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1. Introduction 

In 1889, Sir S. Paget introduced the soil and seed hypothesis of metastasis to medicine and 

credited the idea to Fuchs. In Paget´s study, he concluded that the distribution of metastases 

cannot be due to chance alone and that different tissues provide optimal conditions for the 

growth of specific cancers. In the soil and seed metaphor, the soil refers to the secondary site 

of tumour growth and development and perhaps the chemical signals produced in the 

microenvironment at the sites of metastasis. The seed is the ostensible stem cell or tumour-

initiating cell from the primary tumour. These tumour-initiating cells are the tumorigenic 

force behind tumour initiation, growth, metastasis, drug resistance, and relapse. In a 

variation of this idea, called the homing hypothesis, a secondary signal secreted by cells at 

the future metastatic sites “calls” the tumour cells to the site and permits them to proliferate 

in the new environment. In this hypothesis, the seed produces cell surface receptors that are 

able to recognise the site demarcated by the soil. Although the mechanisms that define tissue 

specificity remain obscure, researchers have focused on small messenger molecules as 

attractants and larger cell surface receptors that guide the tumour-initiating cells. Based on 

the hypothesis introduced by Paget, other groups have focused on chemokines and their 

receptors as viable candidates for soil and seed signalling and have proposed a “spatial and 

temporal code” composed of specific combinations of such molecules, while other molecules 

are responsible for neovascularisation, metastasis, and immunosurveillance avoidance. 

Lung cancers result from complex genetic and epigenetic changes and are characterised by 

stepwise malignant progression of cancer cells with an associated accumulation of genetic 

alterations. This process, referred to as multistep carcinogenesis, develops through the 

clonal evolution of initiated lung cells. Initiation consists of the acquisition of defined 

genetic alterations in a small number of genes that confer a proliferative advantage and 

facilitate progression towards invasive neoplasia. Although many of these genetic changes 

occur independently of histological type, their frequency and timing of occurrence with 

respect to cancer progression differ between small cell lung carcinomas (SCLC), which may 

originate from epithelial cells with neuroendocrine features, and non-SCLCs, which  
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originate from bronchial, bronchiolar or alveolar epithelial cells. Furthermore, a number of 

genetic and epigenetic differences have been identified between squamous cell carcinoma 

(SCC), which arises from bronchial epithelial cells through a squamous 

metaplasia/dysplasia process, and adenocarcinoma (ADC), which is derived from alveolar 

or bronchiolar epithelial cells. Hence, lung tumours have been classified according to 

tumour morphology, but classification is complicated by the fact that a number of different 

histologic tumour characteristics frequently exist within the same neoplasm. In the 1990s, 

SCLC accounted for approximately one-quarter of all lung cancers, but a recent Surveillance 

Epidemiology and End Results (SEER) database analysis found that the incidence has since 

decreased to approximately 13%. SCLC now accounts for 15% of all newly diagnosed lung 

cancers and 60% to 70% of patients present with extensive stage (ES) tumours. For patients 

with limited-stage (LS)-SCLC, standard treatment has consisted of chemotherapy combined 

with radiotherapy (RT), while chemotherapy alone has been the standard for ES-SCLC 

patients. Despite a high initial rate of response to chemotherapy, most patients die from 

rapid recurrence. The median range of survival time after diagnosis for patients with ES-

SCLC is 8 to 10 months, and only 5% to 10% of patients survive for as long as 2 years. 

Although chemotherapy is an essential component in the treatment of SCLC, improvements 

in survival in the past two decades have primarily been achieved through the appropriate 

application of radiotherapy. The standard treatment for patients outside of clinical trials is 

as follows: LS-SCLC patients receive combination chemotherapy, which generally consists 

of cisplatin and etoposide, with concurrent thoracic radiotherapy; and ES-SCLC patients 

receive combination chemotherapy (etoposide and cisplatin or carboplatin). The current 

standard treatment for most cancers involves some combination of chemotherapy, hormonal 

therapy, radiation treatment, and a growing list of molecularly targeted therapeutics, 

depending on the tumour characteristics and stage. Following treatment, tumour regression 

is normally used as an indicator of therapeutic success. To better treat cancer, the new ideas 

regarding CSCs must be integrated into our strategies for clinical intervention. One 

approach to inhibit cancer stem cells is to target the proteins that are essential for the growth 

and maintenance of stem cells, such as the growth regulatory pathways that function in 

embryonic cells. One pathway, controlled by the Hedgehog (Hh) signalling molecule, 

contains several genes that function as either tumour suppressor genes or oncogenes. Other 

pathways that are critical to embryonic development and are potentially important in cancer 

have also been described, including the Wnt and Notch pathways. These pathways are also 

subjects of drug development for the treatment of a number of conditions. 

2. Development of the airway 

The respiratory system is an outgrowth of the ventral wall of the foregut, and the epithelium 

of the larynx, trachea, bronchi, and alveoli originates in the endoderm. The cartilaginous, 

muscular, and connective tissue components arise in the mesoderm. In the fourth week of 

development, the tracheo-oesophageal septum separates the trachea from the foregut, 

dividing the foregut into the lung bud anteriorly and the oesophagus posteriorly. Lungs are 

composed of two primary tissue layers, namely epithelium and mesenchyme. Previous 

investigations have demonstrated that mutual interactions between these two tissues are 

essential for the sequential events of organogenesis, determination, growth, morphogenesis, 
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and cytodifferentiation. This mutual interaction is defined as embryonic induction. The 

morphogenesis and cytodifferentiation of embryonic lung epithelial components are 

modulated by surrounding mesenchymal components. In embryonic organs that are formed 

by a process of progressive branching of the epithelium, such as the lung, the mesenchyme 

plays a determining role in the formation of the characteristic morphology of the organ. 

Increasing evidence has suggested that the formation of the tracheo-bronchial tree and 

alveoli results from heterogeneity of the epithelial-mesenchymal interactions along the 

developing respiratory tract. Genetic data have supported this idea and shown that this 

heterogeneity is likely the result of activation of distinct networks of signalling molecules 

along the proximal-distal axis. Among these signals, fibroblast growth factors, retinoids, 

Sonic hedgehog and transforming growth factors appear to play prominent roles. Variable 

levels of FGFs, Shh, TGF┚, EGF, retinoid receptors, and other signals that play a role in lung 

morphogenesis have been reported in the adult lung. Increasing genetic evidence has 

suggested that the Gli genes play multiple roles during prenatal development, particularly 

in the lung. All three genes are widely expressed during embryonic development in distinct 

but sometimes overlapping domains. The extent to which these regulators are expressed 

during adult life to mediate cellular activities in processes such as post-injury repair and 

compensatory lung growth is currently unclear. Lung bud initiation has been well-

established to be regulated by the Sonic hedgehog (Shh) signalling pathway, by fibroblast 

growth factor (FGF) receptor signalling, and likely by retinoid-related signalling. Branching 

morphogenesis is a dichotomous branching process that involves defining the proximal-

distal structure of the conducting airway prior to the saccular stage and is dependent on the 

integrated effects of the conducting airway prior to the saccular stage. Several growth 

factors have been implicated in branching morphogenesis. Epidermal growth factor (EGF) 

and transforming growth factor (TGF┙) are expressed in embryonic murine lung; both 

factors influence growth and branching morphogenesis. During early lung branching, the 

EGF protein is present in bronchial epithelial cells, whereas the EGF mRNA is localised to 

the mesenchyme; this discordance between the location of the protein and mRNA suggests 

that EGF is produced by the mesenchyme and acts on the epithelium. EGF receptors (EGFR) 

have been found in epithelial cells and in the mesenchyme surrounding the branching 

epithelium of the mouse lung. These data are compatible with the notion that EGF acts in an 

autocrine and paracrine fashion. Retinoic acid (RA) and glucocorticoid signalling pathways 

have long been appreciated as major contributors to prenatal and postnatal lung maturation, 

and some evidence exists for their coordination or antagonism during lung development. 

Retinoic acid also plays an important role in morphogenesis. RA stimulates lung epithelial 

branching activity via an epithelial-mesenchymal interaction that, in part, involves the up-

regulation of the expression of EGFR, Insulin-like Growth Factors (IGF), basic Fibroblast 

Growth Factor (bFGF-2), and PDGF. 

3. The airway stem cells 

For several years, a consensus has been achieved that various types of stem cells exist, 

differing according to their position within the pulmonary tree, and that the stem cells often 

form pools that are ready to proliferate in response to injury and effect local repair. The 

classical subdivision of the airway tree into regions with individual stem cell harbours was  
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accepted many years ago. Thus, the local repopulating cells of the trachea (basal, mucous 
secretory), bronchus (basal, mucous secretory), bronchiole (Clara) and alveolus (type II 
peneumocytes) remain, for the most part, the first reserve of airway stem cells. Stem cell 
research in the lung has progressed rather slowly due to the anatomical and functional 
complexities associated with the numerous distinct cell types. This organ must be divided 
into various anatomical regions when considering multipotent progenitor or stem cells. 
Evidence has clearly suggested that multipotent progenitors of the conducting airway 
epithelium and gas-exchange alveolar regions are derived from different populations of 
stem cells that are anatomically separated in the lung. Stem cell niches in the conducting 
airways must also be uniquely divided between the proximal and distal regions. Bronchial 
airways harbour at least two distinct progenitor cell populations. Both basal and non-
ciliated secretory cell types of the bronchial airways have been shown to exhibit 
proliferative capacity. The disparity between bronchial and bronchiolar airways is consistent 
with a mechanism in which the activity of distinct progenitor cell pools accounts for the 
regional differences both in lineage specifications during lung development and in the 
cellular composition of tracheo-bronchial and bronchiolar airways (Table 1).  

 

Tissue Epithelial stem cell niche Daughter cells 

Lung proximal 
 
 
 
Distal 
 

Tracheal basal cell 
Tracheal mucus-gland duct cell 
Tracheal secretory cell 
Bronchiolar Clara cell 
Alveolar type II pneumocyte 
Neuroendocrine 

Mucous, ciliated, neuroendocrine 
Mucous, ciliated, neuroendocrine 
Mucous, ciliated, neuroendocrine 
Mucous, ciliated (Type I/II pneumocyte) 
Type I and II pneumocytes (Clara cells), 
PNEC (and Clara cells) 

Table 1. Stem or progenitor cell characteristics in the airway 

Epithelial cell composition and zone boundaries depend on both the species and the 
individual animal history. In normal mice, a renewing cell system encompassing a gland-
containing, pseudostratified epithelium with Clara cells and few goblet cells is present in the 
upper trachea. In rats, a similar system, but with more goblet cells and no Clara cells, is 
present in the entire trachea, whereas this zone in humans penetrates many bronchial 
generations. Distally, the airway epithelium becomes glandless and cuboidal. This region is 
dominated by a Clara cell based lineage system before its transformation into a type II cell-
based system in the alveoli. Stem cell niches in the airway have been characterised through 
experiments with rodent models. Stem cells in the proximal mouse trachea reside in the 
submucous gland duct, whereas those from the bronchi and bronchioles come from a subset 
of cells expressing a Clara-cell-specific protein located near neuroendocrine bodies and 
bronchoalveolar-duct junctions. 

4. Stem cells and lung cancer 

Stem cells give rise to a number of different cell types that can be classified into three 
groups: fully differentiated cells, transit-amplifying cells, and stem cells. The fully 
differentiated cells are mitotically inactive cells. These cells are at the end stages of cellular 
differentiation and will never re-enter the active cell cycle. The transit-amplifying (TA) cells 
are fast growing cells that are not fully differentiated. TA cells are able to proliferate for 
several generations, but they eventually terminally differentiate and must be replenished by 
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the SC. Pluripotency is the ability of a SC to differentiate into the heterogeneous population 
of cells that comprise a tissue or, in the case of cancer stem cells (CSCs), a tumour. There is 
growing evidence that some, if not all, tumours are derived from cells with the stem cell 
properties of self-renewal, multilineage potential, and proliferative capacity. Stem cells are 
candidates as the “cell of origin” for cancer because they have a pre-existing capacity for 
self-renewal and unlimited replication. In addition, stem cells are relatively long-lived 
compared to other cells within tissues. They therefore have a greater opportunity to 
accumulate the multiple additional mutations that may be required to increase the rate of 
cell proliferation and produce clinically significant cancers. Recent work has suggested that 
a subpopulation of cancer cells with stem-cell-like properties may be critical for triggering 
tumour development. Insights into the function and characteristics of CSCs offer a novel 
approach to understanding the progression of metastasis. Given that a single cancer cell can 
drive the formation of a metastatic tumour, CSCs are likely responsible for distant 
tumourigenesis and primary tumour formation. Thus, research focussed on the role of CSCs 
in primary lesions has led to discovery that CSCs can drive tumour formation in leukaemia 
and various solid tumours. While little work has been done to elucidate the role of CSCs in 
metastasis, properties of CSCs, such as self-renewal and differentiation, make them logical 
candidates as metastatic colonisers. To facilitate the discussion of CSCs with different 
metastatic ability, a distinction should be made when referring to two potential subtypes of 
CSCs: primary tumour cancer stem cells (pCSCs) and metastatic cancer stem cells (mCSCs). 
The first, pCSCs, constitute the original population of tumorigenic cells that initiate the 
formation of haematopoietic and solid tumours and are the centre of most CSC. The second 
group, mCSCs, represent a distinct population of cells with the intrinsic properties to 
disseminate from the primary site and generate the distant metastases. Although other cell 
subpopulations may break free of the primary tumour and invade the blood stream, mCSCs, 
like their pCSCs counterparts, are solely responsible for the initiation of tumours. mCSCs 
are related to pCSCs in the essential properties of self-renewal and differentiation that are 
needed for the propagation of the bulk of the tumour, but the two cell types differ in key 
ways. Unlike pCSCs, mCSCs disseminate from the tumour, colonise foreign tissue, and 
likely have additional alterations (whether mutational, epigenetic, or adaptive) that allow 
survival and propagation in secondary sites. The key to developing effective future 
therapies thus seems to be the identification and characterisation of these cancer stem cells 
and the development of drugs that specifically target these cells. Classically, the 
stem/progenitor cells of the pulmonary epithelium have been considered the basal cells in 
the proximal airways, Clara cells in the bronchioles and type II pneumocytes in the alveoli. 
There is evidence that the basal and parabasal cells are stem cells in the human lung. Clara 
cells have been shown to be the progenitors of themselves and of ciliated cells in the 
bronchioles. Recent research has established that a subset of Clara cells fulfils the criteria of 
adult, niche-specific stem cells. Pools of stem cells have been discovered that express Clara 
cell secretory protein (CCSP) but are not typical Clara cells. These variant CCSP-expressing 
(or vCE) cells show multipotent differentiation. The vCE cells are located in discrete pools in 
neuroepithelial bodies and at the broncho-alveolar duct junction. In the trachea and bronchi, 
the basal cells are widely believed to be stem cells. The basal cells and the parabasal cells 
that lie just above them certainly form a pluripotential reserve cell that, unlike the 
surrounding epithelium, usually survives injury. Procedures that involve denuding the 
trachea have demonstrated the capacity of basal cells to produce all of the major cell 
phenotypes found in the trachea, including basal, ciliated, goblet and granular secretory 
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cells. Controversially, pulmonary neuroendocrine cell (PNEC) populations have been 
suggested to be able to proliferate and serve as a reservoir of progenitor/stem cells that are 
capable of epithelial regeneration. 

 

Stem/progenitor Daughter Lineage progression 

Basal Basal  
Mucous 
Secretory 
PNEC 

 
Ciliated 
Ciliated 
 

Tracheal Basal   
Gland duct Mucous 

Ciliated 
 

Clara Clara 
Ciliated 
PNEC 
Type II? 

 

Type II Type II 
Type I 
PNEC 
Clara 

 

PNEC Clara   

Table 2. Possible lung cell lineages. Adapted from Otto WRJ. Pathol. 2002. 

5. Small cell lung cancer 

SCLC is the most common lung tumour in the spectrum of pulmonary neuroendocrine 
malignancies, which include typical carcinoid (TC), atypical carcinoid (AC), large-cell 
neuroendocrine carcinoma (LCNEC), and small-cell lung carcinoma (SCLC). The histological 
classification of SCLC has evolved substantially over the past several decades 

 

 WHO (1967) WHO (1981) IASLC (1988) 

Oat cell Lymphocyte-like Oat cell Small-cell carcinoma 
Polygonal Polygonal Intermediate Small-cell carcinoma 
 Fusiform  Mixed small-cell/large-

cell carcinoma 
 Other Combined oat cell 

carcinoma 
Combine small-cell 
carcinoma 

WHO: World Health Organization  
IALSC: International Association for the Study of Lung Cancer 

Table 3. Classification of small-cell lung carcinoma 

Interestingly, a large proportion of SCLC contains a component of NSCLC. Approximately 5% 
to 10% of patients diagnosed with SCLL will have mixed tumours, meaning that other 
pathologies, such as adenocarcinoma or squamous cell carcinoma, can be found within the 
pathologic specimen. The WHO classification of SCLC includes only one variant, combined 
small cell carcinoma, an SCLC with a mixed non-small-cell component (adenocarcinoma, 

www.intechopen.com



 
New Therapeutic Strategies in Small Cell Lung Cancer: The Stem Cell Target 

 

239 

squamous cell carcinoma, large cell carcinoma, or spindle cell or giant cell carcinoma). 
Although various synonyms are in the current clinical terminology (anaplastic small-cell 
carcinoma, small-cell undifferentiated carcinoma, small-cell neuroendocrine carcinoma, oat 
cell carcinoma, and mixed small-cell/large-cell carcinoma), the use of these terms is 
discouraged to avoid confusion. Although the precise cell of origin is not known for SCLC, 
there is probably a pluripotent bronchial precursor cell that can differentiate into each of the 
major histologic types of lung cancer. However, within the spectrum of neuroendocrine 
tumours, a closer morphologic and genetic similarity exists between large cell neuroendocrine 
carcinoma and small cell carcinoma than either typical or atypical carcinoid. Although 
classified as a neuroendocrine (NE) tumour, the biological origins of this cancer have remained 
a matter of conjecture. Recently, SCLC has been shown to be dependent on the activation of 
Hedgehog signalling, an embryonic pathway implicated in the regulation of stem cell fates. 
This finding sheds new light on the potential histogenesis of SCLC. SCLC and carcinoid 
tumours both show high-level expression of neuroendocrine genes. Only a few markers are 
shared between SCLC and carcinoids, whereas a distinct group of genes defines carcinoid 
tumours, suggesting that carcinoids are highly divergent from malignant lung tumours, as has 
been reported. Recent studies have shown that the most useful neuroendocrine markers for 
SCLC in formalin-fixed, paraffin-embedded tissue sections are chromogramin A, 
synaptophysin, Leu-7, and certain neural cell adhesion molecules (NCAMs). Bombesin or 
gastrin-related peptide (GRP), keratin (AE1/AE3) and membrane antigen (EMA). DNA 
analysis of SCLC reveals a high percentage of aneuploidy in up to 85% of cases. Finally, the 
expression of proliferative markers, such as PCNA, thymidylate synthase, MCM2 and MCM6, 
is highest in SCLC, which is known to be the most rapidly dividing lung tumour. 

6. Targeted agents that have been evaluated in SCLC 

Various chemotherapy schemes have been evaluated for SCLC, but the combination of 
cisplatin and etoposide is widely considered the standard, with observed response rates of 
80-85% and approximately 25% of patients obtaining a complete response. However, most 
patients experience disease relapse, and neither maintenance chemotherapy nor dose-
intensive chemotherapy regimens have led to improved outcomes. 

6.1 Topoisomerase I and II inhibitors  

A topoisomerase I inhibitor, Topotecan, has shown response rates of 14% to 38% in 
chemosensitive patients, but the response rates in patients with chemorefractory disease are 
lower. Irinotecan, another topoisomerase I inhibitor, has demonstrated 10% partial response 
and 22% stable disease in refractory or relapsed SCLC. Etoposide-containing regimens 
currently remain the standard first line therapy in North America, while irinotecan-
containing regimens are used in Japan. Thus, the combination of carboplatin and irinotecan 
may be a viable alternative to etoposide-containing regimens. Novel topoisomerase I and II 
inhibitors appear to continue to exhibit activity in patients with SCLC and warrant further 
investigation in this disease (particularly in non-Asian populations). However, whether 
these agents will be more active than etoposide remains to be determined. 

6.2 Alkylating agents 

The results are similar to those seen with other regimens. 
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6.3 Picoplatin 

The role of picoplatin in SCLC is still not well defined and should be further explored in the 
future. 

6.4 Antimetabolites 

Pemetrexed has been shown to have minimal activity as a second-line agent in the treatment 
of patients with SCLC. Elevated thymidylate synthase expression in SCLC tumours has been 
proposed as one of the reasons for the observed lack of efficacy. 

6.5 Antiangiogenic agents 

Bevacizumab combined with standard first line therapy of cisplatin plus etoposide has 

shown a 64% response rate (RR), 4.7 months of progression-free survival (PFS), 30% of PFS 

at 6 months and 10.9 months of overall survival (OS). Upon employing bevacizumab to 

cisplatin plus irinotecan, the RR, PFS and OS were similar to those in the study conducted 

by ECOG. Another trial has reported an 84% overall RR, with PFS of 9.1 months and OS of 

12.1 months. The importance of maintenance bevacizumab following combined modality 

treatment in patients with LD-SCLC is questionable; the response rate and OS are similar to 

what is seen with traditional chemotherapy with cisplatin, etoposide and radiation alone. 

Cediranib, a potent inhibitor of both VEGFR-1 and VEGFR-2, also has activity against c-kit, 

platelet derived growth factor beta (PDGFR-┚), and FMS-like tyrosine kinase 4 (Flt-4). The 

response rate for Cediranib in recurrent SCLC that had progressed following platinum-

based chemotherapy did not meet the predefined target. Vandetanib is an oral inhibitor of 

angiogenesis that targets VEGFR-2 and VEGFR-3 and inhibits tumour growth through 

activity against RET and EGFR/HER1. No difference in PFS or OS exists in vadetanib-

treated patients compared with placebo-treated patients. Sorafenib, an oral multi-kinase 

inhibitor that targets both tumour proliferation via inhibition of Raf, stem cell factor receptor 

(KIT), and Flt-3 and angiogenesis by targeting VEGFR-2, VEGFR-3, and PDGFR-┚, has been 

recommended for further evaluation in SCLC. Sunitinib is a novel, multi-targeted, small-

molecule inhibitor of VEGFR-1, -2, and -3, PDGFR-┙ and –┚, Flt-3, c-kit, the receptor 

encoded by the rearranged during transfection (ret) proto-oncogene, and Flt3. Thalidomide 

initially appeared to be a promising drug, but inclusion of this drug has ultimately failed to 

show any benefit in OS. Thalidomide in combination with chemotherapy in patients with 

SCLC shows, contrary to the results of the prior study, no significant difference between the 

thalidomide-treated patients and placebo-treated patients in OS. Based on the results of these 

trails, the role of anti-angiogenic therapy in the treatment of patients with SCLC remains to be 

determined. All agents studied to date appear to produce similar response rates and OS that 

are similar to the results achieved with chemotherapy alone (in most cases). Maintenance 

therapy with these agents does not appear to be beneficial in patients with SCLC.  

6.6 MMP inhibitors 

Many trials with MMPIs in SCLC have been equally disappointing. Of the multiple MMPs 
elevated in SCLC, marimistat targets MMP-1, MMP-2, MMP-9 and MMP-12 at low 
concentrations, while BAY 12-9566 targets MMP-2 at low concentrations. 
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6.6.1 mTOR inhibitors 

At this time, mTOR inhibitors do not appear to be beneficial in the treatment of patients 
with SCLC. 

6.7 Kit inhibition 

Imatinib appears not to be beneficial in SCLC, even in patients with known c-kit mutations. 

6.8 B cell leukaemia/lymphoma-associated gene 2 (Bcl-2) 

Despite these discouraging results, a new class of oral BCL-2 antagonists is currently being 
developed and evaluated in patients with SCLC. 

7. Signalling pathways that drive cancer stem cells 

In cancer tissues, homeostasis is tightly regulated to ensure the generation of mature cancer 

cells throughout life without a depletion of the cancer stem cell pools. Each tissue is 

composed of a cellular hierarchy including stem cells able to generate all progeny, 

committed progenitors, and terminally differentiated cells. The stem cells in each tissue are 

believed to communicate with their microenvironment or surrounding stroma to maintain 

their homeostasis. Thus, the pathways that control stem cell self-renewal and the 

microenvironment in which the cancer stem cells (CSCs) reside may both play roles in 

targeted therapies 

7.1 Hedgehog (Hh) 

The Hh gene family encodes several secreted glycoproteins, including Indian Hedgehog 
(Ihh), Desert Hedgehog (Dhh), and Sonic Hedgehog (Shh). These proteins mediate 
signalling in embryogenesis and development through activation of the Gli family 
transcription factors. The Hh pathway is somewhat unique in that the signals serve to 
relieve a series of repressive interactions. The receptor for Hh, the transmembrane protein 
Patched 1 (Ptch), normally binds and inhibits smoothened (Smoh), a G-protein-coupled 
receptor that is related to Frizzled (Frz). When secreted Hh binds both Ptch and Hedgehog-
interacting protein (Hip), Smoh initiates a transcriptional response. Specifically, Smoh 
activates the serine/threonine kinase Fused (Fu) to release Gli from sequestration by 
Suppressor of Fused (SuFu). Subsequently Gli proteins are able to translocate to the nucleus 
and regulate transcription of cyclin D and E, c-myc, and other genes involved in cell 
proliferation and differentiation. Shh is one among several important factors derived from 
the lung endoderm and is required for proliferation, differentiation, and patterning of the 
mesenchyme. Shh regulates pattern formation of a variety of developing structures, 
including the formation of the primary lung bunds. However, Shh is expressed in the 
ventral foregut endoderm. Shh is subsequently expressed in a gradient fashion (in the 
developing lung epithelium) with the highest levels in cells at the tips. In turn, most 
components of the Shh pathway, including Shh target genes and its receptor Ptch1, are 
found in the mesenchyme. Shh signalling is initiated upon binding to Ptch1 and results in 
activation of Shh target genes by Gli transcription factors. Ptch expression in the lung 
follows the proximal-distal gradient of Shh. Gli1, 2, and 3 are expressed in overlapping but 
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distinct domains in the lung mesenchyme. The proximal-distal gradient is evident in Gli1, 
which together with Ptch, is transcriptionally upregulated by Shh and is expressed in the 
subepithelial mesenchyme. All three Gli genes are expressed in the lung mesenchyme 
during the pseudoglandular stage of development, and mutations in the Gli genes give rise 
to various lung and foregut defects. Shh signalling has been implicated in the regulation of Gli 
genes, notably in Gli1 and Gli3 transcription in the lung. Gli2 has also been implicated in the 
regulation of Ptch1 and Gli1 components of the Shh signalling cascade in the lung. Thus, Shh is 
part of an epithelial network of regulators that restricts fibroblast growth factor 10 (FGF-10) 
expression. Shh-FGF-10 interaction supports a model in which the growing epithelial bud, 
which expresses high levels of Shh, interacts with a chemotactic source (FGF-10) in the distal 
mesenchyme for its elimination. This model supports the idea that not only the presence of 
FGF-10, but also its correct spatial distribution, is necessary for patterning. If FGF-10 signals 
are diffuse rather than localised, direct clues are lost and branching is disrupted. Importantly, 
the data suggest that under normal conditions, Shh plays a role in controlling FGF-10 
expression in the distal lung. Expression of Shh and Ptch does not seem to be influenced by 
FGF-10; however, both genes are down-regulated by FGF-7 in lung explant cultures. 

7.2 Gli genes 

The vertebrate Gli gene family currently consists of three members, Gli1, 2 and 3, which are 

orthologous to Drosophila cubitus interruptus and encode DNA-binding proteins with five 

zinc fingers. 

7.3 BMP-4 

Bone Morphogenetic Protein (BMP) belongs to the TGF┚ superfamily of growth factors, and 

at least three members (BMP-4, -5 and -7) are present in the developing lung. BMP-4 is an 

important regulator of epithelial proliferation and proximal-distal cell fate during lung 

morphogenesis. During branching morphogenesis, BMP-4 is dynamically expressed in the 

distal epithelium of branching airways. BMP-4 stimulates distal lung formation but might 

preferentially induce alveolar type I cell fate. 

7.4 TGFβ-1 

TGF┚-1 is a member of a sub-family of peptides having at least two other members, all 

expressed in the developing lung. TGF┚ signalling is mediated by serine-threonine kinase 

receptors (type I and II) and Smad transcription factors. TGF┚-1 transcripts are uniformly 

expressed in the sub-epithelial mesenchyme. TGF┚-1 protein accumulates later at sites of 

cleft formation and along proximal airways. TGF┚-1 promotes the synthesis of the extra-

cellular matrix, which, when deposited in the epithelial-mesenchymal interface, is thought 

to prevent local branching. 

8. Perspectives and future directions in therapy for SCLC 

The recurrence of tumours after initial tumour regression by conventional therapies is also 

frequent. One potential reason for this recurrence is the failure of current therapies to target 

CSCs. The design and development of new cancer treatments is therefore necessary to target 
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stem cell properties, i.e., self-renewal and differentiation. If the malignancy results from a 

blocked ontogeny, the treatment of cancer by inducing differentiation should be possible. 

These strategies have had variable success. In addition to inducing differentiation, a number 

of stem cell self-renewal pathways have been targeted for the treatment of various human 

tumours. If most solid tumours are composed of a minor population of self-renewing (stem) 

cells and a large fraction of non-renewing cells, cancer therapy failure following radiation 

and chemotherapy treatment is not the result of a rare cell evolving from within the tumour 

but the result of regrowth of the cancer stem cells. Of course, tumour stem cells could 

accumulate genetic changes that render them even more drug resistant, radiation resistant, 

or aneuploid. Because cures are achieved for many types of cancer, the cancer stem cells 

must be eliminated by a given therapeutic strategy. Regardless of which therapeutic 

paradigm turns out to be most effective, SCLC will clearly have to be treated with a 

“targeted medicine” approach if chemotherapy is to be widely successful in the clinic. This 

approach requires that each patient be segregated into a specific treatment group according 

to the constellation of molecular alterations that define his or her disease. The remarkable 

variation in genetic profiles across patients suggests that each tumour represents a distinct 

disease state that can only be effectively treated with precision therapy that targets the 

specific signalling pathway that is unique to each tumour. An important molecular 

mechanism that promotes cell differentiation is signal transduction. Signal transduction 

pathways ensure the reception of the concentration gradients of morphogens and their 

transformation into the differentiation of cells within tissues and organs. Hence, the key 

molecular rearrangements at the molecular level may be assumed to be related to changes in 

genes that participate in signal transduction pathways. In some contexts, these signals may be 

independently responsible for distinct aspects of tissue self-renewal, such as survival, 

proliferation and inhibition of differentiation. In other cases, the various signalling cascades 

may act in a hierarchy and regulate each other. Studies in which pathways are antagonised by 

treatment with pharmacological agent antagonists and/or agonists of Hh pathway signalling 

further demonstrate an ongoing requirement for pathway activity in the growth of additional 

cancer types. As a specific Smo antagonist, cyclopamine may be generally useful in the 

treatment of such cancers and represents a therapeutic strategy that may be further supported 

by the absence of observable toxicity in cyclopamine-treated animals. Cyclopamine inhibits Hh 

pathway activation by binding directly to Smo. This binding interaction is localised in the 

heptahelical bundle. Moreover, the binding influences the Smo protein conformation. 

Cyclopamine binding is also sensitive to Ptch function and provides biochemical evidence for 

an effect of Ptch on the structure of Smo. Cyclopamine appears to interfere with these 

signalling events by influencing Smo function; cyclopamine antagonises Hh pathway activity 

in a Ptch-independent manner and exhibits attenuated potency toward an oncogenic, 

constitutively active form of Smo. Pharmacologic inhibition of the Hh pathway has been 

necessary as a research tool to understand Hh pathway biology and is an attractive mechanism 

to evaluate antitumour activity. The first evidence that Smo could be antagonised came with 

the isolation of compounds called cyclopamine and jervine from corn lilies, which caused 

teratogenic effects (including cyclopia) in lambs. Significant new therapeutic strategies in 

SCLC will result from a deep understanding of the biology of response and resistance to 

targeted therapy. These approaches are in development to block embryonic pathways that 

play a role in cancer stem cells, including the Notch, Hh, and Wnt pathways. 
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9. Conclusions 

The introduction of effective targeted agents for SCLC has lagged behind that for non-small-
cell lung cancer. However, the number of agents now being tested has increased and 
includes agents that have shown some anti-tumour activity against other types of cancer, 
such as inhibitors of the Hh signalling pathway. This activity has prompted the 
development of agents that can inhibit Hh signalling. If the cancer stem cells that are 
responsible for driving the growth of cancer types associated with Hh pathway activation 
indeed come from stem cells trapped in a state of active renewal by pathway activities, then 
a logical therapeutic approach for these cancers would be to impose a state of pathway 
blockade. As we look towards the future, an important area of investigation will clearly 
involve analysing how the Hh pathway exerts its effect and whether shared molecular 
targets are involved in influencing self-renewal in the context of stem cells and cancer. 
Additionally, Hh probably integrates with other niche-derived signals, such as BMP (Bone 
Morphogenic Protein), Wnt and Notch. By understanding the molecular events governing 
CSCs, the development of therapeutics aimed at targeting these cells will become possible. 
The development of such therapeutics is of paramount importance because CSCs may 
mediate the resistance to current treatment and the relapse of the most aggressive tumours. 
This resistance may in part result in the reactivation of several signalling cascades, such Hh, 
Wnt, Notch, and EGF, in the CSCs combined with an increase in DNA repair mechanisms 
and ABC transporter-mediated multi-drug resistance. 
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