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1. Introduction 

In the course of the 20th century the fruit fly Drosophila melanogaster became one of the most 
studied metazoans and, as all other members of this family, flies can be afflicted by various 
forms of neoplasia. Pioneering studies in the field of Drosophila, mouse somatic cells and 
human genetics revealed about 40 years ago that cancer development may develop from 
loss of function in regulatory genes controlling cell growth and differentiation (Gateff and 
Schneiderman 1969, Gateff 1974, Harris et al. 1969, Knudson 1971). The discovery of 
mutations causing neoplasia during Drosophila development (Gateff 1978) has revealed that 
cell polarity is significantly affected in the tumor cells. Application of molecular biology for 
the study of genes controlling Drosophila development led to the isolation and 
characterization of the first tumor suppressor gene (TSG), the lethal (2) giant larvae (lgl) 
(Mechler, McGinnis and Gehring 1985) and consequently placed Drosophila at the center of 
cancer research. lgl encodes a cytosolic protein with two WD40 motifs, involved in protein-
protein interactions (Wodarz 2000). Lgl can bind to non-muscle myosin II and to the 
cytoskeleton matrix, along the baso-lateral portion of the plasma membrane in epithelial 
cells to affect cell polarization (Jakobs et al. 1996, Strand et al. 1994a, Strand, Raska and 
Mechler 1994b). In addition, Lgl can be a critical factor in the process of steroid-induced cell 
death during metamorphosis, a process which happens to be independent from the cell 
polarity function (Farkas and Mechler 2000). Similar to lgl, mutations in discs large-1 (dlg) 
and scribble (scrib) TSGs can cause tissue overgrowth phenotypes, as homozygous mutations 
in these genes lead to neoplastic transformation, thereby leading to imaginal disc 
overgrowth and brain tumors. In these tumors the overproliferating epithelial cells become 
rounded, rather than polygonal, lose their ability to terminally differentiate and fail to 
organize an epithelial monolayer (Bilder 2004). dlg, scrib and lgl mutants fail to pupariate 
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and have a prolonged larval life during which they grow enormously in size and become 
“giant”, bloated and transparent (Papagiannouli 2003). Further analysis revealed defects 
in apical-basal polarity, followed by loss of epithelial structure; therefore, all three TSGs 
are classified also as “cell polarity genes” (Wodarz 2000, Woods et al. 1996, Bilder and 
Perrimon 2000, Li et al. 2001). Dlg is a protein of the MAGUK (membrane - associated 
guanylate kinases) family, which consists of a class of scaffolding proteins that recruit 
signaling molecules into localized multimolecular complexes. Dlg localizes at the 
cytoplasmic side of septate junctions between adjacent epithelial cells, as well as in 
neuromuscular junctions. It contains 3 PDZ domains involved in protein-protein 
interactions with membrane or cytoskeletal proteins, an SH3 domain and a GUK domain. 
The Scrib protein is also a septate junctional protein of the LAP family (Bryant and Huwe 
2000), containing four PDZ domains and leucine-rich repeats (LRRs) (Bilder 2001, Wodarz 
2000, Mathew et al. 2002) thought to be involved in Ras signaling (Humbert, Russell and 
Richardson 2003).  
The Dlg, Scrib and Lgl proteins are highly conserved in sequence among different species 
and growing evidence suggests that they are functionally conserved to a large degree since 
the vertebrate homologues can rescue the polarity defects and tumorous overgrowth of the 
respective Drosophila mutants (Thomas et al. 1997b, Grifoni et al. 2004, Dow et al. 2003). 
There are four well characterized mammalian Dlg members: Dlg1 (hDlg/SAP97), Dlg2 
(PSD-93/Chapsyn-110), Dlg3 (NE-Dlg/SAP102) and Dlg4 (PSD-95/SAP90). All display the 
characteristic MAGUK structural domains of the Drosophila homologue, are involved in 
polarity establishment and are dysregulated in several cancer lines. There are also two Lgl 
(Lgl1/Hugl1 and Lgl2/Hugl2) mammalian homologues and only one single Scrib 
homologue in higher vertebrates. The human Scrib (hScrib) gene shows high homology to 
the Drosophila Scrib and colocalizes with Dlg family members (Humbert et al. 2003). 
Similarly, loss or alterations in expression of dlg, scrib and lgl in humans are correlated with 
more invasive and aggressive tumors (Humbert et al. 2003, Gardiol et al. 2006, Brumby and 
Richardson 2003, Nakagawa et al. 2004). 

2. Tumor suppressors as multitasking proteins 

Over the last decades, further work revealed that junction complexes are not just static 

barriers, limiting the diffusion of proteins along of the cortical cell domains, but have a 
broader function. As polarity scaffolds are nowadays considered as dynamic organizing 

centers of site-specific protein targeting or exclusion from adjacent domains that provide 
guiding cues for signaling molecules and targeted membrane insertion (Lecuit and 

Wieschaus 2002), studying these classical tumor suppressors in other tissue contexts has 
gained new interest (Papagiannouli and Mechler 2010). Recent advances in the diverse 

functions of dlg, scrib and lgl have defined them as key players in numerous tissues contents 

and malignancies at different time points throughout development; furthermore, they have 
revealed their multitasking role in: 1) junction and cytoskeleton establishment, epithelial cell 

and planar cell polarity, 2) asymmetric neuroblast division, formation of synapses and 
neuromuscular junctions, nervous system and brain development including memory 

(Moreau et al. 2010, Chen et al. 2008) and olfaction (Ganguly, Mackay and Anholt 2003, Mao 
et al. 2008), 3) testis, ovaries and other organ development, 4) cancer initiation, progression 

and metastasis and 5) mechanism of cooperation with various signaling pathways in 
different tissue contexts (Ras, SWH, Dpp, JNK, Wg, Egfr etc) (Figure 1). These new and 
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unexpected findings show that Dlg, Scrib and Lgl are dynamic cytoskeletal components 
which affect epithelial cell structure, polarity and growth behavior by directing the 

trafficking of proteins to proper plasma membrane surfaces of the cell and by organizing 
and stabilizing supramolecular adhesion and signaling complexes through their action as 

scaffolding adaptor molecules (Woods et al. 1996, Bilder, Li and Perrimon 2000, Harris and 
Lim 2001, Goode and Perrimon 1997, Lee et al. 2003, Gorczyca et al. 2007, Mahoney et al. 

2006, Thomas et al. 2000, Chen and Featherstone 2005, Bilder 2001, Humbert et al. 2003).  

2.1 Tumor suppressors in polarity establishment and functional cooperation with 
other polarity and signaling complexes 
Epithelial cells are polarized, with apical and baso-lateral domains. These domains are 

characterized by different components: outer-membrane, trans-membrane and inner- 

membrane proteins. A belt of adherens junctions (AJs) forming the zonula adherens (ZA) 

separates the apical domain of the cell membrane from its baso-lateral domain. The ZA 

complex consists of E-cadherin (E-cad), Ǐ-catenin, and Armadillo (the Drosophila ǐ-catenin), 

and serves as a contact interface between neighboring cells and the cytoskeleton. Apically 

located components include the “Par-complex” consisting of Bazooka/Par3 (multi-PDZ 

containing protein), Drosophila atypical protein kinase C (aPKC), and DmPAR6 (a single-

PDZ containing protein) and the “Crumbs-complex” consisting of Crumbs (a trans-

membrane protein) and Stardust (a MAGUK protein). The septate junctions are situated in a 

region underneath the ZA, serve as a barrier, limiting the diffusion of membrane proteins 

and separate the apical from the basal components. In septate junctions the “Dlg-complex” 

includes Dlg, Scrib, and Camguk (Cask or Lin2, a MAGUK protein) (Mathew et al. 2002, 

Humbert et al. 2003), whereas the Lgl protein accumulates at the baso-lateral cortical matrix. 

In vertebrates the septate junctions are replaced by tight junctions, which are apical rather 

than basal to the adherens junctions and are composed of two integral membrane proteins, 

the Occludins and Claudins, and the proteins of the MAGUK family ZO-1, ZO-2 and ZO-3. 

In the Drosophila embryonic epidermis, mutations in dlg, scrib or lgl cause leakage of the 

apical protein Crumbs (Bilder et al. 2000, Bilder and Perrimon 2000). crumbs overexpression 
induces expansion of the apical domain and affects the formation of AJs (Wodarz et al. 1995, 

Grawe et al. 1996), similar to the scrib mutant phenotype (Bilder and Perrimon 2000), 
suggesting that laterally located tumor suppressor proteins regulate apical membrane 

polarity. Genetic analysis revealed antagonistic interactions between the apical Crumbs- and 
the lateral Dlg-complex, as crumbs and stardust mutants are rescued by mutations in dlg, scrib 

or lgl (Bilder, Schober and Perrimon 2003, Tanentzapf and Tepass 2003). Crumbs has one 
cytoplasmic motif that links it to the spectrin and actin cytoskeleton and one that interacts 

with polarity-regulatory factors such as Par6 and Stardust (Bulgakova and Knust 2009). The 
Par-complex plays a critical role in this antagonistic interaction (Humbert, Dow and Russell 

2006), as it restricts the Crumbs-complex apically, and the Par- and Crumbs- complexes act 
together to exclude the Dlg-complex from the apical membrane (Humbert et al. 2006, Bilder 

et al. 2003, Tanentzapf and Tepass 2003). This spatial segregation is facilitated by a 
biochemical interaction between the Scrib and Par complexes through Lgl (Hutterer et al. 

2004, Plant et al. 2003, Yamanaka et al. 2003, Betschinger, Mechtler and Knoblich 2003, 

Langevin et al. 2005). Moreover, in the Drosophila ectoderm, phosphorylation of aPKC is 
required for Lgl to establish the lateral domain and to prevent apical Lgl recruitment (Wirtz-

Peitz and Knoblich 2006, Hutterer et al. 2004).  
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In Xenopus, Lgl2 and aPKC act antagonistically to mutually regulate their localization and 
the establishment of apical-basal polarity in blastomeres (Chalmers et al. 2005). In Mardin-
Darby Canine kidney (MDCK) epithelial cells, studies of overexpression and RNAi-induced 
loss of function revealed that Lgl facilitates the establishment of apical-basal polarity 
through actively suppressing the formation of the Par-complex formation at the basal 
domain (Humbert et al. 2006, Yamanaka et al. 2003, Yamanaka et al. 2006). In zebrafish, Lgl2 
mutants show an epithelial-to-mesenchymal transition in basal epidermal cells, with loss of 
hemidesmosome formation and an increase in migratory behavior (Sonawane et al. 2005). At 
the same time, Lgl2 positively regulates hemidesmosome formation by mediating Integrin 
alpha 6 (Itga6)-targeting and maintaining its localization, while E-cad negatively regulates 

Itga6 targeting (Sonawane et al. 2009). Localization of aPKC in the basal epidermis is 
tightly correlated with Itga6 localization and hemidesmosome formation (Sonawane et al. 
2009). The role of Lgl and the Par-complex was also analyzed in the polarity establishment 
of the early C. elegans embryo, where they maintain two cortical domains which are 
sufficient to partition cell fate determinants in the C. elegans embryo, by a mechanism of 
“mutual exclusion” (Hoege et al. 2010). Lgl1 interacts with Par-2 in the posterior of the 
embryo, but Lgl1 can also compensate the function of Par-2 and restrict the anterior 
localization of the Par-complex, through a mechanism that involves Lgl phosphorylation 
(Hoege et al. 2010) and a negative regulation of non-muscle myosin-II at the posterior cortex 
(Beatty, Morton and Kemphues 2010) 
Of particular interest are studies that relate the adenomatous polyposis coli (APC) tumour 
suppressor to the mammalian Dlg homologues. Dlg1 was isolated in a yeast-two-hybrid 
screen and was found to directly interact with APC (Humbert et al. 2003, Ishidate et al. 
2000). Dlg3 also binds APC, thereby showing that this interaction is probably a common 
feature of Dlg family members. In the migrating astrocytes, vertebrate Dlg1 binds APC at 
the leading edge of migrating cells (Etienne-Manneville et al. 2005). In particular, activation 

of the Par6-PKC complex by Cdc42, at the leading edge of migrating cells, promotes the 
localized association of APC with microtubule plus ends and the assembly of Dlg-
containing puncta in the plasma membrane. Scrib also binds APC (Takizawa et al. 2006). As 
Dlg and Scrib can bind the Wnt signaling component APC, one could hypothesize that loss 

of Scrib or Dlg could interfere with the normal regulation of the APC--catenin complex, 

thereby leading to pro-migratory effects, if -catenin is stabilized and allowed to move to 
the nucleus (Humbert et al. 2006).  
In addition, Dlg, Scrib and Lgl play an important role in dorsal closure (DC), during which, the 
migration of the lateral epidermal leading edge (LE) cells closes the hole of the Drosophila 
dorsal epidermis. Loss of lgl results in defective DC (Manfruelli et al. 1996, Arquier et al. 2001) 
and loss of scrib together with one allele of dlg also results in incomplete DC (Bilder et al. 2000). 
Recent studies have shown that during DC the LE cells undergo a mesenchymal-to-epithelial-
like transition, during which integrin-mediated localization of the PAK serine/threonine 
kinase recruits Scrib in septate junction formation, required for epithelial plasticity (Bahri et al. 
2010). Wound healing is very similar to the DC in Drosophila and Scrib is here again a critical 
player in the polarization of migrating cells. During wound healing in the astrocytes, Scrib 

controls Cdc42 through its association with the exchange factor PIX (Osmani et al. 2006). By 
regulating Cdc42 activity, Scrib acts upstream of Dlg1 and is involved in the same molecular 
pathway controlling cell orientation. Cdc42 controls two distinct signaling pathways, 
promoting: 1) Rac- and PAK-dependent protrusion formation and 2) centrosome and Golgi 
reorientation through APC clustering and Dlg1 localization at the LE (Osmani et al. 2006). 
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The role of Dlg, Scrib and Lgl has also been studied in other tissue - specific epithelia. Dlg-1 
and Scrib are widely distributed throughout the eye in embryonic and postnatal 
development and overlap with E-cad and ZO-1 in portions of the cornea and retinal 
pigment epithelium; in contrast, little, if any, overlap with adhesion proteins is observed in 
the neural retina (Nguyen, Rivera and Griep 2005). Dlg1 was shown to be required for the 
development of lens epithelium in a cell autonomous manner as Dlg1 ablation leads to cell 

structure alterations and disposition of adhesion and cytoskeletal factors such as -catenin 
(Rivera et al. 2009). In the intestinal epithelium, Scrib regulates the integrity and plasticity of 
the epithelial barrier and TJ formation, by binding to the scaffolding protein ZO-1, 
independently of Lgl1 and Dlg1. The observation that Scrib is downregulated during 
intestinal inflammation provides the missing link to tumor development during chronic 
intestinal inflammation (Ivanov et al. 2010). Dlg1 localization at the basolateral side of the 
intestinal epithelium requires CASK, another MAGUK protein, however dlg1 mutations 
there cannot affect epithelial polarity (Lozovatsky et al. 2009). Data from the C. elegans 
intestinal epithelium show that Arp2/3, which promotes nucleation of branched actin, 
junction initiation and maturation, affects the subcellular distribution of Dlg (Bernadskaya 
et al. 2011). 
Dlg, Scrib and Lgl are also important in follicular epithelium morphogenesis and 

subsequent polarization of the Drosophila oocyte, albeit in a different way as in other 

epithelia. The work of several groups has shown that Lgl is an essential regulator of 

posterior follicle cells and that phosphorylation of Lgl together with Par-1 and Par-3 is 

required for the posterior translocation of oocyte-specific proteins and germline 

determinants (Fichelson et al. 2010, Doerflinger et al. 2010, Li et al. 2008). Mutation of the 

aPKC phosphorylation site in Par-1 results in the uniform cortical localization of Par-1 and 

the loss of cortical microtubules (Doerflinger et al. 2010). Dlg and Scrib are required 

differentially for patterning in both the anterior and posterior follicular epithelium (Li et al. 

2009) and genetically interact with Lgl for posterior follicle cell induction (Li et al. 2011), 

suggesting a common regulatory pathway in this process. At the same time, Lgl functions in 

a subdivision of anterior follicle cells into functionally distinct subpopulations and controls 

collective border cell migration at mid-oogenesis (Li et al. 2011).  

The multifunctional role of these TSGs can also be seen in the diverse binding partners and 

regulators in various cell environments. For example, Scrib1 was found to interact with LPP, 

a zyxin-related protein, which has been described as a partner in fusion proteins associated 

with different types of cancers (Petit et al. 2005, Lelievre 2010). Both Scrib and LPP localize 

at cell-cell contacts whereas LPP is also localized in the focal adhesions and the nucleus. This 

interaction links Scrib to a communication pathway between cell-cell contacts and the 

nucleus (Petit et al. 2005). A nuclear shuttling mechanism has also been described for Dlg1 

(Carr et al. 2009). Mammalian Scrib regulates also E-cad activity by stabilizing E-cad 

coupling to catenins (Qin et al. 2005). The stability and function of the mammalian Lgl is 

regulated by direct binding to the scaffolding RanBPM, a Ran-binding protein (Suresh et al. 

2010). Moreover, Dlg1, which is highly expressed in embryonic and adult tissues such as the 

brain, kidney, ovaries, olfactory bulb and cerebellum, can interact with Dlg3 (Mao et al. 

2008). In addition, Dlg1 can interact with the gap junction protein Connexin-32 through its 

SH3 domain (Duffy et al. 2007). Recent work on caspase target genes has provided evidence 

that Dlg1 is a direct target of caspase-3 and the unique cleavage site identified separates the 

C-terminal part of Dlg1 (containing PDZ3, SH3 and GUK domain) from the rest of the 
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protein. Interestingly, this exact C-terminal part is missing from the classical null allele 

(dlgm52) of the Drosophila Dlg mutant protein (Gregorc et al. 2005). This cleavage of Dlg1 

results in translocation away from sites of cell-cell contacts and is presumably an early step 

in disassembly of septate and adherens junctions and consequently intercellular detachment 

(Gregorc et al. 2005). 

 

 

Fig. 1. Overview of the multitasking role of Dlg, Scrib and Lgl in different cellular and tissue 
contexts. 

Dlg is also involved in T-cell receptor (TCR) signaling (Round et al. 2007), as Dlg1 
downregulation blocks TCR-induced activation of p38 and the transcription factor NFAT, 

but not the alternative protein kinase JNK or the NF-B transcription factor. Dlg1 directly 
binds p38, to drive signaling downstream of TCR towards the NFAT branch of the cascade 
and it has been shown to act as an orchestrator of TCR specificity (Round et al. 2007). Rho 
signaling plays an important role in TJ function and several studies of dominant active and 
negative mutants of rhoA, Rac and cdc42 revealed that they all disrupt the barrier function of 
TJs, with the most intense effect obtained with dominant active rhoA mutants (Gonzalez-
Mariscal, Tapia and Chamorro 2008). The RhoA/ROCK signaling pathway participates both 
in the assembly and disassembly of TJs. Moreover PKN1, a Rho effector protein, participates 
in the regulation of TJ sealing in the mammary gland by interfering with glycocorticoid 
signaling, consistent with observations that Rho activation perturbates TJ function in 
various experimental systems (Fischer et al. 2007). Furthermore, Net1 (neuroepithelioma 
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transforming gene), a RhoGEF specific for the RhoA subfamily of small G proteins, interacts 
with the PDZ domains of Dlg1 and relocalizes Dlg1 to the nucleus whereas the oncogenic 
mutant of Net1 sequesters Dlg1 in the cytosol (Garcia-Mata et al. 2007). In particular, Net1 
binding to Dlg1 in MCF7 breast cells, which is regulated by E-cad-mediated cell-cell 
interaction, enhances Net stability and increases Net1 ability to stimulate RhoA activation in 
these cells (Carr et al. 2009).  

2.2 Dlg, Scrib and Lgl in planar cell polarity 
The planar cell polarity (PCP) pathway, incorporating the non-canonical Wnt pathway, is 
best known for directing polarization of cells orthogonal to the apical-basal polarity axis 
within the plane of an epithelium. Apart from regulating the patterning of external 
epidermal structures such as wing hair cells in Drosophila and ciliary orientation, PCP 
controls embryonic convergent extension (CE), polarized cell division, cell direction and 
movement (Yates et al. 2010a). dlg, scrib and lgl are essential for planar cell polarity (PCP), by 
establishing a cross-talk between apical-basal and planar cell polarity. Dlg and Scrib have 
been shown to bind components of the core PCP machinery, including Frizzled receptors 
and the membrane protein Strabismus/Van Gogh (Stbm/Vang) (Montcouquiol et al. 2006, 
Kallay et al. 2006, Lee et al. 2003, Hering and Sheng 2002). The direct interaction of Dlg4 
with receptors of the Wnt signaling pathway, Frizzled 1-7, link mammalian Dlg to the 
Frizzled signaling (Humbert et al. 2003, Hering and Sheng 2002). Dlg1 is also required for 
smooth muscle orientation in the mouse ureter (Mahoney et al. 2006). In addition, Dlg binds 
through its PDZ1 and PDZ2 domains to Stbm/Vang in order to recruit membrane-
associated proteins and lipids from internal membranes to sites of new plasma membrane 
formation (Lee et al. 2003). In C. elegans, the unique PCP protein Vang-1 interacts with the 
PDZ2 domain of Dlg for its proper localization, which is required for intestinal tube 
formation, since in vang-1 mutant embryos the epithelial cells of the intestine are not 
correctly arranged along the anterior-posterior axis (Hoffmann et al. 2010). Moreover, the 
Pins/Dlg complex is required to establish PCP during asymmetric cell division in the 
sensory organ precursor cell of the notum (Bellaiche et al. 2001).  
Interestingly, the mouse scrib gene genetically interacts with the vangl2 gene, a mammalian 
homologue of the Drosophila stbm/vang gene, involved in PCP (Montcouquiol et al. 2003). 
Analysis of PCP in hair cell stereociliary bundles within the cochlea in mammals, showed 
that Scrib is a prerequisite for the proper localization and function of PCP proteins among 
which is also Vangl2 (Montcouquiol et al. 2003). Further studies revealed that both 
mammalian and Drosophila Scrib physically interact with Vangl2 (Kallay et al. 2006) and 
Stbm/Vang (Courbard et al. 2009) respectively, through their PDZ domains to regulate 
normal development in Drosophila wing imaginal discs (Courbard et al. 2009), heart tube 
and cardiomyocyte organization (Phillips et al. 2007), and neural tube closure (Wen et al. 
2010, Wansleeben et al. 2011). Scrib is also implicated in PCP-mediated neural tube closure 
through binding to Cdx, a homeodomain transcription factor which regulates transcription 
of the Ptk7 PCP gene (Savory et al. 2011). A PCP-mediated requirement of Scrib has also 
been demonstrated for lung development (Wansleeben et al. 2011) and branching 
morphogenesis (Yates et al. 2010b), for kidney-branching morphogenesis and glomerular 
maturation (Yates et al. 2010a), and for the tangential migration of facial branchiomotor 
(FBM) neurons (Walsh et al. 2011). All these later studies provide insights on a very 
interesting and yet poorly understood role of Scrib on PCP-mediated organogenesis and the 
interplay of apicobasal and PCP pathways.  
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Spatial organization of cells and their appendages is controlled through the PCP by a 

signaling cascade initiated by the protocadherin Fat in Drosophila. Fat acts through two 

distinct branches: the Fat polarity pathway and the Fat tumor suppressor/Hippo pathway. 

Vertebrates express four Fat molecules, Fat1-4. Indeed, Scrib provided the link between the 

Fat and the Hippo signaling cascade in vertebrates. Fat1 depletion causes abnormal cyst 

formation in the zebrafish pronephros, a phenotype underlying a strong genetic and direct 

interaction between Fat1 and Scrib. The observation that depletion of Yes-associated protein 

1, a transcriptional co-activator inhibited by the Hippo pathway, ameliorated the changes 

caused by fat1 and scrib knockdown, shows that in the absence of Scrib and Fat1, it is the 

deregulation of the Hippo pathway which contributes to the formation of abnormal 

pronephric cysts (Skouloudaki et al. 2009). 

As already mentioned, the non-canonical Wnt/Wg pathway plays a central role in PCP. A 

key switch at its branch point appears to be the Dishevelled (Dsh) protein, which is required 

for both PCP and the canonical Arm/ǐ-Catenin pathway (Wodarz and Gonzalez). 

Interestingly, a physical and functional interaction has been reported between Lgl and the 

signaling protein Dishevelled (Dsh) (Dollar et al. 2005). Asymmetric localization of Dsh 

leads to spatially defined areas of Lgl upregulation, which allows directional tissue 

morphogenesis and PCP organization of epithelial sheets in Drosophila embryos (Kaplan and 

Tolwinski 2010). In humans, Lgl2 plays a critical role in branching morphogenesis during 

placental development. Lgl2 regulates cell polarization and polarized-cell invasion guiding 

trophoblast invasion, yet a connection to the PCP pathway is not established so far 

(Sripathy, Lee and Vasioukhin 2011).  

2.3 Orientation of cell division, spindle, microtubule and centrosome positioning 
Orientation of cell division is important in establishing and maintaining normal 

development and tissue homeostasis from bacteria to mammals. A correct cell division 

plane is critical during asymmetric cell division, spindle orientation, microtubule and 

centrosome positioning. Several studies point out the key roles of Dlg, Scrib and Lgl in 

multiple aspects of cell division orientation.  

One of the most well studied systems is the asymmetric division of the Drosophila neural 

stem cells, the so-called embryonic neuroblasts. These studies indicate that dlg, scrib and 

lgl have a function in the correct placement of cell-fate determinants, in dividing 

neuroblasts. Dysregulation of the mechanisms, which control the neuroblast asymmetric 

division, results in compromised inheritance of cell-fate determinants, triggers neoplastic 

transformation and promotes brain tumors (Merz et al. 1990, Caussinus and Gonzalez 

2005, Betschinger, Mechtler and Knoblich 2006, Lee et al. 2006). Neuroblast division gives 

rise to a larger daughter cell that remains a neuroblast and a smaller daughter cell that 

becomes a ganglion mother cell (GMC). This process involves the segregation of the 

basally localized cell-fate determinants Numb, Prospero (Pros) and Brain tumor (Brat) 

proteins and their adaptor proteins Partner of Numb (Pon) and Miranda (Mira), into the 

basal GMC. This segregation is controlled by apically localized components including the 

Par-complex (Baz/Par3, Par6 and aPKC), as well as the Inscutable (Insc) and Partner of 

Inscutable (Pins) proteins. Dlg, Scrib and Lgl proteins display a cortical localization, with 

apical enrichment during early mitosis. Insc and Insc-dependent proteins (Insc/Par 

pathway) are required for the maintenance and apical enrichment of Dlg and Scrib 
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proteins whereas Dlg controls the cortical recruitment of both Scrib and Lgl. In dlg, scrib 

and lgl mutants the localization of the apical proteins is normal but the basal protein 

targeting is defective, resulting in a reduced apical cortical domain and a smaller size of 

the apical spindle. Therefore, Dlg, Scrib and Lgl are important in regulating cortical 

polarity, cell size asymmetry and mitotic spindle asymmetry in Drosophila neuroblasts 

(Albertson and Doe 2003). 

The fact that apical Dlg, Scrib and Lgl may promote apical spindle pole growth is consistent 

with the observation that vertebrate Dlg orthologues physically interact with known 

microtubule-binding proteins (Albertson and Doe 2003, Brenman et al. 1998, Niethammer et 

al. 1998, Matsumine et al. 1996, Hanada et al. 2000). In Drosophila, kinesin Khc-73 and Dlg 

induce cortical polarization of Pins/Gai, acting in parallel to the Insc/Par pathway. 

Interestingly, Khc-73 localizes to astral microtubule plus ends and the Dlg/Khc-73 and 

Dlg/Pins protein complexes have been found to co-immunoprecipitate, suggesting that 

microtubules induce Pins/Gai cortical polarity through Dlg/Khc-73 interactions (Siegrist 

and Doe 2005, Ahringer 2005). The recent identification of an evolutionary conserved 

PinsLINKER domain uncovered a linear PinsLINKER/Aurora-A/Dlg spindle orientation 

pathway, which links the plus ends of astral microtubules to the Dlg cortical domain 

(Johnston et al. 2009).  

Additionally, Dlg1 is important for centrosome positioning in the astrocytes. During 

wound-induced cell migration Cdc42 acts through Dlg1, in order to regulate the interaction 

of dynein with microtubules of the cell front (Manneville, Jehanno and Etienne-Manneville 

2010). Dlg1 interacts with dynein via the scaffolding protein GKAP and all three proteins 

together control microtubule dynamics and organization near the cell cortex and at the 

microtubule-organizing center (MTOC), ultimately leading to centrosome positioning. 

Moreover, Dlg1 colocalizes with APC at microtubule plus-ends to promote microtubule 

polarization and centrosome reorientation (Etienne-Manneville et al. 2005, Etienne-

Manneville and Hall 2003). However, the Dlg1-mediated recruitment of dynein is 

independent of its interaction with APC (Manneville et al. 2010). A crucial function of Dlg1 

on microtubules has also been established for immunological synapses (Lasserre et al. 2010, 

Lasserre and Alcover 2010). Dlg1 and the cell cortex membrane-microfilament linker Ezrin 

are key players for synapse stability and symmetry. Ezrin silencing alters cell spreading and 

microtubule network organization at the immune synapse and leads to enhanced T-cell 

receptor (TCR) signaling (Lasserre et al. 2010). Ezrin-Dlg1 interaction keeps the microtubule 

architecture at the synapse, which in turn drives signaling microcluster dynamics and 

downregulation of the TCR receptor signaling. Similar to the role of Dlg1 in MTOC 

positioning during astrocyte migration (Etienne-Manneville et al. 2005), Ezrin and Dlg1 are 

necessary for a similar positioning of microtubules at the periphery of the immunological 

synapse (Lasserre et al. 2010). 

Finally, Scrib is required for oriented cell division in the neural keel to promote 

morphogenesis of the neural tube epithelium (Zigman et al. 2011). Analysis of scrib mutants 

revealed a role of Scrib in controlling clustering of -catenin foci in dividing progenitors that 

correspond to the future subapical junctional complexes of the mature epithelium. This 

function of Scrib, which is independent of the canonical apicobasal polarity and PCP 

pathways, stresses the importance of single-cell orientation for tissue-level morphogenesis 

(Zigman et al. 2011).  
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2.4 Trafficking, exocytosis and polarized membrane insertion  
Exocytosis is an important membrane traffic event that mediates the transport of secreted 
and transmembrane proteins, as well as lipids to the cell surface (Hsu et al. 2004). This 
transport is highly polarized and tightly regulated, so that the molecular identity of the 
apical and basolateral membrane domains is maintained. It has already been proposed that 
the junctions in mammalian epithelial cells promote the correct spatial organization of 
cellular components by acting as sorting sites for a subset of vesicles (Humbert et al. 2008).  
The mechanisms that specify vesicle docking and fusion of intracellular membranes rely on 
the SNARE proteins, with t-SNAREs localized in a polarized distribution on the target 
membranes and v-SNAREs on the vesicles. When a v-SNARE encounters its cognate t-
SNARE they assemble into a tight complex, which brings together the apposed membranes 
sufficiently close to each other for fusion to occur. As an example, Drosophila embryos with 
mutated Syntaxin 1 (Syn1), a t-SNARE protein uniformly distributed on target membranes, 
fail to cellularize (Burgess, Deitcher and Schwarz 1997). The spatial specificity of vesicle 
trafficking also relies on the tethering of exocytic vesicles, at defined membrane sites, by the 
eight-subunit exocyst (or Sec6/7) complex. Recent work has shown that the Exo84 
component of the exocyst complex is required for membrane trafficking from the recycling 
endosome to the cell surface and the apical localization of the transmembrane protein 
Crumbs, whereas the mutant phenotype is suppressed by down-regulation of the Dlg and 
Lgl proteins (Blankenship, Fuller and Zallen 2007). Interestingly, in yeast the Lgl 
homologous proteins Sro7p and Sro77p directly interact with Exo84p and the t-SNARE 
protein Sec9p (Zhang et al. 2005), whereas the mammalian Lgl binds Syntaxin-4, a t-SNARE 
protein that mediates vesicle fusion, in order to direct protein trafficking (Musch et al. 2002). 
As the exocyst decides not only what fuses with the plasma membrane but also the site of 
fusion, we can conclude that Lgl family proteins affect asymmetric protein localization by 
targeted vesicle fusion (Wirtz-Peitz and Knoblich 2006). Furthermore, type V myosin 2 
(Myo2) physically binds Sro7 and negatively regulates Sro7 function in vesicle clustering 
(Rossi and Brennwald 2011). Myo2 serves in a dual function: to recruit Sro7 to secretory 
vesicles and to inhibit its Rab-dependent tethering activity until vesicles reach the plasma 
membrane. Taken together, Sro7 appears to coordinate the spatial and temporal nature of 
both Rab-dependent tethering and SNARE-dependent membrane fusion of exocytic vesicles 
with the plasma membrane (Rossi and Brennwald 2011). 
Furthermore, Scrib has been shown to have an important role in regulating exocytosis in 

neuroendocrine cells through its association with the -Pix-GIT1 complex (Audebert et al. 

2004, Humbert et al. 2008). Scrib acts as a membrane anchor for -Pix, a guanine exchange 
factor (GEF), which activates Rac1 and recruits it to a functional complex regulating 
exocytosis of Ca++-regulated hormone release (Momboisse et al. 2009). Since small Rho-
GTPases have emerged as key players in membrane trafficking and Rac isoforms have been 
involved in various processes of exocytosis, this recent work uncovers the actual function of 

Scrib, -Pix and Rac1 in exocytosis, in addition to their well-established role in cancer 
(Momboisse et al. 2009). 
While polarized exocytosis of proteins is one of the most studied mechanisms responsible 
for the maintainance of cell polarity, polarized transport of specific mRNAs represents an 
alternative pathway (Vasioukhin 2006). It has been demonstrated that Lgl genetically 
interacts and is present in a complex with the fragile X syndrome protein FMRP, which is 
responsible for mRNA transport (Zarnescu et al. 2005). This interesting finding suggests that 
Lgl may be involved in polarity by regulating the localization of specific mRNAs.  
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Dlg plays an important role in polarized membrane insertion during cellularization. It is 

known that polarized membrane growth relies on the guiding cues of junctional and peri-

junctional proteins (Lecuit and Wieschaus 2002). The Drosophila cellularizing blastoderm 

provides an excellent system for studying the genetic analysis of how polarity is established, 

reinforced and maintained in vivo. During cellularization, an epithelium is formed de novo by 

growth and invagination of plasma membrane between the cortical nuclei, leading to a 20-30 

fold increase of membrane surface and formation of the first columnar epithelial cells 

(~30µm) (Mazumdar and Mazumdar 2002). This process requires the remobilization of the 

intracellular membrane reservoir from the endoplasmic reticulum (ER) and Golgi. 

Membrane trafficking is regulated in a way that allows polarized membrane delivery, with 

the secretory pathway and the membrane-recycling pathway guiding the membrane 

deposition (Dudu, Pantazis and Gonzalez-Gaitan 2004, Strickland and Burgess 2004). In the 

secretory pathway, membrane proteins are recruited from post-Golgi vesicles to the lateral 

domain of growing membranes by the Strabismus/Van Gogh (Stbm/Vang)-Dlg complex. 

Dlg localizes to the plasma membrane along the newly formed invaginating membrane, 

whereas Stbm/Vang is localized initially to the Golgi. Both Stbm/Vang and Dlg are 

required for membrane deposition during cellularization and their simultaneous 

overexpression induces expansion of the lateral membrane (Lee et al. 2003). In the 

membrane-recycling pathway, the apical membrane is internalized through a Dynamin-

dependent process, travels through the Rab5 early endosome and Rab11 recycling 

endosome acting together with Nuf, and finally becomes exocytosed at the lateral 

membrane (Dudu et al. 2004, Strickland and Burgess 2004, Pelissier, Chauvin and Lecuit 

2003, Riggs et al. 2003, Lecuit 2004).  

2.5 Critical functions in neuromuscular junctions and synapses  
One of the most broadly used systems to study Dlg and Scrib function has been the 

neuromuscular junctions (NMJs). Dlg was shown to be present in glutamatergic larval 

NMJs. Glutamate receptors (GluR) in Drosophila NMJs are of two different types, 

comprised of either GluIIA (A-type) or GluIIB (B-type) subunits, as well as the common 

subunits GluIIC, GluIID and GluIIE (Collins and DiAntonio 2007). Dlg controls the 

subunit composition of the receptor by selectively stabilizing B-type receptors at the 

synapse, whereas Coracle is required for A-type receptors (Chen and Featherstone 2005, 

Chen et al. 2005). Dlg is abundantly expressed through the postsynaptic membrane 

surrounding the presynaptic motor axon terminals. During larval development, the 

postsynaptic membrane increases enormously leading to a highly convoluted and 

multilayered postsynaptic membrane structure, the subsynaptic reticulum (SSR). Several 

years of research in this field have shed light on the role of the different Dlg protein 

domains (Thomas et al. 2000) and their binding partners (Thomas et al. 2000, Thomas et 

al. 1997a, Zito et al. 1997), the role of phosphorylation on Dlg regulation (Koh et al. 1999, 

Beumer et al. 2002, Zhang et al. 2007) and the key role of Dlg on membrane proliferation 

in the SSR of GluIIB-type receptors (Chen and Featherstone 2005, Roche et al. 2002). The 

synaptic targeting and localization of Dlg is a stepwise process controlled by different 

domains of the protein (Thomas et al. 2000). The localization of the postsynaptic Dlg was 

also investigated during synapse remodeling of larval NMJs, whereby the adult-specific 

synapses are generated. During synapse dismantling, postsynaptic Dlg becomes diffuse 
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and then undetectable, followed by SSR vacuolization, through a mechanism different 

than that of GluRs elimination (Liu et al. 2010b). 

Dlg is important for proper NMJ establishment as dlg- NMJs have defects in synapse 

structure and function, including an increase in bouton size and number of active zones 

presynaptically, as well as a poorly developed SSR (Chen and Featherstone 2005). Dlg 

regulates SSR expansion and is also required for clustering Fasciclin II (FasII) and Shaker 

proteins (Thomas et al. 1997a, Zito et al. 1997). Dlg-dependent localization of FasII to the 

Drosophila GluRIIB NMJs is negatively regulated by Ca++/calmodulin dependent kinase 

II (CaMKII) (Koh et al. 1999), with ǐPS-Integrin (encoded by myospheroid in Drosophila) 

acting upstream of CamKII. Upon increased synapse activity, CaMKII phosphorylates 

Dlg, which dissociates from the synaptic protein complex, releases FasII, and allows for 

developmental growth in signal response (Beumer et al. 2002). However, sh and fasII 

mutations do not affect the SSR, meaning that Dlg plays a role in postsynaptic membrane 

regulation independent of its interaction to Sh and FasII (Schuster et al. 1996a, Schuster et 

al. 1996b). Further studies have shown that expression of a constitutively active form of 

CaMKII abolishes the accumulation of Dlg at synapses, while exerting no significant effect 

on the presynaptic area and localization of FasII (Morimoto et al. 2010). Postsynaptic 

targeting of Dlg is negatively regulated by PAR-1, which phosphorylates Dlg at a 

conserved Ser residue within the GUK domain (Zhang et al. 2007). PAR-1 and Dlg both 

affect pre- and post-synaptic development and function in a dose-dependent way. PAR-1 

overexpression and Dlg inactivation lead both to active zone increase and SSR loss, 

whereas loss of PAR-1 and Dlg overexpression have the opposite effect and therefore 

confirm the antagonistic effect of PAR-1 on Dlg (Zhang et al. 2007). Like Dlg, Pumilio 

(Pum), a known transcriptional regulator of embryonic patterning and germline 

development, appears to have both pre- and post-synaptic effects in NMJs and is co-

localized with Dlg and GluIIB-type boutons (Chen et al. 2008). Notable Pum directly 

regulates dlg by binding to the Dlg-3’UTR, thereby antagonizing the effects of Dlg on 

neuronal structure and/or function also in the adult mushroom bodies, the anatomical 

site of memory storage (Chen et al. 2008). 

The Drosophila dlg gene codes for two isoforms, the DlgA and DlgS97 collectively referred 

to as Dlg, which have been individually studied in NMJs. Both isoforms are present at the 

NMJs, but mutations that specifically abolish DlgS97 leave FasII largely unaffected 

(Albornoz et al. 2008). DlgS97 exerts its function at the NMJs by binding to Metro, a novel 

MAGUK protein, which stabilizes the complex of DlgS97 and the adaptor protein DLin-7 

(Bachmann et al. 2010). In a remarkably interdependent manner, Metro and DLin-7 act 

downstream of DlgS97 to control NMJ expansion and proper establishment of synaptic 

boutons, making this tripartite an important perisynaptic scaffolding complex (Bachmann 

et al. 2010).  

Membrane addition by vesicle fusion commonly involves SNARE proteins. Recent work 

has shown that Dlg binds and controls postsynaptic localization of the t-SNARE GUK-

interacting syntaxin (Gtaxin). Gtaxin is required for proper SSR expansion and controls 

synaptic and muscle development in a dose-dependent manner (Gorczyca et al. 2007). 

Gtaxin’s closest Homologues, Syntaxin 18 and Ufe1p, can mediate homotypic 

endoplasmic reticulum (ER) membrane fusion in the absence of other known SNAREs 

(Lewis and Pelham 1996, Patel et al. 1998, Hatsuzawa et al. 2000). The presumptive role of 
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Gtaxin as part of the ER-specific vesicle fusion machinery, together with its requirement 

for SSR development, supports the idea that SSR bears at least some ER-like properties 

(Gorczyca et al. 2007).  

Moreover, Dlg interacts at the synapses with Scrib, through simultaneous binding of both 

the Dlg-GUK domain and the Scrib-PDZ2 domain to the synaptic protein GUK-holder 

(Gukh) (Mathew et al. 2002). Apart from an increased number of active zones and reduced 

SSR, dlg- NMJs show severe mislocalizaton of synaptic Scrib. Loss of scrib in NMJs  

results in synaptic vesicle increase, decrease in the number of active zones and a 

thickened basal lamina, however Dlg localization and the SSR remain unaffected (Mathew 

et al. 2002). Apparently, the synaptic levels of Scrib have an opposite effect than Dlg in 

active zone number and Scrib negatively regulates Dlg function in NMJs, in contrast to 

their cooperation in epithelial cells and neuroblasts (Roche et al. 2002). This probably 

reflects the ability of Dlg and Scrib to exert their function through binding to different 

protein partners with distinct functions, according to their availability in the various 

tissues.  

Scrib is also capable of influencing the morphology and function of synapses (Moreau et 

al. 2010). It is expressed in the soma and dendrites of adult hippocampal pyramidal cells, 

to regulate neuron maturation, with the synaptic strength and plasticity severely affected 

in scrib mutant mice. In the hippocampus of these mutants, the phenotype is associated 

with Rac1 activation and defects in actin reorganization, which ultimately affect memory 

consolidation. Scrib effects on brain function and the corresponding effects on enhanced 

learning, memory abilities and impaired social behavior, provide a step forward in the 

dissection of Scrib roles in the pathophysiology of behavior (Moreau et al. 2010). Dlg is 

also found at the lamina of the photoreceptor synapses. Immuno-electron microscopy 

revealed that Dlg marks the round profiles of R1-R6 ommatidia terminals and the 

photoreceptor membrane around the invaginating head of capitate projection organelles, 

which are the organelles from the surrounding glia (Hamanaka and Meinertzhagen  

2010). 

2.6 Tubulogenesis and trachea development 
A less studied role of these tumor suppressor genes involves their function in 

tubulogenesis, which is the regulation of epithelial tube morphogenesis and size control 

in organs such as kidney, lungs, vascular system and the Drosophila trachea. So far, several 

studies pointed the significance of septate junctional proteins in trachea tube-size 

regulation (Paul et al. 2003, Wu and Beitel 2004) but more recent studies reveal a novel 

mechanistic framework for understanding epithelial tube size regulation in trachea. In the 

Drosophila trachea, tube dimensions are regulated by the luminal extracellular matrix 

(ECM). ECM organization requires the apical secretion of the protein Vermiform (Verm), 

which depends on the basolateral septate junctions (SJs) (Wang et al. 2006, Swanson and 

Beitel 2006). Scrib and Yurt (Yrt), another SJ-associated protein, cause tracheal tube 

expansion through a Verm-independent pathway (Laprise et al. 2010). Zygotic loss of 

scrib, dlg and lgl result in excessively long dorsal trunks, indicating that these genes are 

critical for tube size control. Zygotic loss of lgl expression causes fully penetrant defects in 

SJ paracellular barrier function, whereas zygotic scrib and dlg mutants do not have 

compromised transepithelial barriers. Furthermore, Lgl together with Crumbs have an 
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additional role in apical constriction of tracheal cells, independent of their apicobasal 

polarity function in trachea epithelial cells (Letizia et al. 2011). Interestingly, Scrib and 

Crumbs do not display, during trachea elongation, the antagonistic functional interactions 

they have during apicobasal polarity establishment (Laprise et al. 2010). Therefore, it 

becomes obvious that the mechanism regulating trachea morphogenesis involves 

functional interactions between polarity proteins, which are different from those involved 

in epithelial apicobasal polarity.  

2.7 Lgl and salivary gland histolysis in Drosophila 
Although the architecture of the cells is defective in the neoplastic tissues, the structure of 

the other tissues is nearly normal, indicating that the loss of cell polarity may not 

necessarily be the major cause of cell transformation. Therefore, further investigations of 

lgl mutant tissues and organs are important in order to unravel distinct mechanisms with 

critical roles in tumorigenesis. Along these lines the larval salivary glands constitute a 

particularly suitable model system for studying developmental cell fate, as the glands are 

essentially made of one single type of large epithelial cells, containing highly polyploidy 

nuclei with polytene chromosomes. The salivary glands produce and secrete glue proteins 

at the onset of metamorphosis and all the cells then degenerate synchronously in a rapid 

process resulting in a full histolysis of this tissue in about 14 hours. The lgl gene critically 

controls the degenerative process leading to salivary gland histolysis (Farkas and Mechler 

2000 and references therein) and recent studies revealed that the lgl gene controls this 

degenerative process, which is induced by the steroid hormone ecdysone during 

metamorphosis. This process happens to be fully independent from the function of lgl in 

cell polarity (Farkas and Mechler 2000). Previous results have shown that reduced lgl 

expression delays salivary gland histolysis whereas over-expression accelerates this 

process without affecting larval and pupal development. More recent investigations have 

shown that the Lgl protein in combination with nonmuscle myosin regulate in the 

cytoplasm access to chromatin modifiers, remodeling and transcription factors necessary 

for the implementation of salivary gland degeneration (Farkas et al. 2011). This process is 

relatively complex and involves the steroid activation of Broad-Complex (BR-C), a 

BTB/POZ-transcription factor and primary response component in this cascade, which 

leads to salivary gland histolysis and induction of a set of secondary genes. In wild type 

salivary glands, chromatin remodeling factors are localized in the nucleus to bind 

chromatin. In lgl salivary glands the BR-C Z1 factor is synthesized, but is unable to bind to 

chromatin, and accumulates in the cytoplasm and in the cortical nuclear zone devoid of 

chromatin (Farkas et al. 2011) and additionally the secondary genes remain quiescent 

(Ashburner 1974; Richards 1976). Through a cascade of gene expression the salivary 

glands undertake profound morphological changes, characterized by the secretion of 

cellular components into the lumen of the gland, which ultimately leads to the death of 

the cells upon activation of death genes and caspases. Although the mechanism by which 

chromatin access of remodeling and transcription factors is regulated by lgl is poorly 

understood, the occurrence of WD40 motifs in the Lgl protein and the requirement of non-

muscle myosin heavy chain suggest that these factors may bind to Lgl in order to be 

assembled together with other components or alternatively become modified to get access 

to chromatin.  
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3. Dlg, Scrib and Lgl in cancer development 

3.1 New emerging roles for vertebrate dlg, scrib and lgl  
Neoplastic growth depends on the cooperation of several mutations, ultimately leading to 

major rearrangements in cellular behavior. Changes in tissue homeostasis, acquisition of 

invasive cell characteristics and tumor formation are often linked to the loss of epithelial cell 

polarity. During carcinogenesis, the grade of neoplasia correlates with impaired cell 

polarity. dlg, scrib and lgl encode tumor suppressor proteins and orthologs of this 

evolutionary conserved pathway are lost in human carcinomas with high frequency 

(Humbert et al. 2003, Humbert et al. 2008, Yamanaka and Ohno 2008, Reischauer et al. 2009). 

Although the role of these genes in mammals is still not well understood and often 

controversial, accumulated evidence has shed light on their oncogenic and tumor-

suppressing function.  

Scrib and Dlg1 are targeted for ubiquitin-mediated proteolysis by the E6 oncoprotein from 

high-risk strains of human papillomavirus (HPV) (Humbert et al. 2003, Gardiol et al. 1999, 

Nakagawa and Huibregtse 2000, Tomaic, Pim and Banks 2009), which has a causal role in 

the development of cervical cancer (Nakagawa et al. 2004). Furthermore, the viral human T-

Lymphoma virus type 1 (HTLV1) Tax protein, crucial for viral replication and malignant 

transformation leading to T-cell leukemia, binds directly to Dlg1 resulting in 

hyperphosphorylation of Dlg, which promotes abnormal proliferation of cells (Grassmann, 

Aboud and Jeang 2005, Hall and Fujii 2005). Both Tax and high-risk HPV E6 bind to the PDZ 

domains of Dlg through their specific PDZ-binding motif (PBM) they contain (Hall and Fujii 

2005). In addition, the PBM-containing Tax and APC compete for binding to Dlg (Hall and 

Fujii 2005), thereby providing insights on how viral proteins interfere with normal cell 

function. Similarly, the PBM domain of the NSI protein, from the highly pathogenic avian 

influenza A virus H5N1, contains an ESEV motif, which allows it to bind directly to Dlg, 

Scrib and other PDZ-containing proteins (Liu et al. 2010a). Notably, NSI proteins, with an 

ESEA-containing PBM domain, can enhance viral replication up to 4-fold, relocalize Scrib 

into cytoplasmic puncta concentrated in perinuclear regions and also protect cells from 

apoptosis. As this latter effect on apoptosis can be reversed by introducing scrib-siRNAi, 

these viruses most likely perform their function by disrupting the Scrib proapoptotic 

function (Liu et al. 2010a). 

Several pieces of evidence show that human Dlg and Scrib are downregulated during 

malignant progression of colon and lobular breast cancers (Gardiol et al. 2006, Navarro et al. 

2005). Both proteins colocalize in colon mucosa and changes in their expression patterns are 

correlated with loss of tissue architecture during carcinogenesis in the colon (Gardiol et al. 

2006). Another study shows that Dlg1, Scrib and Lgl1 are widely distributed in normal 

ocular tissues, particularly in the retinal neurons, but upon ocular carcinogenesis these 

proteins are initially mislocalized in retinal layers and subsequently downregulated. The 

decreased levels of these proteins are related to the late invasive stage of this cancerous 

process (Vieira et al. 2008). In the mammary epithelia, Scrib depletion disrupts cell polarity, 

blocks three-dimensional morphogenesis, inhibits apoptosis and induces dysplasia in vivo 

(Zhan et al. 2008). In this tissue type, Scrib cooperates with c-Myc in order to induce 

epithelial changes and tumors, by blocking activation of the apoptotic pathway. 

Interestingly, spontaneous mammary tumors in mice and humans exhibit both 

downregulation and mislocalization of Scrib (Zhan et al. 2008). Decreased expression and 
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changed localization of Scrib is also associated with histopathological differentiation and 

lymph node metastasis in endometrial cancer (Ouyang, Zhan and Dan 2010) whereas 

Scrib cytoplasmic mislocalization is also associated with T-cell leukemia (Okajima et al. 

2008).  

A study performed in colorectal adenomas and adenocarcinomas suggested that Scrib could 
also be involved in the early steps of colon carcinogenesis (Kamei et al. 2007), as 
overexpression and cytoplasmic distributions of Scrib were primarily identified as early 
events of this process. In these colon cells, Scrib accumulation was shown to overlap with 

the cytoplasmic accumulation of -Catenin, suggesting that changes in the APC/-Catenin 
pathway during colon carcinogenesis could be involved in Scrib mislocalization (Kamei et 
al. 2007). A very recent study has shown that Scrib is universally overexpressed in cultured 
tumor cell lines and genetically disparate cancer patient series of tissues such as colon, liver, 
lung, bladder, breast, ovary, uterus, testis, prostate and CNS (Vaira et al. 2011, Namdarian et 
al. 2011). Likewise, normal membrane association of Scrib is altered in tumors where Scrib is 
mislocalized in the cytosol. In a lung adenocarcinoma model, small interfering RNA 
silencing of Scrib inhibited tumor cell invasion (Vaira et al. 2011). Furthermore, the small 
non-coding RNA microRNA 296 (miR-296), which is progressively lost during tumor 
progression in a number of cancers, transcriptionally represses Scrib. In turn, loss of miR-
296 causes aberrant increase and mislocalization of Scrib in human tumors, uncovering a 
new regulation of Scrib in cancer (Vaira et al. 2011). Lgl1 has also been associated with poor 
clinical prognosis for cancer patients. In colorectal and breast carcinoma lines, ZEB1 (a Zfh-1 
family member of transcription factors) regulates the levels of Lgl2 (Reischauer et al. 2009). 
In zebrafish, the observation that epidermal neoplasia and epidermal-to-mesenchymal 
transition (EMT) in lgl2 mutants is promoted by the ErbB signaling, a pathway of high 
significance in human carcinomas, provides another mechanistic link between neoplasia and 
TSGs (Reischauer et al. 2009).  

3.2 New insights into the mechanisms of cancer initiation and progression 
In the last years, a great number of very interesting publications provided us with 
information on new and unexpected findings on the role of scrib, lgl and dlg in cancer 

initiation and the progressive steps leading to tumorigenesis. In particular, these TSGs 
helped us to understand the role of cell competition and of the tumor microenvironment in 

tumor survival and progression, as well as the role of JNK-mediated apoptosis in this 
system. To date, research on scrib, lgl and dlg has focused on their similar effects and 

phenotypes, the interdependent localization in various tissues and the cooperation of the 
three genes in establishing polarity. Nowadays, it becomes obvious that they play a broader 

role than initially thought, through the cooperation with individual partners and signaling 

pathways, in a tissue and cell-type specific context. The cellular context and the 
neighbouring cells of the surrounding tumour environment are recognized as important 

regulators in cancer progression (Brumby and Richardson 2005, Humbert et al. 2008, 
Mohamet, Hawkins and Ward 2011, Pagliarini and Xu 2003, Schmeichel 2004, Woodhouse 

and Liotta 2004). Along these lines, the analysis of cancer-disposing mutations in only a 
subset of cells or in clones within the context of a wild type surrounding is gaining more 

interest, compared to the analysis of the multi-step nature of tumor progression in the 
context of a whole organism, since it offers a reasonable approximation to the clonal nature 

of human cancers.  
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Analysis of scrib- mutant clones in the Drosophila eye imaginal discs has shown that tumor 
development is suppressed by the JNK-mediated apoptotic pathway activated by the 

surrounding wild-type cells, whereas the neoplastic and metastatic potential is regained 
through the synergistic effect of a simultaneous up-regulation of Ras signalling within the 

same clones (Pagliarini and Xu 2003, Brumby and Richardson 2003, Leong et al. 2009). 
These results underline the effect of the surrounding normal cells on the transformed 

scrib- clonal cells, which leads to a cell competition similar to the one observed in the 
mammalian cancers (Etienne-Manneville 2009, Tapon 2003, Kango-Singh and Halder 

2004, Vidal et al. 2010, Leong et al. 2009, Wu, Pastor-Pareja and Xu 2010) (Figure 2). In a 
model for Scrib tumorigenesis, analysis of the downstream pathways in scrib- epithelial 

clones revealed that the polarity defects are mediated by aPKC, independent of Crumbs, 
whereas an excessive cell proliferation is restrained by JNK-mediated apoptosis. Upon 

simultaneous activation of either Ras or Notch, JNK-mediated apoptosis is blocked, and 
Ras/Notch together with JNK cooperatively promote tumor growth and invasion (Leong 

et al. 2009). In other words, while JNK activation promotes the death of scrib- clones, JNK 
drives tumor progression in the context of Rasv12scrib- clones (Vidal 2010). Another report 

provided a molecular link between loss of polarity and tumorigenesis, since scrib-, dlg- and 
lgl- clonal cells in a wild type surrounding become metastatic only in combination with 

Rasv12 activation, resulting in JNK activation and E-cad inactivation (Igaki, Pagliarini and 
Xu 2006). A study in malpighian tubules proceded a step further, showing that indeed Ras 

functions downstream of Scrib to regulate the transformation of normal stem cells to 
cancer stem cells, and that several signal transdunction pathways (including MAPK, 

RhoA, PKA and TOR) mediate the function of Ras to promote this stem cell 
transformation (Zeng et al. 2010). Competition between clonal tissues and wild type 

surrounding can involve several players, since in Rasv12scrib- epithelial clones 
overexpression of sds22, a new tumor suppressor gene in Drosophila, can prevent tumor 

formation and metastasis by inhibiting myosin II and JNK activity (Jiang et al. 2011). A 
genome-wide screen for genes cooperating with Ras (Brumby et al. 2011), confirmed the 

competitive advantage of Rac1, RhoGEF2 and pbl together with Ras in the clonal system, 
which leads to JNK upregulation. Remarkably, this JNK activation was sufficient to confer 

invasive growth in the clonal setting but not in the whole-tissue system. The fact that 
JNK-mediated tumorigenesis, in cooperation with Ras in the clonal system, resembled the 

situation in mammalian breast epithelial cells shows that the knowledge gained from 
clonal analysis in Drosophila can help us elucidate tumorigenesis in the mammalian 

system. Interesting is also that, Rho1 and Rac are critical for the cooperation of Dlg with 

Ras in the whole-tissue context (Brumby et al. 2011). Along the same line, when lgl is 
mutated in a mosaic tissue, the lgl- clonal cells become the “losers” in cell competition. 

However, simultaneous overexpression of the Ras signalling pathway or of the yorkie (yki; a 
transcription factor, which is suppressed by the Salvator/Warts/Hippo pathway) in lgl- 

clones, causes overgrowths and JNK-mediated apoptosis at the periphery of the 
transformed clones (Grzeschik et al. 2010a, Grzeschik, Parsons and Richardson 2010b, 

Tamori et al. 2010, Mair 2010, Alderton 2010, Menendez et al. 2010). Moreover, JNK-
mediated elimination of lgl- clonal cells was relieved and the overgrowth potential was re-

established by upregulation of c-Myc, proving that lgl- clonal death is driven mainly by c-
Myc-induced cell competition (Froldi et al. 2010). Simultaneous downregulation of the lgl 

and the JNK pathway in the whole-tissue system results in phenotype reversion of tumor 
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growth, absence of the giant larvae and recurrence of pupariation, thereby showing that 
JNK activity is essential for overgrowth and invasion of lgl tumorous discs (Zhu et al. 2010).  

Among the wide palette of cellular events leading to JNK activation is the dTNF (tumor 
necrosis factor)/Eiger. Eiger is the sole Drosophila member of the TNF superfamily and its 

dysregulated expression in imaginal disc cells results in JNK-mediated apoptosis (Vidal 
2010, Cordero et al. 2010). The role of mammalian TNF in both pro-tumor and anti-tumor 

function are well documented and recent work suggests that both aspects of TNF function 
are also conserved in Drosophila. On one hand, JNK-dependent cell death in scrib and dlg 

clones requires dTNF, consistent with its role as a “tumor death factor” (Igaki 2009). On the 
other hand, in tumors deficient for scrib and dlg that also express Ras, the TNF signal is 

converted into a signal which promotes tumor growth and invasion, in accordance with the 
“tumor promoting” function of mammalian TNF (Cordero et al. 2010). More precisely, upon 

dTNF downregulation, cell death in dlg and scrib clones is blocked and in situ outgrowths 
appear, probably by TNF-mediated extra-cellular matrix (ECM) remodelling (Vidal 2010, 

Cordero et al. 2010). However, a similar effect on clone survival by dTNF knockdown in lgl 
clones was not observed, meaning that there are gene-specificities among the three TSGs 

(Vidal 2010). When generated in a dTNF mutant background, Rasv12scrib- clones displayed 
non-invasive in situ overgrowth. Similarly, in whole Rasv12scrib-dTNF- animals, development 

proceeded up to pupal stages, overcoming the “giant larvae” phenotype (Figure 2) (Vidal 
2010, Cordero et al. 2010). These recent results suggest that several of the critical overgrowth 

phenotypes of scrib, dlg and lgl in the clonal and whole-tissue context are mediated by dTNF 
and that dTNF pro-tumor function depends partially on JNK activation in tumor cells, 

which provides a switch from in situ to invasive growth. Immunostaining experiments that 
detected dTNF in a punctuated, intracellular vesicle pattern at the periphery of hemocytes 

associated with the dlg-group clones, indicate that dTNF expression in hemocytes is 
sufficient for dTNF/JNK pathway activation within dlg-group clones, and mark the 

importance of hemolymph and non-cell autonomous immune response in tumor 
progression (Vidal 2010, Cordero et al. 2010). 

So far, the mechanism by which the surrounding normal tissue exerts antitumor effects 

against dlg, scrib or lgl clones remained elucive. New results from clonal analysis in 

Drosophila imaginal discs have shown that JNK activation from the wild type surrounding 

leads to upregulation of PVR, the Drosophila PDGF/VEGF receptor, which subsequently 

activates the ELMO/Mbc phagocytic pathway, and which in turn eliminates the oncogenic 

clonal cells by engulfment (Ohsawa et al. 2011). From an evolutionary point of view, the 

development of such mechanism, which senses and eliminates “neoplastic” tumor-

suppressor mutant cells such as those of scrib- and dlg- but not “hyperplastic” ones (in which 

despite of overproliferation, cells are normally shaped and retain a differentiated epithelial 

monolayer, such as those of the Hippo pathway and PTEN) (Ohsawa et al. 2011), shows the 

necessity to specifically eliminate the high-risk malignant neoplastic cells before they confer 

any harm to the organism. The recent results concerning the function of these TSGs are of 

great importance as they: (1) promote the basic understanding on cancer development in a 

tissue and cell-type specific context, (2) recapitulate the situation of cancer development and 

metastasis in humans, and (3) recognize the advantage of Drosophila as a model system of 

choice in order to elucidate the role of these proteins at a mechanistic level and the 

molecular wiring that swifts the balance from normal to transformed cells in an otherwise 

wild type organism.  
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Fig. 2. Simplified model showing the most important genetic interactions of scrib, dlg and lgl 

TSGs with the TNF, JNK and Ras signalling pathways at the clonal and the whole-tissue 

system (for a more detailed analysis and the gene-specific interactions of the individual 

TSGs refer to the text). 

4. Dlg, Scrib and Lgl in the Drosophila testis 

So far, the role of Dlg, Scrib and Lgl in testis development has been underestimated, as 

mutations in these genes do not result in tumors. On the other hand, testes do not possess an 

epithelium similar to the ovarian follicular epithelium, which facilitates the analysis of 

apicobasal polarity. The more intensive investigation of the Drosophila testis in the last 15 

years has shed light on basic mechanisms, signaling molecules and cytoskeletal proteins 

involved in the progressive development of male gonads to adult testis, which provided 

markers and tools required for subsequent analysis. In the Drosophila testis, the somatic cells 

of the hub form the organizing center that recruits the germline stem cells (GSCs), creating 

the male stem cell niche (Fuller and Spradling 2007, Lin 2002). Upon asymmetric stem cell 

division, each GSC produces a new GSC attached to the hub and a distally located 

gonialblast, whereas each somatic stem cell (SSC) pair divides to generate two SSCs and two 
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somatic cyst cells (SCCs) (Figure 3). The gonialblast divides mitotically four times in 16 

interconnected spermatogonial cells surrounded by the two SCCs (Yamashita et al. 2007, 

Fuller and Spradling 2007, Wong, Jin and Xie 2005). The spermatogonial cells differentiate to 

primary spermatocytes, which enter the pre-meiotic phase (Fuller 1993). The physical 

contacts among the testis cell populations are critical as they allow the exchange of signals 

among GSCs and SSCs as well as SCCs, spermatogonial cells and spermatocytes that 

promote tissue survival and testis homeostasis.  

 

 

Fig. 3. Diagram depicting early spermatogenesis in Drosophila. Abbreviations: GSCs, 

germline stem cells; SCCs, somatic cyst cells; SSCs, somatic stem cells. 

We have recently investigated a new role of dlg in the Drosophila testis (Papagiannouli and 

Mechler 2009, Papagiannouli and Mechler 2010). In contrast to the overgrowth phenotypes 

observed in imaginal discs and brain hemispheres, dlg inactivation leads to testis 

degeneration during early larval development. The dlg testes are extremely small, with 

reduced number of GSCs loosely attached to the hub (Figure 5B, F). The Dlg protein is 

present in all somatic cells including the hub, SSCs and SCCs (Figure 4A-D) and the specific 

requirement of dlg in these cells is further supported by the finding that the mutant 

phenotype is rescued by expressing dlg in somatic cells but not in germ cells (Papagiannouli 

and Mechler 2009). In SSCs and early SCCs dlg plays a critical role in the establishment of a 

normal cyst structure, whereas in spermatogonial and spermatocyte stages dlg is critical for 

cyst survival, growth, expansion and maintenance of the integrity of the cysts’ 

microenvironment. Presumably, dlg is required for establishing and maintaining a tight 

connection between GSCs and SSCs around the hub. The connection between gonialblasts 

and SCC is also maintained during the mitotic divisions. In SSCs and early SCCs, dlg acts 

critically to establish a normal cyst structure, whereas in further spermatogonial and 

spermatocyte stages dlg is significant to the survival, growth and expansion of the cyst 

(Papagiannouli and Mechler 2010). 

A very interesting finding was the formation of wavy and ruffled plasma membrane in dlg 

over-expressing cells capping the spermatocyte cysts. Up to now, there is no mechanism 

describing how SCCs in Drosophila testis grow enormously, elongate and ensheath the germ 

cells of spermatogonial and spermatocyte cysts or how spermatid differentiation and 

individualization is guided by the polarized head and tail SCC. One way to interpret this 

result would be to consider that Dlg regulates the intensity of germ cell encapsulation 

through the Egfr pathway, which is the major signaling pathway active at the 

microenvironment of the spermatogonial cysts (Kiger, White-Cooper and Fuller 2000, Tran, 
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Brenner and DiNardo 2000). Membrane ruffling, detected in somatic cells upon dlg over-

expression, is highly reminiscent of the formation of lammellipodia-like structures, formed 

upon up-regulation of Rac1 in SCCs (Sarkar et al. 2007). Rac1 is a downstream component of 

the Egfr pathway and acts antagonistically to Rho in order to regulate germ cell 

encapsulation; moreover, Rho activation perturbates TJ function in various experimental 

systems (Fischer et al. 2007). It has already been shown that Dlg regulates membrane 

proliferation in a subset of NMJs in a dose-dependent fashion (Budnik et al. 1996) and is an 

important player in the process of polarized membrane insertion during cellularization 

(Lecuit and Wieschaus 2000, Dudu et al. 2004, Strickland and Burgess 2004, Lee et al. 2003). 

The fact that membrane proliferation is also involved in mechanisms such as tissue 

spreading and cell surface extensions, including membrane ruffles (Lecuit and Pilot 2003, 

Albertson, Riggs and Sullivan 2005) and combined with our results on SCCs membrane 

ruffling upon Dlg overexpression, could mean that polarized membrane insertion, mediated 

by Dlg, might conduct SCCs growth, expansion and spreading over the germ cells of 

testicular cysts.  

Interestingly, our recent results have also shown a requirement of Scrib and Lgl for normal 

testis development. Scrib and Lgl are localized in the somatic hub, SSCs and SCCs. Scrib is 

also present in the germline including the spermatocytes and the fusome (Figure 4E-H), 

with its localization in fusome being dispensable (Lighthouse, Buszczak and Spradling 

2008). Lgl has a marked localization at the fusome (Figure 4I-L). The germline localization of 

Scrib and Lgl is particularly interesting as it distinguishes them from Dlg, which is localized 

and is exclusively required in the somatic lineage. Examination of 6-7 days-old scrib and lgl 

mutant testis from giant larvae, revealed a dramatic reduction in the size of scrib and lgl 

testis. scrib testes show defects in the male stem cell niche, with less GSCs, gonialblasts and 

reduction in the transit amplifying spermatogonial cells (Figure 5C, G). The phenotype of 

the lgl testes was more severe, with defects in the male stem cell niche, fewer GSCs loosely 

attached to the hub and few spermatogonial cysts and with progressive spermatocyte cyst 

disappearance leading to testis atrophy (Figure 5D, H). The extensive defects in dlg, scrib and 

lgl mutant testes, underline their importance in the establishment and maintenance of the 

male stem cell niche and proper testis differentiation.  

Results obtained in the cancer and testis fields, regarding the role of the microenvironment 

and of apoptosis, point out the similarities of the basic mechanisms underlying the function 

of these genes. Our results from the Drosophila testis are in agreement with the newly 

investigated role of these genes in the cancer field. The importance of neighboring cell 

populations is illustrated in the case of testis where the somatic and germline cells create a 

microenvironment in the male stem cell niche and in the spermatogonial and spermatocyte 

cysts, which is required for mutual somatic and germline survival that promotes GSC 

maintenance and testis differentiation. The effect of Dlg, Scrib and Lgl, when signaling 

pathways emanating from the somatic and germ cells are affected, and the comparative 

analysis of apoptosis in the testis and in mosaic clones of the tumor microenvironment are 

some of the questions we try to investigate. Answering these questions will help us 

understand how the cell type-specific cellular content (cell intrinsic effects), 

microenvironment and signaling pathways cooperate with dlg, scrib and lgl in the various 

tissues. Although Dlg, Scrib and Lgl act in a slightly variable way in the various tissues and 

bind to different partners according to the protein availability (Roche et al. 2002), they can 
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still be considered as major players in the pathways they participate in, with a conserved 

function in the broader sense. Using the knowledge obtained in these systems will allow us 

to study their function in the testis in a comparative way. 

 

 

Fig. 4. Pattern of Dlg, Scrib and Lgl distribution in 3rd instar larval testis. (A-D) Wild type 

testis stained for F-actin with phalloidin (green), DNA with DAPI (blue) and immuno-

stained for Dlg (red). (C) and (D) are enlargements of (A) displaying the spermatocyte cysts, 

(B) and (D) display only the Dlg staining, marking the hub, SSCs and SCCs. (E-H)  

Scrib-GFP enhancer trap line showing Scrib localization (red) and stained for F-actin with 

phalloidin (green) and DAPI (blue). (G) and (H) are enlargements of (E) displaying the 

spermatocyte cysts, (F) and (H) display only the Scrib-GFP, marking the hub, SSCs, SCCs 

and the spermatocytes with the fusome (yellow arrows). (I-L) Lgl-GFP enhancer trap line 

showing Lgl localization (red), stained for F-actin with phalloidin (green) and DAPI (blue). 

(K) and (L) are enlargements of (I) displaying the spermatocyte cysts, (J) and (H) display 

only the Lgl-GFP, marking the hub, SSCs (arrowheads in J), SCCs and the spermatocytes 

with the fusome (yellow arrows). Testis hub is oriented towards the left (white arrows).  

Bar: 15μm. 
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Fig. 5. Testis in wild type, dlg, scrib and lgl 3rd instar larvae. Testes from (A, E) wt, (B, F) dlg, 
(C, G) scrib and (D, H) lgl larvae stained for Vasa (red), Tj (green), and Arm+Ǐ-Spectrin 
(blue). Low panel pictures (E-H) are enlargements of the hub region shown in (A-D), 
showing only the co-staining of Arm and Ǐ-Spectrin. Testis hub (arrowheads) is oriented 
towards the left. Bar: 15μm. Staining reveals a dramatic reduction in the size of scrib and lgl 
testis. scrib testes show defects in the male stem cell niche, with less GSCs, gonialblasts and 
reduction in the transit amplifying spermatogonial cells. lgl testes show defects in the male 
stem cell niche with fewer GSCs loosely attached to the hub and few spermatogonial cysts, 
leading to spermatocyte cyst disappearance and testis atrophy, reminiscent of the dlg 
mutant testis (Papagiannouli & Mechler, 2009). 

5. Conclusions 

Cancer is generally considered as a failure in the normal progression of differentiation. In 
recent years, developmental biology has contributed a great deal to cancer research. The 
reason of this success lies mainly in the recognition that cancer is a genetic disease, in which 
the normal pathway of cell fate and cell differentiation has been altered. The role of the 
tumor suppressor genes dlg, scrib and lgl as key junctional components in cell-type and 
tissue specific contexts has been analyzed in this review. It becomes obvious that the 
cytoskeleton is not seen anymore as a fixed structure but a dynamic and adaptive structure, 
whose components and regulatory proteins are in constant flux. Furthermore, it organizes 
the content of the cell, connects the cell with the external environment and coordinates 
forces that enable the cell to move and change shape. Looking at the cell not as an “inert 
playground for a few masterminding molecules” (Weiss 1961) but as an integrated whole, 
“an hierarchical ordered system of mutually interdependent molecular groupings and 
supramolecular entities” (Weiss 1961, Fletcher and Mullins 2010) can help us understand the 
role of these TSGs as safeguards of normal development, tissue homeostasis and tumor 
prevention.  
Over the last three decades Drosophila has become the organism of choice for molecular and 
genetic investigations in eukaryotic biology. Its emergence as an animal model system is 
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closely related to the rapid advances in recombinant DNA technology and other methods 
established in decades of classical genetics and embryology. Given the striking degree of 
evolutionary conservation of genes and signaling pathways, in particular of disease-causing 
genes, and the general principles that govern biological processes, sometimes even to the 
extent that a mouse gene can functionally replace its fly homologue, what we can learn from 
flies is often relevant to higher organisms, including humans (Gonzalez 2007, Jaekel and 
Klein 2006). This surprising conservation, together with the recent advances in genetic tools, 
such as MARCM (Lee and Luo 2001, Wu and Luo 2006), lineage tracing (Potter et al. 2010), 
multi-color cell labeling (Hadjieconomou et al. 2011, Hampel et al. 2011, Cachero and Jefferis 
2011), cell-type specific RNAi (Brand and Perrimon 1993) and genome-wide analysis made 
Drosophila a powerful model organism in elucidating basic cellular and tissue functions and 
in modeling cancer and other diseases. In the last years, a handful of review articles and 
conferences focused on the efforts and advances in modeling human diseases in Drosophila 
(Pfleger and Reiter 2008, Crnic and Christofori 2004, Gilbert 2008, Botas 2007, Caldeira et al. 
2009, Froldi et al. 2008, Reiter et al. 2001) from cancer, metastasis and neurogenerative 
diseases to obesity, metabolism and congenital heart disease. All these studies have shown 
that analysis of human diseases in Drosophila can go further than the phenotypic results and 
the ability to assign a function, in elucidating the mechanisms underlying disease pathology 
through a straightforward experimental design, thereby providing valuable entry points for 
later validation in mammalian systems and humans and identify candidate therapeutic 
agents. The fact that cancer and tumor suppressors underlie almost all basic cellular 
mechanisms from polarity, cell architecture and adhesion to gene regulation and cell 
specification, and from trafficking and proper cell compartmentalization to 
microenvironment signal exchange and neighboring cell competition, prove the necessity 
of Drosophila as a workhorse in unraveling the mechanisms of normal development. 
Compared with experiments in vertebrates, the large screens facilitated in Drosophila due 
to the low cost, the short generation time, the capacity for experiments with large 
numbers of animals and the availability of large collections of loss-of-function and 
overexpression mutant strains together with the power of genetics, that allows researchers 
to manipulate the fly genome at the level of precision, made the tiny fruit fly the organism 
of choice in several cases (Botas 2007, Froldi et al. 2008). Finally, the use of innovative 
technologies such as microarrays and nanotechnology, combined with novel computation 
and bioinformatics, has allowed genome-wide analysis of Drosophila, comprehensive 
analysis of the chromatin landscape (Kharchenko et al. 2011), cis-regulatory map of the 
Drosophila genome and transcription co-binding relationships (Negre et al. 2011), and 
high-resolution of transcriptome dynamics throughout development (Graveley et al. 
2011). All these studies have laid the carpet for identifying gene networks and complex 
gene and pathway interactions. Therefore, it becomes clear that we have still a long way 
to go on the enormous potential to study human genetic conditions and modeling cancer 
and metastasis in this simple invertebrate.  
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