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1. Introduction  

1.1 Epidemiology of pituitary adenomas 

Pituitary adenomas are usually benign tumors. Although many of them do not cause clinical 
symptoms and remain undetected, some leads to hormonal and/or neurological disorders. 
Because a large proportion of pituitary adenomas are discovered incidentally, the estimation 
of their prevalence may be difficult. Recently Daly et al. summarized the reported 
prevalence rate based on autopsies and radiological series showing a mean prevalence of 14.4 
and 22.3% respectively, and a combined analysis yielded a final prevalence rate of 16.7%. 
Based on three different population studies they found that the mean prevalence is 1:1064 
(Daly et al., 2009). The most frequent tumors were prolactinomas, followed by non-
functioning and growth-hormone (GH) producing tumors (66.2%, 14.7% and 13.2%, 
respectively). Based on results of an international, multicentre study the prevalence of 
clinically relevant pituitary adenoma is 1:1388 which is 3–5 times higher than that 
previously reported (Daly et al., 2009). 
According to data obtained from 8276 patients the incidence rate of pituitary adenomas is 
increasing with age, and they occur more frequently in females in early life and in males in 
later life. Males had larger tumors than females, and a higher incidence was detected in 
American Blacks compared with other ethnic groups (McDowell et al., 2011). 

1.2 Pathogenetic mechanisms leading to pituitary tumorgenesis 

Pituitary adenomas usually occur sporadically and most of them have monoclonal origin 
(Alexander et al., 1990; Herman et al., 1990). Both hypothalamic and hypophyseal mechanisms 
including alterations in hypothalamic control of pituitary hormone secretion and somatic 
mutations in pituitary cells have been considered as possible pathogenetic factors in 
pituitary tumor development. In experimental models overproduction of GH-releasing 
hormone may lead to the development of GH-secreting adenoma, while decreased level of 
dopamine may be associated with prolactinoma development. 
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Familial pituitary adenomas represent only 5% of all pituitary tumors. Most of these tumors 

are associated with known genetic defects predisposing to hereditary endocrine tumor 

syndromes. The most common is multiple endocrine neoplasia type 1 (MEN1), a disorder 

transmitted in an autosomal dominant manner due to mutations of the MEN1 tumor 

suppressor gene. However, in about 20-30% of clinically MEN1 cases mutation analysis 

failed to reveal mutations of the MEN1 gene. Mutations in cyclin-dependent kinase inhibitor 

1B (CDKI1B) gene coding for p27 have been demonstrated in a small subset of patients, and 

the clinical syndrome has been named MEN4 (Dworakowska & Grossman, 2009). 

Another familial disease that includes pituitary adenoma is Carney complex (CNC). This 

syndrome is caused by mutations of the gene encoding the protein kinase A regulatory 

subunit-1-alpha (PRKAR1A) (Stratakis et al., 2001). PRKAR1A is known to be an important 

effector molecule in many endocrine signaling pathways and its defect leads to various 

endocrine and nonendocrine tumor formation. 

A separate entity among familial pituitary tumors is the familial isolated pituitary adenoma 

(FIPA) presenting most frequently as familial somatotropinomas or prolactinomas. Patients 

with FIPA are significantly younger, and their adenoma size is larger compared to sporadic 

pituitary adenoma counterparts. About 15% of the FIPA patients have mutations of the gene 

encoding the aryl hydrocarbon receptor-interacting protein (AIP), which indicates that the 

FIPA may have a diverse genetic pathophysiology (Daly et al., 2009; Dworakowska & 

Grossman, 2009).  

Although McCune–Albright syndrome (MAS) is not a hereditary disorder, it represents a 

genetic condition related to mosaicism for a mutation of the guanine nucleotide-activating 

alpha-subunit (GNAS) gene. In addition, somatic mutation of the GNAS gene is present in 

30–40% of GH-secreting pituitary adenomas (Lania et al., 2003; Spada et al., 1990,). Mutation 

of this gene leads to the constitutive activation of the GH receptor and thereby contributes to 

GH-producing adenoma formation. 

Genetic changes of classical tumor suppressor genes (TSGs) such as TP53, PTEN and RB1,  

or oncogenes (such as Ras) rarely contribute to pituitary tumorigenesis. However, 

overactivation of the PI3K/Akt/mTOR signaling pathway has been demonstrated in pituitary 

adenomas as frequently as in other solid tumors (Rodriguez-Viciana et al., 1997). Both 

expression and phopshorylation of the Akt was increased in all types of pituitary adenomas 

with a highest rate in non-functioining pituitary adenomas (NFPA) (Musat et al., 2005). In 

addition to PI3K/Akt/mTOR, the MAPK cascade was also found to be involved in cell 

transformation and proliferation (Ewing et al., 2007; Guan, 1994; Joneson & Bar-Sagi, 1997). 

Recently, microarray studies indicated that the WNT and Notch signaling pathways play a role 

in the pathogenesis of pituitary adenomas, especially in NFPA (Moreno et al., 2005). 

Among growth factors the N-terminally truncated isoform of fibroblast growth factor 

receptor type 4 (pdt-FGFR4) and fibroblast growth factor type 2 (FGF2) were found to be 

overexpressed in some pituitary tumors, especially in aggressive adenomas while 

overexpression of bone morphogenic protein type 4 (BMP4) was charactheristic for 

prolactinomas (Ezzat et al., 1995; Ezzat et al., 2002; Morita et al., 2008; Qian et al., 2004). 

Cyclin D, a member of cell cycle regulation was shown to be overexpressed in pituitary 

adenomas, especially in NFPAs, while numerous cyclin-dependent kinase inhibitors 

(CDKIs) were reportedly underexpressed due to promoter hypermethylation. These 

alterations will be discussed. 
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Another relatively common alteration in pituitary tumors is overexpression of the oncogene 
pituitary tumor-transforming 1 (PTTG1), that is indirectly involved in cell cycle through an 
interaction with p53 and induction of p21 (Salehi et al., 2008). PTTG1 was found to be 
overexpressed in most pituitary adenomas, particularly in hormone-secreting and 
aggressively behaving tumors (X. Zhang et al., 1999).  

2. Epigenetic mechanisms 

Epigenetic mechanisms denote gene expression variability without coding sequence 
alteration. These mechanisms have important role in development, X chromosome 
inactivation, and modulation of gene expression in tissue specific manner. Epigenetic 
machinery includes DNA methylation, histone modifications and regulation of gene expression 
posttranscriptionally by small, non-coding RNA molecules.  
The compact DNA structure called chromatin is built from nucleosome units. These 
nucleosomes consist of approximately 150-200 bp of DNA, which is coiled twice around an 
octamer protein complex composed of core histones (H2A, H2B, H3 and H4). The adjacent 
nucleosomes are connected by the “linker” H1 histone. From nucleosomes DNA is 
assembled into a higher structure by covalent modifications of histone proteins. These 
modifications include methylation, acetylation, phosphorylation and ubiquitination at the 
N- and C-terminal domains of core histones. DNA and histone modifications influence 
DNA compactation thereby affect DNA availability for transcription factors and determine 
transcriptional activity. 

2.1 DNA methylation 

DNA methylation occurs as a methyl-group on 5’ position of cytosine in a CpG dinucleotide 
(5-methylcytosine). Although CpG dinucleotides are relatively infrequent (~1 per 100 bp) 
throughout the genome, approximately 7% of them are mapped within CpG islands, which 
in turn are associated with the promoter regions of approximately 40–50% of all transcribed 
genes (Baylin & Herman, 2000; Gardiner-Garden & Frommer, 1987; Rollins et al., 2006.) and 
about 45% of all CpGs can be found in repetitive elements (Ehrlich et al., 1982).  
Methylation is accomplished by DNA methyltransferases (DNMT). These enzymes create 
“de novo” (DNMT type 3a and 3b) or maintain (DNMT1) the methylation pattern, which is 
a replication-dependent process passing off during S-phase of the cell cycle (Klose & Bird, 
2006). Methylation of CpG islands cause gene expression silencing by direct inhibition of 
transcription factors binding and by recruitment of methyl-binding domain proteins (MBDs) 
occurring in transcription repressor complexes. 
CpG island methylation is correlated with condensed heterochromatin. On the contrary, 
hypomethylation allows an open chromatin structure and it usually occurs in promoter 
regions of active genes. 
In primary human tumors, methylation patterns are frequently disorganized. Promoter 
regions of genes are often hypermethylated and, therefore, their expressions are silenced. In 
general, aberrant CpG island methylation tends to be focal, affecting single genes, but not 
their neighbours (Zardo et al., 2002). Tumor suppressor genes involved in the regulation of 
cell cycle, apoptosis or genes participating in DNA repair are often silenced by 
hypermethylation and they do not have other genetic alterations (eg. mutations) (Brena & 
Costello, 2007). Beside hypermethylation genome-wide hypomethylation was also 
implicated in tumor development (Feinberg & Vogelstein, 1983; Gaudet et al., 2003).  

www.intechopen.com



 
Tumor Suppressor Genes 

 

224 

2.2 Histone modification 

Chemical modification of histones (H) frequently targets lysine residues within their N- 

and C-terminal tails. Core histone modification is frequently called as ‘histone code’ 

which determines transcriptional activity by influencing compaction of DNA structure 

(Jenuwein & Allis, 2001; Turner, 2000). Deacetylated forms of N-tails of H3 and H4 

histones have a positive charge that results in a close nucleosome structure because of the 

negatively charged DNA. Acetylations of lysine residues on histone tails neutralize the 

positive charge of histones thereby lead to a loose, “opened” chromatin structure (Struhl, 

1998) (Fig.1.). 

In addition to acetylation, histone modifications may include methylation, phosphorylation, 

sumoylation, ubiquitination and ADP-ribosylation. Among these mechanisms covalent 

modifications, such as acetylation of H3 and H4 and methylation pattern on gene expression 

have been extensively investigated in tumor development. Several enzymes including 

histone acetyltransferases (HAT), histone deacetylases (HDAC), histone methyltransferases 

(HMT) and histone demethyltransferases (HDMT) may modify histones. Acetylation of 

lysine (K) residues associated with H4 and methylation of lysine 9 (K9) in H3 may be 

present at inactive gene loci. Alternatively, acetylation on K9, K14 and methylation on K4 of 

H3, or acetylation on K5 of H4 can be found both at active or activating gene loci, reviewed 

by Tateno et al, 2010 (Tateno et al., 2010; Ezzat, 2008). 

 
 

 
 

Fig. 1. Histone and DNA modifications. 

www.intechopen.com



Epigenetic and Posttranscriptional Alterations of  
Tumor Suppressor Genes in Sporadic Pituitary Adenomas 

 

225 

2.3 Genomic imprinting 

Genomic imprinting is related to a special form (or a subgroup) of DNA methylation, which 

allows monoallelic gene expression in a “parent-of-origin-specific” manner (Wong et al., 

2007). Diploid cells have two alleles of each autosomal gene inherited from each parent. 

Generally both parental alleles are expressed equally, but a subset of genes is expressed by 

either the maternal or the paternal allele, and this ‘genomic imprinting’ is regulated by 

epigenetic mechanisms. This process may be also responsible for tissue specific gene 

expression.  

Imprinted expression is restricted to a few hundred genes in the mammalian genome, most 

of which are found in small clusters. Imprinted clusters have an imprinting control region 

(ICR) that is usually 1–5 kb. long, differentially methylated and it regulates the imprinting 

mechanism across the entire domain. Imprinted genes are regulated also by methylation. 

Many imprinted genes inside of an imprinted cluster are protein-coding genes, however, 

recently the role of ncRNAs in imprinting regulation was also raised (Zhou et al., 2010). 
The most commonly cited example for imprinting mechanism leading to tumorigenesis is 
the gene encoding insulin-like growth factor type 2 (IGF2). IGF2 is paternally imprinted in 
most tissues (Ohlsson et al., 1994). It is an embryonic mitogen and it acts as a paracrine 
and autocrine regulator of cell proliferation (Yu & Rohan, 2000). In cells that express both 
parental IGF2 alleles, the increased amount of IGF2 may lead to tumor formation. Loss of 
imprinting (LOI) of IGF2 has been reported in many tumors including colorectal 
carcinomas (Cui et al., 2003), Wilm’s tumor (Ogawa et al., 1993), esophageal carcinoma 
(Zhao et al., 2009), acute lymphoblastic leukemia (Vorwerk et al., 2003) and prostate 
cancer (Jarrard et al., 1995). 

2.4 Regulation by non-coding RNAs (ncRNAs) and microRNAs (miRs) 

Thus far small RNAs do not belong tightly to classical epigenetic mechanisms, but based on 

recent findings we have to classify them into this group as they regulate gene expression 

without modification of the genetic code. For instance, miRs provide fine tuning of protein 

expression level, and their role in tumorigenesis has been widely demonstrated. 

MicroRNAs belong to non-codingRNAs (ncRNAs) that can regulate gene expression. It was 

found that about 98% of all transcripts originate from ncRNAs (Mattick, 2001). These arise 

from exons and introns of protein non-coding genes and from introns of protein-coding 

genes (Mattick & Makunin, 2005). Non-coding RNAs include transfer-RNAs (tRNAs) 

involved in mRNA translation, small nucleolar RNAs (snoRNAs) involved in modification 

of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs) implicated in mRNA 

splicing (Mattick & Makunin, 2005). Beyond these, several small RNAs (categorized into 13 

functional classes) were discovered with diversified biological functions including 

heterochromatin formation, histone and DNA methylation, mRNA cleavage and 

transcriptional repression (summarized by Zhou et al., 2010). 

MicroRNAs (miRs) are approximately 19-25 nucleotide long, non-coding RNA molecules 

which posttranscriptionally regulate gene expression via RNA interference by binding 3’ 

untranslated region (3’UTR) of protein coding mRNA (Lagos-Quintana et al., 2001). This 

pairing is not a perfect match in the case of mammals but it is in plants. By interacting the 

target mRNAs miRs repress the target protein expression by three major processes: i) 

mRNA cleavage, ii) mRNA degradation by deadenylation or iii) inhibition of translation 

initiation. In addition, miRs regulate expression of other types of ncRNAs (Fig.2.). 
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It has been proposed that 30-50% of all protein coding genes may be controlled by miRs 

(Chen & Rajewsky, 2006; Lewis et al., 2005). As miRs may influence numerous mRNA they 

may participate in the regulation of numerous physiological and pathological cellular 

processes. Their roles were considered in development (Lee & Ambros, 2001), cell 

proliferation (O’Donnel et al., 2005), differentiation (Chen & Stallings, 2007), apoptosis 

(Cimmino et al., 2005) and tumorigenesis (reviewed by Deng et al., 2008) including tumors 

of endocrine system such as the pituitary gland (Bottoni et al., 2005, 2007; Amaral et al., 

2009, Butz et al., 2010, 2011). 

 

 

Fig. 2. MicroRNAs’ biogenesis and function. 
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3. Epigenetic alterations involving tumor suppressor genes 

3.1 Hypermethylated tumor suppressors 
3.1.1 Genes encoding cell cycle regulators 

The sensitively balanced cell cycle involves numerous negative and positive regulators. The 
main proteins involved in this process are the cyclins, cyclin-dependent kinases (CDK) and 
their inhibitors (CDKI). Alterations of several cell cycle-related genes, especially those 
involved in the G1/S transition have been associated with pituitary adenomas. Several cell 
cycle inhibitors (CDKIs) were found to be underexpressed through promoter 
hypermethylation in pituitary adenomas. CDKIs as members of the INK4 families (p16Ink4a, 
p15Ink4b, p18Ink4c) and the Cip/Kip (p21Cip1, p27Kip1, p57Kip2) inhibit CDK-cyclin complexes 
thereby prevent checkpoint transitions (Fig. 3.). 
 

 

Fig. 3. Regulation of cell cycle. 

The restriction point of the G1/S transition requires inactivation of retinoblastoma (Rb) 
protein via phosphorylation by CDKs. In this process E2F transcription factors are released 
and transcription of S-phase genes are allowed. The majority of pituitary adenomas express 
Rb and inactivation of CDKIs (detailed in Table 1) may lead to cell proliferation in pituitary 
adenomas. 
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Gene 
Name 

Alterations in pituitary adenomas 

pRb (RB1) 

 Promoter hypermethylation in 28.6% (12/42) and 35% (12/34) of 
adenomas (Ogino et al., 2005; Yoshino et al., 2007) 

 90% of adenomas expressed Rb (18/20) and in 60% of Rb-non-expressing 
adenomas promoter methylation was found (Simpson et al., 2000) 

 LOH of the RB locus in 100% of invasive and malignant tumors (Pei et 
al., 1995)

p53 
 Somatic inactivating mutation and increased expression in 33% (2/6) 

of pituitary carcinomas (Tanizaki et al., 2007)

p14ARF 
 Promoter hypermethylation in 6% (2/24) of adenomas (Yoshino et al., 

2007) 

p15INK4b 
(CDKN2B) 

 Promoter hypermethylation in 32% (11/34) and 35.7% (15/42) of 
adenomas (Yoshino et al., 2007; Ogino et al., 2005) 

p16INK4a 
(CDKN2A) 

 Promoter hypermethylation in 59% (20/34) and 71.4% (30/42) of 
adenomas (Yoshino et al., 2007; Ogino et al., 2005) 

p18INK4c 
(CDKN2C) 

 Promoter hypermethylation in 39.5% (15/38) of adenomas (Kirsch et 
al., 2009; Morris et al., 2005) 

p21Waf1/Cip1 
(CDKN1A) 

 Promoter hypermethylation in 3% (1/34) of adenomas (Yoshino et al., 
2007) 

 Decreased expression in 71% (10/14) of NFPAs (Neto et al., 2005) 

 Increased expression in 77% (31/40) of hormone producing and 92% 
(11/12) of GH producing adenomas (Neto et al., 2005)

p27Kip1 
(CDKN1B) 

 Absence of promoter hypermethylation in 34 pituitary adenomas 
(Yoshino et al., 2007) 

 Decreased expression in adenomas especially in corticotrop adenomas 
(21/21) (Lidhar et al., 1999; Lloyd et al., 1997; Bamberger et al., 1999) 

GADD45┛ 
 Promoter methylation in 58% (19/33) of adenomas (Bahar et al., 2004a; 

Zhang et al., 2002)

MEG3A 
 Promoter methylation (11/11) of adenomas (Gejman et al., 2008; Zhao 

et al., 2005)

DAPK 
 Loss of expression in 59% (10/17) of invasive adenomas caused by 

hypermethylation (45%) or homozygous deletion (36%) (Simpson et 
al., 2002)

PTAG 
 Loss of expression in 79% (30/38) of adenomas caused by 

hypermethylation in 20% (Bahar et al., 2004b) 

ZAC  Loss or decreased expression in (34/34) NFPAs (Pagotto et al., 2000) 

Table 1. Hypermethylated tumorsuppressors involved in pituitary tumorigenesis. 

GADD45┛, also known as cytokine response 6 (CR6) was found to be involved in growth 

suppression and apoptosis (Zhang et al., 1999). The GADD45 family genes (GADD45┙: 

GADD45, GADD45┚: MyD118 and GADD45┛: CR6) are regulated by p53. They influence the 

expression of p21WAF1/CIP1 and proliferating cell nuclear antigen (PCNA) and have a role in 

DNA damage repair (Fan et al., 1999; Smith et al., 1994; Xiao et al., 2000). They disrupt 

interaction between CDK1 kinase and cyclin B1 and, therefore, they suppress cell 

proliferation not only by inhibiting G1/S transition but they also cause G2/M arrest. (Zhan 
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et al., 1999). They are also involved in apoptosis regulation by activating MAPK and Jun 

kinase signaling pathways and they cause DNA fragmentation (Takekawa & Saito, 1998). 

Further studies demonstrated that they are not expressed in the majority of NFPA and GH- 

or PRL-secreting tumors. Reexpression of GADD45 in human and rodent pituitary-derived 

cell lines inhibited cell proliferation suggesting that loss of GADD45 may have a role in 

pituitary tumorigenesis. Methylation of CpG islands of the GADD45┛ gene was identified in 

19/33 (58%) of pituitary adenomas including NFPA, GH- and PRL secreting tumors (Bahar 

et al., 2004a). 
Zhao and coworkers showed that a gene named maternally expressed 3 (MEG3) was 
strongly expressed in normal pituitary gland while its expression was almost undetectable 
in pituitary tumors and other cancer cell lines (Zhao et al., 2005). In functional studies 
methylation inhibitor restored MEG3 expression in human cell lines. MEG3 protein non-
coding RNA has multiple splice isoforms and all of them suppress cell growth in vitro by 
stimulating p53-mediated transactivation (Zhou et al., 2007). All human pituitary cell types 
express MEG3, while in adenomatous pituitary samples the loss of MEG3 was limited to 
NFPAs of gonadotroph origin (Gejman et al., 2008). It has been shown that inactivation of 
the MEG3 gene was exclusively due to methylated CpGs in its promoter. (Zhao et al., 2005; 
Gejman et al., 2008). 

3.1.2 Genes encoding regulators of apoptosis 

The gene encoding death-associated protein kinase (DAPK) was found to be frequently 
altered by epigenetic mechanisms in pituitary tumors. Simpson and his collegues 
demonstrated that in 34% (11/32) of pituitary tumors expression of the DAPK was 
undetectable and that almost half of the cases had CpG island methylation in the DAPK 
promoter region. In addition, loss of DAPK expression was associated with tumor 
invasiveness. However, only a minority of non-invasive pituitary adenomas (2/35; 5.7%) 
showed underexpression of the DAPK caused by methylation (Bello et al., 2006). Another 
protein involved in apoptosis regulation is the pituitary tumor apoptosis gene (PTAG). Its 
expression was reduced in a significant percent (79%, 30/38) of pituitary adenomas. All 
corticotropinomas and prolactinomas, 73% of somatotropinomas and 64% of NFPAs 
showed reduced expression of PTAG. Reexpression of PTAG alone failed to influence 
pituitary cell proliferation or cell viability but significantly augmented the apoptotic 
response to bromocriptin induction. This „apoptosis sensitization” effect was described also 
in colon cancer (Bahar et al., 2007). It was also suggested that PTAG loss in pituitary 
adenomas may be an early step in pituitary tumorigenesis leading to a blunted apoptotic 
response (Bahar et al., 2004b). 

Among other methylated genes involved in the regulation of apoptosis in pituitary cells are 

ZAC and RASSF1. The ZAC (zinc finger protein which regulates apoptosis and cell cycle 

arrest, or PLAGL1, pleiomorph adenoma gene like-1) encoding a zink finger protein was 

found to be strongly underexpressed in NFPAs compared to other types of pituitary 

adenomas or normal pituitary tissue (Pagotto et al., 2000). ZAC inhibited cell proliferation 

and colony formation in functional in vitro experiments and abolished tumor formation in 

nude mice. It induced apoptosis and cell cycle arrest independently of pRb, p21Waf1/Cip1, 

p16INK4a, p27KIP2 and p57KIP3 (Spengler et al., 1997). Underexpression of ZAC was related 

either to loss of heterozigosity (LOH) (Pagotto et al., 2000) of the ZAC locus or to 

hypermethylation. RASSF1A (Ras association domain family 1) was found to exert a tumor 
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suppressor function in several neoplasms including pituitary tumors. Qian demonstrated that 

inactivation of the RASSF1A was caused by promoter methylation in 38% of all pituitary 

adenomas and in 83% of higher grade adenomas (Qian et al., 2005). RASSF1 promoted 

apoptosis and inhibited cell growth in different cell lines suggesting its general role in 

apoptosis. This apoptosis promoting effect of RASSF1 was found to be p53-independent (Vos 

et al., 2000) while its effect on cell proliferation and cell cycle was connected to the prevention 

of cyclin D1 accumulation (Shivakumar et al., 2002; Song et al., 2004). 

3.2 Histone modifications in pituitary adenomas 

As mentioned above the key regulators of histone modifications are DNA 

methyltransferases. Among these enzymes, DNMT3b, a “de novo” DNA methylation 

enzyme was found to be overexpressed in functioning pituitary adenomas and NFPAs (Zhu 

et al., 2008a). Using chromatin immunoprecipitation in AtT20 mouse pituitary cells Zhu et 

al. demonstrated that histone modifications resulted in a change of DNMT3b expression 

(Zhu et al., 2008a). 

Another protein with reduced expression due to histone methylation was fibroblast growth 
factor receptor type 2 (FGFR2). The FGFR2 gene transcript has two splice variants. Deletion 
of the FGFR2-IIIb isoform was associated with inaccurate pituitary development 
(DeMooerloze et al., 2000). FGFR2 was found to be underexpressed in pituitary tumors 
compared to normal pituitary tissue (Abbass et al., 1997; Zhu et al., 2007a). Underexpression 
of the FGFR2 gene was also demonstrated in murine adrenocorticotropic hormone secreting 
pituitary tumor cells (Zhu et al., 2007a). FGFR2 has been previously described as tumor 
suppressor because in functional experiments its enforced expression impeded cell growth 
and enhanced apoptosis in thyroid cancer cell lines via attenuation of Ras/BRaf/MAPK 
phosphorylation (Kondo et al., 2007a). In addition, expression of MAGE-A3 (melanoma 
antigen family A, 3; cancer/testis antigen family 1, member 3), an FGFR2 signaling target 
molecule showed an inverse correlation with FGFR2 expression (Kondo et al., 2007b; Zhu et 
al., 2008b). Activation of FGFR2 signaling resulted in methylation of H3 and deacetylation 
associated to the MAGE-A3/6 promoter down-regulated its expression (Kondo et al., 
2007b). Downregulation of FGFR2 signaling caused hypomethylation of MAGE-A3 
promoter in pituitary tumors originated from female individuals (Ezzat et al., 2008; Zhu et 
al., 2008b). MAGE-A3 and its protein family are encoded on X chromosome and normally 
are expressed in placenta, in testicular germ cells and in several tumors such as melanoma, 
lung cancer and breast cancer (Hussein et al., 2011; Sigalotti et al., 2004; Yanagawa et al., 
2011). MAGE-A3 was found to regulate the expression of p53 and p21 and its 
downregulation resulted in p21 and p53 accumulation that reportedly occurred occasionally 
in specific cases of pituitary adenomas (see Table 1.) (Ezzat et al., 2008; Zhu et al., 2008a,b). 
There may be several links between processes involved in the mechanism of pituitary 

development and tumorigenesis. An example of this complex crosstalk is the function of 

Ikaros (Ik), a zinc-finger DNA binding protein implicated in chromatin remodeling, which 

has a role in the development of GHRH neurons in hypothalamus and plays an important 

role in pituitary tumorigenesis via its tumor suppressor function (Ezzat et al., 2005a; 

Winandy et al., 1995). In pituitary corticotroph cells loss of Ik leads to impaired activation of 

proopiomelanocortin hormone expression and increased mortality (Ezzat et al., 2005a). Ik-

deficient mice have reduced GHRH secretion, a shrunk somatotroph population in pituitary 

and dwarfism (Ezzat et al., 2006). Ik inhibits access of Pit-1 to GH promoter while it 
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facilitates Pit-1 binding to prolactin promoter in mammasomatotroph cells by the histone 

acetylating-deacetylating system (Ezzat et al., 2005a). Ik is also involved in tumorigenesis 

and was found to be down-regulated by hypermethylation in human pituitary tumors (Zhu 

et al., 2007b). One negative isoform of Ik, Ik6 was implicated in pituitary tumorigenesis by 

promoting pituitary cell survival through enhanced antiapoptotic activity through Bcl-XL 

induction by chromatin histone acetylation (Ezzat et al., 2005b). In addition to apoptosis 

regulation Ik6 contributes to dysregulated expression of Ik target genes including growth 

factor receptors such as FGFR4 which are essential for development. In pituitary tumor cells 

Ik6 interrupts activation of the FGFR4 promoter through its deacetylation, that results in 

transcription from a criptic promoter in intron 4 leading to a truncated tumor derived 

receptor isoform (pituitary derived ptd-FGFR4) with an oncogenic potential (Ezzat et al., 

2004; Yu et al., 2003). 

3.3 Loss of imprinting  

Our knowledge about loss of imptinting (LOI) and its relation to the pituitary tumorigenesis 

is limited. As imprinting is executed by methylation, altered methylation may lead to LOI. 

Regarding to the pituitary we already discussed two imprinted tumor suppressor genes, 

MEG3A and ZAC, which may be silenced by hypermethylation of both alleles. 
In addition, the gene encoding the alpha-subunit of the GTP-binding protein, Gs alpha was 
found to be expressed only from the maternal allele in normal pituitary tissue. However, some 
GH-secreting pituitary tumors containing Gs┙ mutation express Gs┙ from the non-mutated 
paternal allel too. This biallelic expression was also present in Gs┙ mutation negative 
adenomas too (Hayward et al., 2001). In the latter cases relaxation of imprinting occurred. 

4. Role of miRs in pituitary adenoma development 

Because 30-50% of all protein coding genes may be controlled by miRs (Chen & Rajewsky, 

2006; Lewis et al., 2005), it is not surprising that they are implicated in pituitary 

tumorigenesis. Bottoni et al. described that miR-15a and miR-16-1 may have a pathogenic 

role in the development GH- and PRL-secreting adenomas (Bottoni et al., 2005). They found 

that these two miRs were significantly underexpressed in these adenomas. The genes 

encoding miR-15a and miR-16-1 are located in chromosome 13q14, a region which is 

frequently deleted in pituitary tumors. These two miRs were found to be negatively 

correlated with the tumor diameter and miR-16-1 expression showed negative correlation 

with arginyl-tRNA synthetase (RARS) expression, a putative target in pituitary tumor cells. 

In addition, RARS associated with the p43 in the aminoacyl-tRNA synthetase complex, and 

it was suggested that p43 has anti-neoplastic properties in mice. Based on these data it was 

suggested that in pituitary adenomas miR-16-1 expression may modify RARS level, which 

associates with p43 in the formation of the ARS complex and that this process may influence 

tumor growth. Cimmino et al. showed that the antiapoptotic B cell lymphoma 2 (Bcl2) 

protein is an additional target of miR-16-1. Interaction between miR-16-1 and Bcl-2 may be 

persent in the majority of B-cell lymphoma cases (Calin et al., 2002; Cimmino et al., 2005). 

The Bcl2 was found to be overexpressed in approximately one-third of pituitary adenomas, 

while its expression was not detected in normal pituitary tissues (Wang et al., 1996), 

suggesting that Bcl2 may be implicated in pituitary tumorigenesis through regulation of 

apoptosis (Bottoni et al., 2007). 
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The connection between pituitary development and tumorigenesis is further supported by the 
dual role of a protein, named high-mobility group A2 (HMGA2). HMGA2 is a small nuclear 
non-histone chromatic protein involved in the regulation of chromatin structure (Fashena et 
al., 1992) and gene transcription (Grosschedl et al., 1994). In transgenic mice overexpression of 
HMGA2 leads to initiation of mixed GH/prolactin secreting pituitary adenomas (Fedele et al., 
2002). Although the HMGA2 gene was not expressed in normal pituitary, its expression was 
present in human prolactinomas and NFPA. In prolactinomas its expression was related to 
amplification and/or rearrangement of its chromosomal loci (Finelli et al., 2002), but in the 
case of NFPA genetic alteration was absent (Pierantoni et al., 2005). In 2007 two studies using 
reporter gene experiments showed that expression of HMGA2 was repressed by miR let-7 (Lee 
& Dutta, 2007; Mayr et al., 2007). In addition, Qian et al. confirmed an inverse correlation 
between let-7 and HMGA2 expressions in NFPA (Qian et al., 2009). 
Our group using whole genome miR expression profiling combined with bioinformatical 
tools and luciferase reporter systems showed that Wee1 kinase, a kinase involved in the 
regulation of G2/M transition, was targeted and downregulated by miRs in pituitary tumor 
samples compared to normal pituitary tissues (Butz et al., 2010). We showed that both the 
total and phosphorylated forms of Wee1 protein was decreased in NFPA and GH producing 
adenomas compared to normal pituitary tissues (Fig. 4A.). 
After cloning Wee1 3’UTR into a luciferase reporter plasmid we demonstrated that Wee1 
downregulation was, at least in part, due to overexpression of miR-128a, miR-516a-3p and 
miR-155 in NFPA and overexpression of miR-155 in GH producing adenomas. In addition 
using site directed mutagenesis we validated binding sites (Fig. 4C.) predicted by three 
different target prediction algorithms in Wee1 3’UTR for miRs: miR-128a, miR-155 and miR-
516a-3p, further confirming that downregulation of Wee1 may be related to the overexpression 
of these miRs in pituitary adenomas. In another study Qi et al exprerimentally validated two 
other miRs, miR-195 and miR-372 targeting Wee1 in human embryonic stem cells (hESCs) (Qi 
et al., 2009). Our group found that miR-195 was moderately overexpressed (1.5 fold) in NFPA 
and down-regulated in GH-producing adenomas. In pituitary adenomas impairment of cell 
cycle regulation by Wee1 downregulation may lead to the loss of the G2/M checkpoint, which 
in turn may allow DNA damage accumulation leading to tumor development (Butz et al., 
2010). In addition, multivariate analysis suggested that in non-small-cell lung cancer 
expression of Wee1 was a prognostic factor: its decreased expression negatively correlated 
with a higher rate of recurrence and higher Ki-67 proliferation index (Yoshida et al., 2004). 
Backert et al. reported that Wee1 was underexpressed in colon cancer tissues and cell lines 
further supporting its tumor suppressor function (Backert et al., 1999). 
In addition to cell cycle alterations through Wee1, the TGF┚ signaling pathway may also 
play a role in the pathogenesis of pituitary adenomas. This pathway was shown to exert a 
prominent role in the regulation of pituitary tumor growth and prolactin secretion from 
pituitary lactotrope cells, and microarray studies indicated that FSH, LH and TSH ┚-
subunit, which are under TGF┚ regulation, are underexpressed in NFPA (Kulig et al., 1999; 
Wang et al., 2008). In addition, TGF┚ administration decreased proliferation and increased 
apoptosis of HP75 cell line derived from a clinically non-functioning pituitary tumor [Kulig 
et al., 1999; Danila et al., 2002]. In our study after performing microRNA expression 
profiling with TaqMan microfluidic card on pituitary adenomas we executed complex 
bioinformatical procedures including target prediction following pathway analysis using 
DIANA miR-PathTool software for differentially expressed miRs. Our results suggested 
involvement of several altered pathways. Of these we selected TGF┚ signaling and found that 
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members of TGF┚ signaling, Smad3, Smad6 and Smad9 were significantly underexpressed in 
NFPA compared to normal pituitary tissues using quantitative RT-PCR. In addition, in silico 
target prediction analysis for Smad3 identified five overexpressed miRs in NFPA compared to 
normal tissues (miR-135a, miR-140-5p, miR-582-3p, miR-582-5p and miR-938). Our results 
suggest that these overexpressed miRs may produce downregulation of the TGF┚ signaling 
through Smad3, and these miRs may have a possible role in the complex regulation of the 
TGF┚ signaling pathways involved in the tumorigenesis process of NFPA. (Butz et al., 2011) 
Also, our miR expression profile analysis suggested that a decrease of TGF┚ signaling via 
Smad3 may result in a shift toward alternative, non-Smad pathways including Ras-MAPK, 
p38, c-Jun, and PI3K-Akt, which have been already considered as contributing factors in 
pituitary tumorigenesis (Fig. 5.) (Butz et al., 2011). 
 

 

Fig. 4. A: Wee1 immunhistochemistry in normal and adenomatous pituitary. B: Wee1 and its 
targeting miRs’ expression. C: miRs’ binding sites at Wee1 3’UTR. (partly presented in paper 
Journal of Clinical Endocrinology & Metabolism. Vol.95, No.10, (October, 2010), pp. E181-
191, ISSN 0021-972X) 
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Fig. 5. TGF┚ signaling. Smad3 indicated with blue is targeted by several miRs in pituitary. 

Another interesting connection between Smad3 and pituitary tumorigenesis arises from a 

direct interaction of Smad3 with the tumor suppressor menin. Inactivation of menin blocked 

TGF┚ and activin signaling and antagonized their growth-inhibitory properties in anterior 

pituitary cells (Hendy et al., 2005). It is known that MEN1 gene mutations play a role in 

MEN1-related pituitary tumorigenesis, but MEN1 gene mutations seem to be very rare in 

sporadic pituitary adenomas (Prezant et al., 1998; Wenbin et al., 1999). Some reports showed 

increased menin expression in sporadic pituitary adenomas (Wrocklage et al., 2002). 

However, there are some conflicting data about menin expression because other reports 

indicated a significant reduction of menin protein in a high percentage of pituitary 

adenomas (Theodoropoulou et al., 2004), and studies by several groups using RT-PCR (Asa 

et al., 1998; Farrel et al, 1999; Satta et al., 1999) showed no differences in MEN1 mRNA levels 

between pituitary tumors and normal pituitary tissues. All these data may raise the 

possibility of posttranscriptional mechanisms regulating menin expression via altered 

expression of miRs. Indeed, in our study we identified 4 miRs (miR-149, miR-570, miR-592, 

miR-769-5p) potentially targeting MEN1 3’UTR showed a significant overexpression, but 

further studies are needed to confirm regulation of menin expression by these miRs (Butz et 

al., 2011). 
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5. Conclusions and future perspectives 

As already shown in several tumor types, the pathogenesis of pituitary adenomas involves 

epigenetic mechanisms which play a prominent role in the regulation of gene expression. The 

question is that whether epigenetic alterations, such as DNA and histone modifications are a 

cause or a consequence in pituitary tumorigenesis. New discoveries and new methodologies in 

the fields of cell biology, genetics, and genomics open new paths in understanding the 

complexity of regulatory networks of tumor development. The small RNA systems and their 

regulatory roles are still uncovered fields in pituitary tumor pathology. To date only miRs of 

small RNAs have been investigated in pituitary tumorigenesis. It is expected that using novel 

tools new players and/or new roles for old players will be identified, which may help to 

develop novel diagnostic and therapeutic approaches. 
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cellular activities through signaling transduction networks. This book is an excellent review of current

understanding of TSGs, and indicates that the accumulated TSG knowledge has opened a new frontier for

cancer therapies.
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