.g., VEGFA, MYC, CA9, SLC2A1, BNIP3, 

CXCR4, EGLN3 alias PDH3, SERPINA1, KDR, ATM, CP) highly activated in ccRCC and 

related to hypoxia signaling, known to be targets of the transcription factor HIF-1 or 

involved in cancer and pathways (as apoptosis and angiogenesis) which have been 

already targeted for therapeutic intervention in RCC (Pantuck et al., 2003). As expected, 

among the up-regulated genes, there is the well-known cancer gene MYC (Gordan, 2007, 

2008) that several studies indicated as modulated by HIF-1 (Dang, 2008; Gordan, 2007; 

Podar & Anderson, 2010) and playing a fundamental role in ccRCC proliferation (Tang et 

al., 2009). 

Focusing the investigation to genes and pathways more specifically associated to ccRCC, the 

analysis of molecular profiles confirmed the presence of the adipogenic signature 

characterized by the up-regulation of genes such as FABP7, NR3C1, ANGPTL4, CAV2, 

CAV1, and the down-regulation of FABP1 and of the transcription factors TFCP2L1 and 

GATA3, as previously reported by Tun et al. (Tun et al., 2010). Loss of cell-cell adhesion and 

cell polarity is commonly observed in epithelial tumors and correlates with their invasion 

into adjacent tissues and generation of metastases. Many evidences indicate that loss of cell 

polarity and cell-cell adhesion may also be important in early stages of neoplastic 

transformation (Coradini et al., 2011). Disruption of intercellular junctions and alterations in 

cell polarity are specific hallmarks of epithelial cancer cells. In fact, most human tumors 

arising in epithelial tissues gradually lose their polarized morphology and acquire a 

mesenchymal phenotype (epithelial-mesenchymal transition, EMT) (Thiery, 2003, 2009). 

Accordingly, and in concordance with Tun et al. (Tun et al., 2010), we observed the up-

regulation of several EMT-associated genes (TGFB1, SPARC, VIM, MTHFD2, HSPG2, 

PROCR, COL3A1, ZEB2), indicating the involvement of this biological process in cancer cell 

progression and spreading in host tissues, as confirmed very recently by a study on the 

protein expression of important EMT mediators in ccRCC (Mikami et al., 2011). Among the 

other up-regulated genes and pathways (Table 4), the up regulation of gene transcription 

factor 4 (TCF4) confirmed previous evidences of the interplay between Wnt/-catenin and 

PI3K/Akt signaling cascades and its involvement in tumor development and progression 

(Chen et al., 2011). Furthermore, the activation of a series of immuno pathways, especially 

antigen presenting and processing pathways, is quite striking in ccRCC and has been 

recently demonstrated by the proteomic identification of tumor antigen-derived peptides in 

RCC (Seliger et al., 2011). In particular, the CD74 up-regulation is suggested to be linked to 

the PI3K/Akt- and MEK/ERK-dependent intracellular signaling cascades, both associated 

with NF-kB nuclear translocation and DNA-binding activity (Liu et al., 2008). 

Overall, the elucidation of the functional role of the ccRCC activated signaling pathways 

could be useful for the identification of novel cancer markers or for the development of 

molecular–targeted therapeutic agents. Taking into account the biological localization and 

functional roles of genes up regulated in ccRCC, we propose a series of genes that could 

represent candidate biomarkers for further investigations (Table 7). 
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Symbol Description References 

ANXA4 annexin A4 
Shi et al., 2004; Jones et al., 
2005; Seliger et al., 2009 

CA9 carbonic anhydrase IX 

Atkins et al., 2004; Pantuck et 
al., 2005; Zhao et al., 2006; 
Osunkoya et al., 2009; Zhou et 
al., 2010 

CAV1 caveolin-1 
Campbell et al., 2003; Waalkes 
et al., 2011 

CD70 CD70 molecule 
Junker et al., 2005; Law et al., 
2009 

CD74 
class II major histocompatibility complex-
associated invariant chain 

Young et al., 2001; Liu et al., 
2008 

CDH6 cadherin 6, type 2, K-cadherin (fetal kidney) 
Shimazui et al., 2004; Paul et 
al., 2004 

CP ceruloplasmin (ferroxidase) Osunkoya et al., 2009; 

CXCR4  CXC chemokine receptor-4 
Staller et al., 2003; Struckmann 
et al., 2008 

ENGL3 prolyl hydroxylase-3 (PHD3) 
Zhao et al., 2006; Sato et al., 
2008; Tanaka et al., 2011; 
Dalgliesh et al., 2010 

IGFBP3 insulin-like growth factor binding protein 3 
Yao et al., 2005; Takahashi et 
al., 2005; Chuang et al., 2008 

MMP9 
matrix metallopeptidase 9 (gelatinase B, 
92kDa gelatinase, 92kDa type IV 
collagenase) 

Struckmann et al., 2008; 
Mikami et al., 2011 

NNMT nicotinamide N-methyltransferase 
Yao et al., 2005; Seliger et al., 
2009; Kim et al., 2010; Teng et 
al., 2011 

STC2 stanniocalcin 2  Meyer et al., 2009 

VEGFA vascular endothelial growth factor A 
Skubitz & Skubitz, 2002; Lam 
et al., 2005; Liu et al., 2010; 
Zhou et al., 2010 

Table 7. List of candidate biomarker genes up regulated in ccRCC.  

In particular, Annexin A4 (ANXA4) is a member of the annexin family of calcium-dependent 
phospholipid binding proteins and can exist as a soluble protein as well as a membrane-
associated protein. ANXA4 could play an important role in regulating the cellular functions 
at the level of cell–cell interaction, cell adhesion and motility and, although increased 
protein expression level of ANXA4 has been confirmed in ccRCC by global proteomic 
analysis (Seliger et al., 2009), its possible implication in the carcinogenesis of RCC deserves 
further studies. Carbonic anhydrase 9 (CA9) is a transmembrane member of the carbonic 
anhydrase family that catalyses the reversible hydration of carbon dioxide into bicarbonate 
and a proton, thus enabling tumor cells to maintain a neutral pH despite an acidic 
microenvironment. CA9 is not expressed in healthy renal tissue but is expressed in most 

ccRCCs through HIF-1 accumulation driven by hypoxia and inactivation of the VHL gene. 
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CA9 expression can be detected in the tumor by immunohistochemistry (IHC) and in blood 
and tissue by ELISA assay and RT-PCR (Truong & Shen, 2011). In metastatic disease, high 
CA9 expression reported by IHC was indicated as a powerful prognostic marker for better 
survival and sensitivity to IL-2 treatment, although the robustness of this association is still 
debated (Atkins, 2004; Pantuck, 2005). Almost no data are currently available about the 
association of CA9 expression and response to targeted drugs. The prognostic value of CA9 
in ccRCC could be explained by the frequent VHL gene inactivation driving an early 
activation of the HIF pathway. The poorer prognosis associated with low CA9 expressing 
tumors could be attributed to the simultaneous over-expression of EGFR contributing to the 
activation of Akt-mTOR pathways. Targeting CA9 by inhibitors, radioimmunotherapy, 
monoclonal antibodies or vaccination is promising and offers new avenues for clinical 
research (Tostain et al., 2010). Recently, it was reported that serum CA9 levels are 
significantly higher in ccRCC than in non-ccRCC samples and may help in the differential 
diagnosis of RCC. Serum CA9 levels also correlate with tumor size in ccRCC patients (Zhou 
et al., 2010). The role of caveolin-1 (CAV1) in RCC pathogenesis is still controversial, as it is 
considered involved in both suppression and promotion of tumor growth and development. 
However, its increased expression has been used as marker of less favorable outcome in 
patients with both clinically confined ccRCC (Campbell et al., 2003) and distant metastasis 
(Waalkes et al., 2011), thus suggesting to be a candidate prognostic marker for RCC 
aggressiveness. CD70 protein (CD70) is a type II transmembrane protein belonging to the 
tumor necrosis factor family. It represents the ligand for CD27, a glycosylated 
transmembrane protein of the tumor necrosis factor receptor family. CD70 protein has been 
found expressed at a high level in ccRCCs by IHC (Junker et al., 2005). The role of this 
protein in tumorigenesis and its utility as diagnostic marker in serum and urine or as 
therapeutic tool certainly deserves further studies. Cadherin-6 (CDH6) is an adhesion 
molecule that was proved to be marker of poor prognosis and metastases development in 
ccRCC (Paul, 2004; Shimazui, 2004). Ceruroplasmin (CP) is a protein involved in iron 

metabolism, is regulated by HIF-1 (Martin et al., 2005) and has been associated to 
metastatic potential and tumor progression. Serum CP protein level has been found elevated 
in RCC and other malignancies as compared to healthy controls, indicating its potentiality 
as a cancer biomarker (Osunkoya et al., 2009). CXC chemokine receptor-4 (CXCR4) is a target 
of the VHL-HIF pathway and Staller et al. (Staller, 2003; Struckmann, 2008) demonstrated 
that its high expression is associated to poor survival. Prolyl hydroxylase-3 (PHD3/ENGL3) is 
a member of the PHD family, which is involved in the degradation of HIF proteins in 
cooperation with VHL protein under normoxic conditions. PHD3 was found frequently 
over-expressed in RCC tissues, with high specificity to cancer samples (Zhao et al., 2006) 
and its usefulness as a novel tumor antigen for RCC immunotherapy has been recently 
demonstrated in clinical serum samples from RCC patients (Sato, 2008; Tanaka, 2011). 
Insulin-like growth factor binding protein 3 (IGFBP3) is one of the most over-expressed genes in  
ccRCC (Takahashi, 2005; Yao, 2005) and its increased protein expression has been 
demonstrated in 74% of ccRCCs by IHC and associated with higher Fuhrman nuclear grade 
(Chuang et al., 2008). Matrix metallopeptidase 9 (MMP9) has been reported increased in 
ccRCC and associated to survival. Statistical analysis indicated that elevated Snail, MMP2 
and MMP9 protein expression are significantly correlated to worse disease-free and disease-
specific survival of RCC patients (Mikami et al., 2011). MMP9, TIMP1 and CXCR4 have been 
studied both in vitro and in vivo and the data strongly indicated that VHL coordinately 
regulates the expression of metastasis-associated genes CXCR4/CXCL12 and 
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MMP2/MMP9, but the exact regulatory molecular mechanism remains to be determined 
(Struckmann et al., 2008). Some of the genes here mentioned have been validated at protein 
level, as nicotinamide n-methyltransferase (NNMT) and enolase 2 (ENO2) proteins whose 
expression was found increased in RCC by Western blot (Teng et al., 2011). Increased 
cytoplasmic expression of stanniocalcin 2 (STC2) was found correlated to other conventional 
indicators of RCC aggressiveness and to shorter overall survival. STC2 could become an 
additional tissue biomarker that may be useful in the post-operative risk stratification of 
RCC patients (Meyer et al., 2009). The increased expression of vascular endothelial growth 
factor A (VEGFA) was predictive of distant metastases development and lymph node 
involvement and was significantly associated with poor survival (Lam et al., 2005). These 
studies have paved the way for the development of new therapeutic agents to block VEGF 
signaling and the cascade of events leading to tumor formation. In a randomized phase II 
clinical trial on 116 metastatic ccRCC patients, the use at high doses of a neutralizing 
antibody against VEGFA (bevacizumab) resulted in a significant prolongation of the time to 
progression of disease (Yang et al., 2003).  

According to the canonical classification of ccRCC (Flanigan et al., 2011), the Furhman 

nuclear grade is one of the most important parameters for RCC prognosis prediction (Nese 

et al., 2009), together with stage, age, tumor position and size, necrosis and other few 

molecular biomarkers (e.g., CA9). Noticeably, recent grade-dependent proteomic 

characterization reported that MYC, HIF-1 and p53 are the major hubs of the network 

obtained analyzing formalin-fixed paraffin embedded ccRCC tissues (Perroud et al., 2009). 

Chen et al (Chen et al., 2009) analyzed the correlation between chromosome aberrations and 

clinical pathological variables, including tumor stage and nuclear grade, and observed a 

significant association between LOH at chromosomes 9, 14q and 18q and higher nuclear 

grade. In the present study, we identified SOD2, KRT19 and OSM as potential grade-

dependent ccRCC biomarkers. Briefly, manganese superoxide dismutase (SOD2) belongs to the 

antioxidant gene family and has emerged as a key enzyme with a dual role in tumorigenic 

progression (Hempel et al., 2011). Recently, SOD2 has been indicated as marker for 

circulating tumor cells in prostate cancer (Giesing et al., 2010) and potentially predictive for 

lymph node metastasis in tongue squamous cell carcinoma (Liu et al., 2010). Keratin 19 

(KRT19) encodes for one of the cytoskeleton cytokeratins and has been identified as a novel 

candidate tumor suppressor gene epigenetically inactivated in RCC cell lines and primary 

tumors (Morris et al., 2008). This gene was found to be functionally related to miR-492 and 

crucially involved in neoplastic progression of malignant embryonic liver tumors (von 

Frowein et al., 2011). Oncostatin M (OSM) is a member of the IL-6 cytokine family implicated 

in signal transduction; its receptor (OSMR) was found increased at both gene copy number 

and expression levels in gastric cancer (Junnila et al., 2010) and cervical squamous cell 

carcinomas, in association with poor survival (Scotto et al., 2008). However, to our 

knowledge, no previous studies exist that link OSMR to renal carcinogenesis. The clinical 

application of these genes as potential ccRCC grade-dependent biomarkers deserves further 

investigation in well curate and extensive collections of ccRCC cases. 

The analysis of copy number levels in a total of 53 ccRCC samples profiled with SNP arrays 

(Beroukhim, 2009; Cifola, 2008) identified and confirmed the typical genomic signature of 

ccRCC, as recently showed by higher density SNP arrays (Dalgliesh et al., 2010). The most 

frequent CN alterations in ccRCC samples are the deletion of 3p and the amplification of 5q. 
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Similarly, Chen et al. detected gains of chromosome 5q33.1-qter and losses of chromosome 

3p21.31-p22.3 in 58% and 80% of the 80 RCC samples analyzed using Illumina 317K SNP 

arrays (Chen et al., 2009), respectively. Noticeably, these regions have great influence on the 

expression levels of the resident genes as previously demonstrated by integrative genomic 

studies (Beroukhim, 2009; Bicciato, 2009; Cifola, 2008; Furge, 2004). In accordance, the 

comprehensive integrative analysis pinpointed that the two most significant chromosomal 

regions with coordinated copy number and transcriptional imbalances (SODEGIRs) are 

localized at the same chromosomal arms (Figure 6). Although the integrative analysis 

presented here was conducted using a completely different approach from that applied by 

Beroukhim et al. (Beroukhim et al., 2009), both studies identified 12 over-expressed genes 

located at the 5q peak region (GNB2L1, MGAT1, RUFY, RNF130, MAPK9, CANX, SQSTM1, 

LTC4S, TBC1D9B, HNRPH1, FLT4). Among them, the ubiquitin-binding protein 

sequestosome 1 (SQSTM1) was found also in the focal amplification region at 5q35.3 by Chen 

et al. (Chen et al., 2009) and was reported over-expressed in breast and prostate tumors 

(Kitamura, 2006; Thompson, 2003). Moreover, we confirmed that, as previously evidenced 

by Cifola and co-workers (Cifola et al., 2008) and recently confirmed at proteomic level (Liu 

et al., 2010), lyxyl oxidase (LOX) is over-expressed in ccRCC. LOX is one of the critical HIF-1 

targets mediating tumor progression and catalyzes the cross-linking of collagens and elastin 

in the extracellular matrix, thereby regulating tissue tensile strength (Erler & Giaccia, 2006). 

Paradoxically, LOX has been reported to be both up-regulated and down-regulated in 

cancer cells, especially in colorectal cancer (Baker, 2011; Pez, 2011). Mechanistic 

investigations revealed that LOX activates the PI3K-Akt signaling pathway, thereby up-

regulating HIF-1 protein synthesis in a manner requiring LOX-mediated hydrogen 

peroxide production. Concordantly with these results, cancer cell proliferation was 

stimulated by secreted and active LOX in a HIF-1-dependent fashion (Pez et al., 2011). Our 

data suggest that the transcriptional modulation of LOX might be also driven by genomic 

imbalance. Among the significant down-modulated genes located at the deleted SODEGIR 

on chromosome 3p14.1-p22, it is worthwhile mentioning two potential tumor suppressor 

genes, i.e. deleted in lung cancer (DLEC1), previously reported as candidate tumor suppressor 

silenced by methylation in RCC cell lines and primary tumors and with growth inhibitory 

function tested in in vitro experiments (Zhang et al., 2010a), and SET domain containing 2 

(SETD2), encoding for an histone H3 methyltransferase and found affected by inactivating 

mutations in 12-17% of ccRCCs, together with other components of the chromatin 

modification machinery (Dalgliesh et al., 2010).  

Although some of these genes could represent novel candidate biomarkers, their role in 

ccRCC etiology requires further investigations and, given the heterogeneity of tumor 

tissues, the functional analysis of molecular mechanisms associated to ccRCC progression 

should be likely conducted on primary cultures as in vitro model of ccRCC. Indeed, primary 

cultures from RCC and normal tissues at early passages retain the phenotypic features 

(Bianchi,2010; Perego, 2005) and genomic profile (Cifola et al., 2011) of corresponding 

original tissues, while providing a more homogeneous cytological material. The integrative 

analysis of molecular profiles of RCC primary cultures may be particularly useful to 

elucidate the role of some of the many genes and pathways found typically deregulated in 

this pathology and to highlight key players in RCC biology. 
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5. Conclusion 

As showed in this chapter, the availability of high-density molecular data as gene 
expression and copy number profiles, and of bioinformatics approaches for their analysis, 
allows depicting a finer molecular portrait of ccRCC and confirming previous findings 
about important genes and gene regulatory pathways associated to this renal cancer 
subtype. The genome-wide integration of DNA copy number data and transcriptional 
profiles elucidates the interplay between DNA content and global expression patterns and 
highlights candidate genes that are actively involved in the causation or maintenance of the 
malignant phenotype. Altogether, these data indicate the presence of candidate driver genes 
important for ccRCC development that undoubtedly deserve further investigation since 
they may constitute novel specific cancer biomarkers. 
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