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1. Introduction 

Hepatocellular carcinoma (HCC) is a major type of liver cancer and third leading cause of 

cancer-related deaths worldwide. It is often diagnosed at an advanced stage, and hence 

typically has a poor prognosis. The advances in high-throughput “omics” technologies 

(genomics, transcriptomics, proteomics) parallel to the availability of high-density 

microarrays and next-generation sequencing technologies feature important advances in 

understanding of the complex biological processes underlying tumorigenesis and metastasis 

of HCC, and uncovering promising biomarkers with clinical potential.  Ultimately, the trend 

will be toward a personalized medicine that will improve diagnosis, treatment and 

prevention of primary liver cancer. In this chapter, we present an overview of most up-to-

date developments regarding these approaches toward an understanding of molecular 

mechanisms of HCC and for the development of novel biomarkers and cancer therapeutics 

targets. 

2. Background  

Hepatocellular carcinoma (HCC) is the most common primary cancer originating in the 

liver, the fifth most common cancer type, and is the third leading cause of cancer mortality 

worldwide [1-2]. It is often diagnosed at an advanced stage, leading to poor prognosis. 

Recent reports show that HCC is becoming more widespread and has dramatically 

increased in North America, Western Europe and Japan [2-4].  Early detection of HCC, 

especially detection of early/small HCC, followed by the appropriate treatment would 

significantly alter the prognosis and reduce the number of tumor-related deaths. Though 

inspiring progress has been made in understanding the molecular mechanisms of HCC, 

there is still lack of complete understanding of the disease perhaps due to complexities 

associated with the HCC such as intricacy of liver transcriptome, viral infection, liver 

regeneration, and other confounding factors, that have been major limitations for 

developing useful biomarkers for the detection and early diagnosis as well as identification 

of novel therapeutic targets for HCC. 
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The advances in high-throughput “omics” technologies such as genomics, 

transcriptomics, proteomics, and metabolomics combined with the availability of high-

density microarrays and low-cost high-throughput parallel sequencing technologies and 

their analyses using different bioinformatics tools and algorithms are providing 

unprecedented biological insights related to HCC. Global molecular profiling studies of 

HCC are providing a comprehensive view of genomic aberrations and expression changes 

that occur during the carcinogenic process. Hence, the knowledge gained from continuing 

research efforts on HCC undoubtedly facilitates the understanding of molecular 

mechanism of HCC pathogenesis, and to provide the best therapy for each cancer patient 

and to improve patient management. This approach will create a foundation for 

personalized therapeutics and treatments and expectantly will be available in the near 

future alongside the unprecedented advancement of next-generation sequencing 

technologies. These technologies already began to identify novel genes that may have a 

driver force for HCC pathobiology [5]. Identification of such driver genes within each 

tumor will highly likely be a source for the development of novel therapeutic targets for 

the malignancies for each HCC-affected individual.  

Our aim in this chapter is to focus on the current advances in the genomics field of HCC as 

well as recent progress using next-generation deep sequencing technologies, and the current 

shift towards integrative approaches using data from these advanced technologies that will 

help better understanding of HCC and for the development of novel biomarkers and cancer 

therapeutics targets. 

3. Genomic alterations in liver cancer  

Current advances in microarray technologies has resulted in high-dimensional genomic data 

sets and profoundly improved our understanding of genomic imbalances in the context of 

its role in carcinogenesis; first, with the introduction of copy number variation (CNV) 

concept in addition to single nucleotide polymorphisms (SNP), and second, with the 

improved mapping of such CNVs throughout the whole genome of patients versus normal 

individuals. While very early observations have identified CNVs as “chromosomal 

polymorphisms” that are several megabases in size, the lower end of the size range of CNVs 

continues to drop that is consistent with the pace of technological advancement [6]. With 

their inclusion of coding genes, it is hardly surprising that CNVs play a role in human 

health and disease, although their role is only recently being recognized, first in the context 

of Mendelian disorders and more recently in complex diseases [7-8]. The presence of these 

polymorphisms, either at small (SNPs or mutations) or large (CNVs and CNAs) scale as well 

as regions comprising loss of heterozygosity (LOH) blocks are, therefore, likely to contribute 

to cancer formation [9-11]. The genomic modifications in a tumor represents a structural 

fingerprint that may include the transcriptional control mechanisms and locally impact gene 

expression levels [10, 12].  

Initial array platforms utilizing either spotted clones inserted in bacterial artificial 

chromosomes (BACs) or in situ synthesized oligos on chip surfaces have been applied to 

HCC samples to better understand the role of genomic aberrations at the DNA level. These 

microarray-based assays are called array comparative genomic hybridization (aCGH) 
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technique since they are a modified version of the comparative genomic hybridization 

(CGH) approach applied to microarrays. Numerous studies have investigated chromosomal 

alterations associated with HCC using both CGH and aCGH techniques (as reviewed by 

Moinzadeh et al. [9]). Moreover, two leading microarray companies have developed similar 

assays containing only SNP probes. This approach was initiated by Affymetrix Inc. then 

later applied by Illumina Inc. Both companies have come up with different SNP assays 

comprising different numbers of unique SNP probe sets. While the aCGH approach 

provides much higher resolution over standard microscope-based banding techniques in 

terms of cytogenetics analysis, SNP arrays bring two main advantages over the other 

techniques including aCGH: LOH and uniparental disomy detection, and more diverse 

applications, such as utilization in association studies based on both SNP as well as CNV 

calls.  

Later, higher density arrays having hundreds of thousands or even currently more than a 

million unique probe sets targeting CNVs and SNPs have been employed in HCC research 

and identified critical regions of the genome likely to be involved in molecular 

carcinogenesis of HCC. Such critical regions commonly exhibit either deletion or increased 

gene dosage, leading to changes in DNA copy number variations/polymorphisms 

(CNVs/CNPs), aberrations/abnormalities (CNAs) or contain LOH blocks in various 

cancers, including HCC [9, 13-15].  

It is plausible that such HCC-specific CNVs and LOH blocks spanning from several 

kilobases to megabases comprise critical driver genes that may play a leading role in 

hepatocarcinogenesis and contain the genetic factors involved in HCC [14, 16-17]. In one of 

those early studies, Luo et al. utilized an integrated approach of DNA and RNA level 

analyses for HCC, and investigated overlapping genome-wide transcriptomic and genomic 

alterations among hepatocellular carcinomas (HCC), hepatoblastomas (HPBL), tissue 

adjacent to HCC and normal liver tissue derived from normal livers and hepatic resections 

[14]. In their study, genomic imbalances between 27 HCC samples and matching normal 

controls were determined using low density oligonucleotide arrays. The results indicated 

that several regions on chromosome 7, 8, 10 and 12 harbor numerous genomic aberrations. 

Further investigations revealed that many of these changes do not cause remarkable gene 

expression alterations. However, among other genes, two genes, GPC3 and TIEG, were 

found to have significant correlation between their copy numbers and expression changes. 

Further investigations of these two genes in a larger cohort (484 hepatic tissue and normal 

samples) confirmed the expression differences in HCC samples. Additional studies 

investigating the role of GPC3 expression in poorer clinical outcome revealed this gene may 

have a possible role on HCC aggressiveness and therefore may predict the HCC outcome 

[14].  

In a more recent study, Chen et al. employed Affymetrix’s 500K SNP arrays with an 

average of 6 kb distance between its unique SNP probes to examine 13 different HCC cell 

lines in addition to some other cancer cell lines as well as 45 archived primary HCCs [18]. 

Numerous common and novel aberrations were observed in multiple cancer lines 

confirming previously known HCC-related cytogenetic regions detected by low-

resolution methods and refining their breakpoints and boundaries, and also introducing 
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previously unknown critical genomic regions associated with HCC. Among 653 

amplicons and 57 homozygous deletions (HDs) detected by the arrays using different cell 

lines, 126 amplicons and 6 HDs were selected and tested to identify novel HCC-related 

genes.  Further analysis of such aberrant regions yielded two genes, FNDC3BB and 

SLC29A2, consistently up-regulated in multiple HCC data sets. Knock-down studies 

using short hairpin RNAs targeting both genes showed decreased cell proliferation, tumor 

formation, and anchorage-independent growth in xenograft models in nude mice 

confirmed a possible pivotal role of these genes in growth and tumor formation in subsets 

of HCC samples. Up-regulation of either gene is proposed to be activated through STAT3 

signaling pathway which is a well-known phenomenon in HCC progression usually 

triggered by cytokines such as interleukin-6 [19-22].  

In another study, Clifford et al. used Affymetrix SNP 6.0 assay comprising probes for 
detection of CNVs and SNPs, each has more than 900,000 unique oligos, totaling nearly 1.9 
million probe sets [23]. In their study, a large number of samples exceeding 1100 cases 
including histopathologically confirmed HCC and liver cirrhosis (LC) samples as well as 
normal controls with Korean and Chinese ethnicity were analyzed in two stages; each 
having different subsets of patients and controls. Based on their analysis, two SNPs were 
found to diverge significantly between HCC versus LC group and therefore considered a 
likely factor influencing transitional events from cirrhosis to hepatocellular carcinogenesis. 
Interestingly, the first SNP, rs2551677, is not within close proximity of any known gene, the 
closest gene DDX18 being 175 kb upstream of the SNP. The second SNP, rs2880301, is 
positioned on intron 1 of TPTE2 encoding a homolog of PTEN tumor suppressor gene and is 
the first time reported to be associated with carcinogenesis [23]. Additionally, three SNPs 
(rs9267673, rs2647073, and rs3997872) were found to be strongly associated with HCC only 
and were not presenting any additive/multiplicative effect. The first SNP, rs9267673, is in 
close proximity of C2 gene unlike the other two SNPs, rs2647073 and rs3997872, associated 
with SNPs falling into linkage disequilibrium of two different HLA group genes: The 
rs2647073 with HLA-DRB1, HLA-DRB6, HLA-DRB5, and HLA-DRA whereas the rs3997872 
with HLA-DQA1, HLA-DQB1, HLA-DQA2, and HLA-DQB2 loci. The associations were 
independently confirmed using TAGMAN assays indicating the validity of the SNP study. 
When they analyzed probes targeting copy number polymorphisms, eight CNV loci 
including six germline CNVs were identified to be significantly associated with liver 
carcinogenesis. One of the germline CNVs showing a high level of association with HCC is 
located on a small region on p arm of chromosome 1 where no gene is known. Five other 
CNVs found to be linked to HCC involving KNG1, C4orf29, LARP2, ALDH7A1, PHAX, 
C5orf48, LMNB1, SRPK2, PUS7, and TMPO genes. Among these CNVs, two involving TRG@ 
and TRA@ had the strongest association to HCC. Moreover, a functional pathway and 
network analyses carried out using 1000 most significant SNPs associated with HCC. 
Among the critical pathways “antigen processing and presentation” is found the most 
significantly overrepresented pathway with p-value of 1x10-11 indicating the strongest 
association to HCC. Overall, these observations indicate involvement of immune system in 
constitutional susceptibility to HCC and HCC carcinogenesis which was suggested by 
clinical observations and animals models previously.  

In a recent study, Jia et al. searched for critical somatic CNVs in 58 HCC tumor samples with 
adjacent non-tumor samples using Affymetrix 6.0 assay and identified 1241 regions [24]. 
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These regions were then interrogated in search of dysregulated genes and 362 differentially 
expressed genes were identified. Among these, 20 genes were further evaluated functionally 
and TRIM35, HEY1, and SNRPE were confirmed to be involved in HCC by various 
functional experiments. Involvement of these genes, TRIM35 as tumor suppressor, and 
HEY1 and SNRPE as potential oncogenes, in HCC is novel. 

4. Global gene expression profiling of liver cancer 

During the past two decades, discoveries on the global gene expression profiling 

technologies emerged one after the other. Subtractive hybridization, differential display, 

SAGE, microarrays and more recently next generation sequencing techniques appeared as 

cutting-edge tools to study genome-wide transcriptional profiling differences in nearly all 

different types of tissues. With the rapid advances in these technologies, the medicine, 

particularly cancer genomics, is evolving into numerous dimensions.  

The microarrays had a great impact from the way we look at the transcriptome and the way 

we understand the biology and complexity of it. Microarray expression technologies have 

allowed the simultaneous analysis of thousands of transcripts that cover nearly the entire 

genome [25]. Hence, gene expression microarrays, that are providing a comprehensive view 

of the transcriptional changes that occur during the carcinogenic process, have been applied 

with great success to the molecular profiling of HCC which has resulted in a much more 

detailed molecular classification scheme as well as in the identification of potential gene 

signature sets, molecular biomarkers, prediction of early recurrence and patient survival 

[26-29].   

Over the last decade, numerous studies have applied this technology, and identified a 

number of candidate genes useful as biomarkers in cancer staging, prediction of recurrence 

and prognosis, and treatment selection. Considering the complexity of the HCC 

carcinogenesis many genes may be involved in the initiation and progression of the cancer, 

and therefore a comprehensive expression analysis using microarray technology has great 

potential to discover new genes involved in carcinogenesis, as well as may highlight the 

functional modules and pathways altered in HCC. Indeed, some of the new target molecules 

that were identified using this technology have been used to develop new serum diagnostic 

markers and therapeutic targets against HCC to benefit patients. 

The first report of cDNA microarray analysis of hepatocellular carcinoma (HCC) by Lau et 

al. [30] studied the gene expression using about 4000 known human genes in 10 pairs of 

HCC and non-tumorous tissues. Since then numerous studies have been published to date 

in the context of genome-wide expression profiling of HCC liver. The microarray analyses of 

HCC highlighted activation of important pathways in liver carcinogenesis, such as wingless-

type (WNT), p53, transforming growth factor (TGF)-β, MAPK signalling pathways [31-34] as 

well as novel genes with altered expression, such as MARKL1, VANGL1, PEG10, BMAL2, 

HLA-DR, GPC3, and ROBO1.  

Over the past 10 years, the microarray-based gene expression profiling has been used to 

identify gene signatures associated with etiological factors, histological phenotypes, and 

clinical phenotypes, as well as unveiling novel subtypes of HCC previously unrecognized 
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by conventional methods [26, 35-36] . Most cases of HCC originate from chronic liver 

disease caused by hepatitis viral infection, including hepatitis B virus (HBV) and hepatitis 

C virus (HCV), exposure to aflatoxin B1 in mold, and alcohol abuse. In this context, gene 

signatures associated with different etiologies have also been reported [37-39].  

Microarray studies indicated that HBV and HCV viral infections lead to the development 

of liver cancer by different molecular mechanisms [32, 38-39].  Okabe et al. analyzed 

expression profiles of 20 primary HCCs by using cDNA microarrays consisting of 23,040 

genes, and compared HBV- with HCV-related HCC [32]. The authors identified a gene 

signature that is correlated with the infection status, and found that genes that are 

involved in drug metabolism and carcinogen detoxification were differentially regulated 

between HCV-based and HBV-based HCC. In another study, Iizuka et al. [38] performed 

genome-wide expression profiling 45 HCC (14 HBV- and 31-HCV-associated) and 

identified 83 genes whose expression significantly differed between the two types of 

HCCs.  The HBV-associated HCC showed significantly up-regulation of imprinted genes 

(H19 and IGF2) and genes related to signal transduction, transcription, and metastasis. On 

the other hand, HCV-associated HCC displayed up-regulation of genes related to 

detoxification and immune response. Delpuech et al. showed that HBV-associated HCC 

altered different cellular pathways, those controlling apoptosis, p53 signalling and G1/S 

transition, whereas the HCV-related HCC resulted in an over-expression of the TGF-beta 

induced gene [31]. 

Microarray gene expression profiling together with  prediction models have been used in 

numerous studies to identify gene signatures in tumor or surrounding non-tumorus tissues 

that can predict vascular invasion, metastasis, post-surgical recurrence, survival, and 

response to therapy. These signatures may aid in identifying patients most likely to benefit 

from surgery and chemotherapeutic treatment. 

Vascular invasion (VI) is an unfavorable prognostic factor for early HCC recurrence. There 

have been several microarray studies which identified gene signatures that correlated with 

VI. Ho et al. [40] identified 14 genes correlated with VI, which can classify patients with high 

or low risk of VI development and recurrence after curative hepatectomy. In another study, 

Budhu et al. reported a 17-gene signature expressed in noncancerous hepatic tissues with 

venous metastasis, capable of predicting recurrence after surgical hepatectomy, with 79% 

accuracy [41].  Similarly, Wang et al. identified a 57-gene signature to predict disease 

recurrence at diagnosis (84% sensitivity) [42].  

Using supervised machine learning methods on the gene expression data, Nam et al.  

identified 240 genes that classified samples into different histological grades, from low-

grade DNs to primary HCC [43].  Kim et al. reported 44 genes that can discriminate HBV-

positive HCC from non-tumor liver tissues [44].  Iizuka et al. [26] reported a gene signature 

of 12 genes that can predict HCC patients at high risk of early intra-hepatic recurrence (IHR) 

after curative surgery (93% sensitivity). Similarly, Kurokawa et al. [45] identified a 20-gene 

signature which could predict early IHR after curative resection. In another study, a 3-gene 

signature (HLA-DRA, DDX17, and LAPTM5) found to be predictor of recurrence after 

curative hepatectomy, which predicted early IHR with 81% accuracy in the validation group 

[46]. 
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Researchers also used microarrays to identify gene signatures as predictors of survival after 

surgical resection. Lee et al. analyzed the gene expression profile of 91 HCC samples using 

unsupervised classification approach which divided the patients into two subclasses with 

significant differences in survival [29].  The authors also identified genes that accurately 

predicted the length of survival. Functional analyses indicated that genes related to cell 

proliferation, anti-apoptosis, and cell cycle regulators were found to be predictor of poor 

prognosis.  Other microarray studies reported c-Met- and TGF-beta regulated genes that are 

highly associated with the length of survival [47-48].  

HCC is a challenging malignancy; most cases of HCC are diagnosed in an advanced stage, 

and, therefore, treatment options are limited. Hence, it is important to diagnose it at early 

stage. DNA microarray studies attempted to identify markers for early HCC [27, 49]. 

Recently considerable attention has been placed on global gene expression studies as well as 

genomic aberrations in order to understand the pathogenesis of HCC, and to look for 

possible early markers of detection [14, 16-17, 28, 34, 49-51].  Furthermore, combining cross-

species comparative and/or functional genomics approaches from human and animal 

models of HCC along with genomic DNA copy number alterations enhances the ability to 

identify robust predictive markers for HCC [13, 36, 52-54]. Thus, characterization of diverse 

HCC subgroups using the array technologies  together with improved analytical approaches 

are crucial for better management of the disease, especially in the era of personalized 

medicine approach in HCC treatment. 

5. Global miRNA expression profiling of HCC  

One of the most important findings of the analysis on the human genome is identification of 

a significant number of sequences encoding non-coding RNA molecules such as small 

nucleolar RNAs and microRNAs also known as miRNAs [55-56]. MicroRNAs, single-

stranded RNAs typically 21-23 nucleotide long, are untranslated molecules that have 

capability to bind complementary sequences resulting in their silence, therefore, regulating 

the expression of their target genes. Some of these molecules have currently been intensely 

studied and their biogenesis, structure and function are now known and some other small 

regulatory RNAs are yet to be discovered. Among these different RNAs species, miRNAs 

holds special attention due to its properties and potential use as therapeutic targets for 

cancer. Currently around 6000 miRNAs from multiple species have been annotated in 

different databases. These miRNAs target and regulate around 30% of all protein coding 

genes in mammals. It has been shown that the miRNAs regulate processes essential to 

differentiation, apoptosis, cell growth, adhesion, and cell death [57-58]. Recently, due to its 

oncogenic and tumor suppression activities, these molecules exploited for various cancers, 

including HCC [59-63].  

The genomic instability, transcriptional regulation, and epigenetic alteration have been 

identified to contribute to the abnormal expression of miRNAs in HCC. Furthermore, the 

aberrant expression of certain miRNAs is correlated with clinical features of HCC, 

indicating their potential to serve as diagnostic and prognostic biomarkers of HCC [64-65].  

Some aberrantly expressed miRNAs may have a direct role in liver tumorigenesis, and 

could promote differentiation, cell cycle progression, angiogenesis and invasion, such as 
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mir-221 and mir-21 [59]. Murakami et al. identified eight miRNAs with altered expression in 

HCC, which discriminated HCC samples from non-tumor with 97.8% accuracy [66].  

Similarly, Huang et al. identified 24 abberrantly expressed miRNAs [67].  Toffanin	 et	 al.	studied	 miRNA	 profiling	 of	 (CC	 samples	 that	 was	 previously	 profiled	 for	 mRNA	 and	 copy	number	 ȋCNȌ	 changes	 [͸ͷ].	 The	 authors	 identified	 three	 subclasses	 of	 (CC	 based	 on	miRNA	profiles.	The other studies identified miRNA signatures that predicted metastasis potential, 

recurrence and survival [64, 68-69]. Since the miRNAs are stable in blood, more recently, the 

circulating miRNAs have been reported as diagnostic markers for various cancers, including 

the HCC [70-72].Therefore, identification of miRNAs and their protein-coding target genes 

is important to understand the mechanisms of hepatocarcinogenesis, and reveals new 

biomarkers for diagnosis, prognosis and therapeutic targets. 

6. Deep sequencing of HCC using next-generation sequencing technologies 

Current advances in genomics technologies have been first seen as revolution of 

microarrays and then recently appeared as high-throughput parallel sequencing 

techniques. The resolute advance of fluorescence-based standard Sanger technique 

seemingly stretched to its limits for technical enhancements. At the same time soaring 

demand for low-cost and high-output sequencing has driven the development of superior 

technologies that allow massively parallel sequencing processes, producing millions and 

billions of sequences at once [73-74]. Therefore, it was inevitable to see the replacement of 

standard sequencing methods to newly emerging advanced sequencing technologies 

called next generation sequencing technologies. These technologies initially appeared as 

relatively high-cost difficult techniques for practical use and believed to be useful for only 

whole genome sequencing of different species. But soon these perceptions were evaded 

radically.  Today, the state of DNA sequencing technologies is in a greater flux than ever 

before. With this foreseeable evolution, comes new possibilities not only in the field of 

large-scale genomic sciences from medicine to agriculture and plant sciences coupled with 

new challenges in data storage and analysis, but also for practical use such as clinical 

utilization for routine diagnostics[74-78]. Currently, several methods are already 

established, made significant impact on the field of genomics by having reputable track 

record for many different published applications and some are in the process of building 

confidence, some are yet to be tested and perfected[78-84].  

The first study of HCC using the next-generation sequencing technology for deep 
sequencing appeared most recently [5]. Using Illumina’s Genome Analyzer IIx system, also 
called GAIIx, Totoki et al. sequenced genomic libraries from a normal Japanese male and 
hepatitis C-positive HCC sample.  Both samples’ sequence reads had an almost complete 
match to a human reference sequence covering 99.79% and 99.69% for lymphocyte (normal 
male) and HCC sample genomes, respectively. Nearly ~3 million nucleotide variations were 
recorded from each genome, yielding 84,555 bases more variations in lymphocyte genome 
perhaps due to presence of chromosomal alterations in tumor genome and 11,731 of these 
changes in HCC were somatically acquired. There were several interesting results related to 
nucleotide changes in the study. First, it was found that occurrence of somatic substitutions 
was varied between genic and intergenic regions, significantly lower in the genic regions 
(consisting of coding and noncoding exons, and introns) in comparison to its counterpart 
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intergenic regions. This was explained either by negative selection of lethal mutations in the 
genic regions or by the existence of specific molecules responsible for the repair of 
transcribed region.  Second, presence of germline variations was significantly lesser in the 
coding regions relative to the non-coding regions. Third, the ratio of nonsynonymous to 
synonymous variations (N/NS) either somatic or germline origins differed in HCC and was 
significantly lower than that of somatically originated substitutions. To explain this, authors 
highlighted the influence of positive selections happening in exons causing survival of 
tumor cells or favored negative selection of somatic variations over germline substitutions 
on the coding exons. Fourth, the preferred somatic substitutions included T>C/A>G and 
C>T/G>A transitions. Fifth, in addition to 81 confirmed somatic substitutions common to 
both genomes (all in protein coding regions), 670 small deletions and insertions were 
identified and seven of which were validated. Among these variations, some of the changes 
seemed more critical  since they were located on the previously annotated tumor suppressor 
genes for HCC and other cancer types. Moreover, authors decided to resequence exons 
potentially harboring malignant changes in 96 HCC and control samples as well as 21 HCC 
cell lines. These efforts yielded two critical somatic mutations p.Phe190Leu and p.Gln212X 
in LRRC30.  

Besides the nucleotide changes, small deletions and insertions, 22 verified chromosomal 
rearrangements were identified. These rearrangements were mostly intra-chromosomal and in 
close proximity with some known copy number regions. These chromosomal rearrangements 
led four different fusion transcripts that involve transcriptional regulation of BCORL1-ELF4 
[5]. Then using the deep whole exome sequencing approach (76X or more coverage) a 
nonsense mutation in TSC1 gene was also identified in a subset of tumor cells.  

As demonstrated in this study, further next-generation sequencing studies have the 

potential to reveal novel genes/mutations and likely critical pathways that can be utilized 

for the biomarker discovery and identification of novel therapeutic targets for HCC. Besides, 

the next-generation technologies have already been proven to be useful for genomic studies 

on some cancers [85-94]. Moreover, once affordable prices are reached, such next generation 

sequencing techniques will create an amazing opportunity to look for genome-wide DNA 

and/or RNA level differences and methylation patterns in many cancer types at an 

affordable cost and will open doors for daily diagnostics and personalized medicine [86] 

[95-96]. 

7. Animal models and comparative genomics of HCC  

Developing animal models of HCC provide an experimental ground for dissecting the 
genetic and biological complexities of human cancer and contribute to our ability to 
identify and characterize pathogenic modifications relevant to various stages of cancer 
development and progression. [97-98]. Several models of constitutive, conditional and 
inducible models of HCC were developed inducing genetic manipulations and 
investigating the genetic changes. The results usually are comparable to that found in 
humans [99]. Each model appears to have its own advantages and disadvantages [100]. 
Recent studies, including our own, demonstrated the usefulness of modeling human 
cancer in diethylnitrosamine (DEN)-induced in rats [54] as well as in genetically 
engineered mice [97, 101]. 
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The recent studies have used cross-species comparative genomics approach, that identifies 

genes that are conserved in animal models of cancer and in human cancer, that would facilitate 

the identification of critical regulatory modules conserved across species in the expression 

profiles and to understand the molecular pathogenesis of various cancers, including HCC [36, 

54, 101-103]. The cross-species comparative analysis of animal models and human HCCs 

would provide new therapeutic strategies to maximize the efficiency of treatments.   

8. Integrative and comparative analyses of HCC for identification of novel 
therapeutic targets and biomarker discovery 

It has been shown that CNAs have clear impact on expression levels in a variety of tumors 

[9, 13, 15]. The presence of such CNAs and LOH may contribute to cancer formation [9-11]. 

Integrating the gene expression with the CNA data reveals the chromosomal regions with 

concordantly altered genomic and transcriptional status in tumors [12, 52, 104]. The pattern 

of genomic modifications in a tumor represents a structural fingerprint that may include the 

transcriptional control mechanisms and locally impact gene expression levels [10, 12]. 

Therefore, focusing on differentially-expressed genes with concomitant altered DNA copy 

number may identify novel early HCC markers of malignant transformation, progression 

and survival [17]. 

The studies using integrative analysis of genomic aberrations with the expression profiling 

demonstrated the usefulness of this approach to identify the likely drivers of cancer [105] 

and helped better understand the processes affected by the drivers/passenger factors and 

led to obtain novel insights into pathobiology of HCC [17, 54, 105].  

In this context, we performed cross-species and integrative genomic analysis to identify 

potential biomarker genes for early HCC [54]. In this study, we first developed a rat model 

of early HCC as well as liver regeneration post-hepatectomy and compared them to normal 

liver using a microarray approach. We then performed a cross-species comparative analysis 

coupled with CNAs of early human HCCs to identify the critical regulatory modules 

conserved across species. We identified 35 gene signature conserved across species, with 

more than 50% mapping to human CNA regions associated with HCC [54]. Combining 

cross-species comparative and/or functional genomics approaches from human and animal 

models of HCC along with genomic DNA copy number alterations enhances the ability to 

identify robust predictive markers for HCC [13, 36, 52-54]. 

9. Future directions 

Elucidating the molecular pathogenesis of HCC on human samples has been an onerous 

task due to certain limitations such as varying etiologies among studied patients, changes 

likely to arise during the different stages of the disease or progression of HCC, and 

heterogeneity of the disease. Moreover, the success of studies is hampered by the fact that 

hepatic transcriptome is among the most complex of any organ, and the study of tumor 

formation in liver can be thorny and complicated by the continuous change of the 

transcriptome during liver regeneration after hepatectomy. Besides, cancer progresses 

through a series of histopathological stages during which genetic alterations accumulate 
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and, in consequence, the pattern of genetic expression changes complicates the 

interpretation of the genetic changes in human HCC. These limitations have hampered 

development of proper therapeutics that was further complicated by recurrences even after 

aggressive local therapies.  

The advances in high-throughput “omics” and next-generation sequencing technologies 

have been providing unprecedented biological insights related to pathogenesis of HCC. 

Undoubtedly, comparative and integrative genomics approaches are promising to lead to 

novel and robust biomarkers for improved diagnosis, prognosis, and treatment of HCC. The 

systems approach via the integration of data reflecting alterations at genomic, 

transcriptomic, proteomic, and epigenomics levels will ultimately converge toward a 

personalized medicine that will improve diagnosis, treatment and prevention of liver 

cancer.  
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