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1. Introduction 

Cell-cell adhesion plays fundamental and dynamic roles in the development and 
maintenance of multi-cellular organisms. Epithelial sheet is a typical structure and 
composed of cells that work together and separate from a lumen or space from underlying 
tissue. It lines most internal surfaces, including gastrointestinal tract and kidney tubes, and 
external layer of the epithelium as the epidermis of skin. The oral cavity is covered with 
stratified squamous cell epithelium in which keratinizing epithelial cells strongly connect 
with each other and differentiate from basal cells at the bottom to keratinized surface cells. 
Epithelial cells are connected together by junctional complexes that have distinct order with 
respect to their ultra-structures; zonula occludens (tight junctions), gap junctions, zonula 
adherens (adherence junctions) and macula adherens (desmosomes). Adherence junctions in 
epithelial sheet are belt like junctions and composed of cadherins that bind with proteins at 
the cytoplasmic domain. In other cell types, adherence junctions display different 
morphology; spotty and discontinuous in fibroblastic cells and punctate in the synaptic 
junctions. Desmosome is a spot-like junction associated with desmosomal cadherins 
(desmogleins and desmocollins) and tightly associated with adjacent cell membranes 
compared to adherence junctions. Stratified squamous epithelial cells express large amount 
of cadherins and well organize adherence junctions and desmosomes. Disruption of 
desmosomes by autoantibodies against desmoglein causes pemphigus that are multiple and 
bullous diseases in the skin and oral mucosa. Cadherins are most characterized cell-cell 
adhesion molecules and implicated in the development and progression of carcinomas of 
the epithelial origin. In this chapter, we overview the regulation and role of cadherins in the 
pathology of oral squamous cell carcinomas (OSCCs). 

2. The cadherin superfamily 

Cadherins are calcium-dependent transmembrane proteins that are evolutionary conserved 
and have two or more extracellular domains (EC domains). Yoshida and Takeich (1992) 
cloned a transmembrane protein from the calcium-dependent junctions and termed 
cadherin. Since many related molecules were cloned, cadherins constitute a superfamily and 
the original cadherins are now called as “classic cadherins” (Fig. 1). Approximately twenty 
members of cadherins are included in the classic cadherin family depending on their 
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domain structures. In vertebrate, they have five repetitive EC domains that contains 
calcium-binding sequences and highly conserved cytoplasmic domain that directly interacts 
with catenins. The binding of calcium ions with the EC domains is prerequisite for the 
conformation and adhesive function of the extracellular region, and the extracellular region 
undergoes interactions with apposed cells. The classic cadherins are subdivided into type I 
and type II. Type I cadherin contains a His-Arg-Val sequence in the N-terminal EC domain, 
and other classic cadherins that do not contain the sequence are grouped into type II 
cadherin. The type I cadherin includes epithelial-cadherin (E-cadherin, CDH1), neural-
cadherin (N-cadherin, CDH2), placental-cadherin (P-cadherin, CDH3) and others, and 
vascular endothelial-cadherin (VE-cadherin, CDH5), osteoblast-cadherin (OB-cadherin, 
CDH11) and others belong to the type II cadherins. Although it is still controversial, the 
classic cadherin basically binds with the same-type cadherin but not with other types. This 
nature of homophilic binding is implicated in the sorting of different cell types. Besides to 
the classic cadherins, a number of nonclassic cadherins that conserve EC domains but have 
divergent cytoplasmic sequences has been identified. Desmosomal cadherins are most 
closed to the classic cadherins and required for desmosome formation in the epithelium. 
Other nonclassic cadherins, including protocadherins, Fat and Flamingo, appear not to 
organize specialized junctions, nor to be the essential adherence junction components (Meng 
& Takeichi, 2009; Gumbiner, 2005). 

 

Fig. 1. Domain structures of cadherin superfamily. Molecules conserving EC domains in the 

extracellular region consist of the cadherin superfamily. The classic cadherins have five EC 

domains and the cytoplasmic domain possessing the binding sites for pl20ctn and β-catenin. 

They are subdivided into type I and type ll groups according to the presence or absence of 

His-Arg-Val sequence in the N-terminal EC domain, respectively. Non-classic cadherins do 

not preserve the cytoplasmic domain and have unique cytoplasmic amino acid structures in 

each cadherin. Numbers of EC domains in each non-classic cadherin are different 

depending on members. For example, in desmosomal cadherins, desmoglein and 

desmocollin have four and five EC domains, respectively. 
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3. Cadherin functions at the adherence junction 

The highly conserved cytoplasmic domains of the classic cadherins interact with catenins 
(Fig. 2). The juxtamembrane region of the cytoplasmic domain binds with p120-catenin 

 

Fig. 2. Molecular structural organization of adherence junction containing E-cadherin. E-
cadherins homotypically bind with adjacent cells by the EC domain interaction, and p12Octn 
and β-catenin interact with the cytoplasmic domain of E-cadherin. pl20ctn directly associate 
with microtubules or indirectly mediated by Plekha 7 and Nezha. The β-catenin--catenin 
complex associates with actin filaments with or without linker proteins (Formin, Afadin and 
Eplin). 
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(p120ctn), and the carboxy-terminal half with -catenin. The cytoplasmic domain indirectly 
binds with -catenin through -catenin, resulting in formation of the cadherin--catenin--
catenin complex. The complex ligates with actin filaments that are essential for assembly 
and integrity of adherence junctions. Although early studies suggested that -catenin acts as 
a linker protein which in turn interact with the complex and actin filament, recent studies 
showed that free -catenin can bind the filament and promote the bundling of actin 
filaments, but not -catenin in the complex (Drees et al., 2005; Yamada et al., 2005). Several 
proteins, including Formin (Kobielad et al., 2004), Afadin (Mandai, 1997) and Eplin (Abe & 
Takeichi, 2008), are suggested to work as a linker between -catenin and actin filament. 
p120ctn protein also regulates actin reorganization and contractility by regulating RhoA 
activity (Anastasiadis et al., 2007). However, since the roles on the formation of adherence 
junction and the linkage with actin filament are appeared different depending on cell types 
(Meng & Takeichi, 2009), further studies are required to define the molecular mechanism for 
actin filament-binding to the adherence junction complex. Another cytoskeleton connected 
with the complex is microtubules. Microtubules extend to adherence junctions, and blocking 
the microtubules extension reduces accumulation of E-cadherin to the junctions (Stehbens et 
al., 2006; Harris & Tepass, 2010). Furthermore, depolymerization of microtubules disrupt the 
integrity of the junctions and inhibit disassembly of cell junctions (Waterman-Storer et al., 
2000; Ivanov et al., 2006). Recent studies showed that microtubules interact with adherence 
junctions via p120ctn, Plekha7 and Nezha (Meng & Takeichi, 2009). The adherence junction is 
a static structure but cadherin proteins are recycled in epithelial cells. E-cadherin is 
endocytosed and transported to recycling endosomes followed by trafficking in late 
endosomes to the cell surface (Meng & Takeichi, 2009). The surface-located cadherins are 
stabilized by their homophilic interactions at adherence junctions. p120ctn also has a pivotal 
role in the microtubule assembly at adherence junctions. The p120ctn protein consist of the 
N-terminal region, armadillo repeat domain and C-terminal tail region. The N-terminal 
region and the armadillo repeat domain are responsible for binding with microtubules and 
the juxtamembrane domain of E-cadherin, respectively (Ichii & Takeichi, 2007; Ishiyama et 
al., 2010). The binding of p120ctn to E-cadherin masks a dileucine motif on the 
juxtamembrane domain, which is sensitive to endocytosis and ubiquitin-mediated 
degradation of E-cadherin (Ishiyama et al., 2010). It is suggested that p120ctn stabilizes the 
microtubule polymerization independent of a mechanistic trait of E-cadherin-mediated cell-
cell adhesion (Ichii & Takeichi, 2007). Thus, the assembly and the function of adherence 
junctions are regulated by multi-dimensional factors, including E-cadherin per se, catenins, 
the related molecules and association with actin filaments and microtubules. 

4. Roles of E-cadherin in the epithelium 

E-cadherin-null mutation is lethal and the conditional knockout mice in skin epithelium 
show hyperproliferation of basal cells with defects in terminal differentiation (Ohsugi et al., 
1997; Tinkle et al., 2004). An animal model of pancreatic carcinomas demonstrated a direct 
role of E-cadherin in adenoma-to-carcinoma conversion (Perl et al., 1998). These studies 
indicate that E-cadherin plays a critical role in developmental and pathological events in 
vivo. Forced expression of E-cadherin in the intestinal epithelium represses migration of 
epithelial cells along with the crypt-villus axis and stimulates the apoptotic rate of epithelial 
cells (Hermiston et al., 1996). Recent studies implicate that cadherins regulate interaction of 
growth factor receptors with ligands and modulate their signaling. Cadherins bind to 

growth factor receptors, including transforming growth factor- receptor (TGFBR), 
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fibroblast growth factor receptor (FGFR), epidermal growth factor receptor (EGFR), vascular 
endothelial cell growth factor receptor (VEGFR) and platelet-derived growth factor receptor 
(PDGFR), and the cytoplasmic domain can suppress growth-promoting cell signaling, such 
as Src, phosphatidylinositol-3-kinase (PI3K)/AKT and extracellular signal-regulated kinase 
(ERK) pathways (Reddy et al., 2005; Suyama et al., 2002; Georgopoulos et al., 2010; 
Cavallaro & Dejana, 2011). Sensitivity to the EGFR inhibitor, cetuximab, requires intact E-
cadherin expression and silencing of E-cadherin reduces responsiveness to the inhibitor 
(Black et al., 2008). Cadherins regulate the growth factor signaling by recruiting the 
receptors at the cell surface, stimulating the receptor dimerization, and modulating their 
activities (Cavallaro & Dejana, 2011). -catenin is a leading player in WNT signaling, which 
has a predominant role in developmental and pathophysiological conditions. Binding of 
WNTs to the receptors protected -catenin from the degradation by the ubiquitin-protease 
pathway and increases the cytoplasmic free pool (Maher et al., 2009). The cytoplasmic free-

-catenin translocates into the nucleus and modulates gene transcription by interacting with 
lymphoid enhancer factor (LEF) and T cell factor (TCF). Since the cadherin--catenin 
interaction is constitutive, cadherins interfere with the transcriptional activity of -catenin. 
Therefore, unveiling the regulatory mechanisms of E-cadherin expression is a pivotal theme 
to understand the initiation and progression of carcinomas and develop a novel strategy for 
the treatment of carcinoma patients. 

5. Regulation of E-cadherin expression 

Loss or reduction of E-cadherin expression results from somatic mutations, chromosomal 
deletions, proteolytic cleavage, promoter hypermethylation and transcriptional repression. 
Germ-line mutation of the E-cadherin gene causing inactivation of one allele has been 
reported in several families from New Zealand and Europe, and is associated with 
hereditary diffuse-type high-grade gastric carcinomas (Guiford et al., 1998; Gayther et al., 
1998). Although single nucleotide polymorphisms have been described to associate with the 
reduction of transcription efficiency of E-cadherin gene (Li et al., 2000), the mechanism of 
reduction awaits for future studies to establish. However, genomic deletion and germ-line 
mutation with loss of heterozygosity, referred to as Knudson’s two-hit theory, are rare 
events in sporadic carcinomas (Brown, 1997). Loss of E-cadherin expression stimulates 
carcinoma progression and carcinoma cells in the metastatic loci frequently re-express E-
cadherin (Cheng et al., 2001), indicating the genetic mutation and polymorphism are not a 
major cause in sporadic carcinomas. In mammalian genome, methylation emerges at a 
cytosine located 5’ to a guanosime in a CpG dinucleotide. CpG islands are found in 
promoter region of approximately half of the genes in human genome. In the development 
of cancers, epigenetic silencing of tumor-suppressive genes as a result of cytosine 
methylation in CpG islands has been documented as one of most important alterations. 
Increasing evidence highlight the fact that there are target genes for CpG island 
hypermethylation in many types of cancers, especially carcinomas of the epithelial origin 
(Fazzari & Greally, 2004; Jones & Baylin, 2002; Maeda et al., 2007a; Maeda et al., 2007b; 
Chiba et al., 2009). The hypermethylation at CpG islands determines the transcriptional 
status of a gene by blocking the access of certain transcription factors that are sensitive to 
cytosine methylation in their binding motifs, and by packaging chromatin into compacted 
nucleosomes with deacetylated histones and recruiting a methyl-cytosine-binding protein 
complex that represses transcription (Fazzari & Greally, 2004; Jones & Baylin, 2002). The 
transcription repressors, including Snail, Slug, Twist, zinc finger E-box binding homeobox 
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(ZEB)1, ZEB2, and E47, bind to the E-box (5’-CANNTG-3’) in the promoter and repress E-
cadherin expression. After identification of Snail as a transcription repressor of E-cadherin 
in 2000 (Cano et al, 2000; Batlle et al, 2000), several other repressors were implicated in 
tumor progression and the epithelial-mesenchymal transition (EMT) induction. The EMT 
stimulates migration, earns the drug-resistance and the stem cell-like features of carcinoma 
cells and energizes carcinomas to an aggressive subset, and the loss of E-cadherin 
expression is the most prominent event (Hanahan & Weinberg, 2011). Expression of E-
cadherin repressors is regulated by multiple pathways activated by growth factors. Among 
them, TGF signaling is frequently activated in aggressive carcinomas and induces the EMT 
of carcinoma cells at the invasive front. High mobility group protein A-2 (HMGA2), which is 
specifically expressed in undifferentiated mesenchymal cells, are strongly misexpressed in 
oral carcinoma cells at the invasive front in patients with poor prognosis (Fig. 3; Miyazawa  

 

Fig. 3. Expression of E-cadherin and HMGA2 in oral epithelium and carcinomas. E-cadherin 
(green) expression is detected by iimmunofluorescent microscopy at the cell-cell boundaries 
of normal oral epithelium (A) while in carcinoma cells at the invasive dramatically lose the 
immunoreactivities (B). In contrast, the mesenchyme-specific HMGA2 expression (red) is 
localized in carcinoma cells that are negative for E-cadherin, and not detected in normal oral 
epithelial cells. The data in a panel B is reproduced from Miyazawa et al., [Cancer Research, 
Vol. 64, No.(6) pp.2024-2029, ISSN 1078-0432]. 
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et al., 2004), and integrates the TGF--mediated EMT in carcinoma cell in combination with 

the induction of Snail, Slug and Twist (Thuault et al., 2006). In addition, inhibition of WNT 

signaling promotes degradation of Snail by the ubiquitin-proteasome pathway (Shou et al, 

2004). Expression of E-cadherin is also post-transcriptionally regulated by the 

microenvironment of carcinoma cells. Furthermore, series of immunohistochemical studies 

suggest the differential roles of repressors; Snail in the induction of initial migratory 

phenotype of carcinoma cells followed by the maintenance of phenotype by Slug, Twist and 

ZEB1/2 (Peinado et al., 2007). The transcription repressors attenuate E-cadherin expression 

while they are negatively regulated by micoRNAs (miRNAs). Expression of miR-200, which 

binds to ZEB1 and ZEB2 mRNAs and abrogates their translation into proteins, is inhibited 

by TGF- signaling but stimulated a tumor suppressor gene p53 (Kim et al., 2011; Gregory et 

al., 2011). The miR-92, which directly targets E-cadherin mRNA, downregulates p53 

expression (Neveu et al., 2010; Chen et al., 2011). TGF- also upregulates expression of 

matrix metalloproteinases (MMPs), which liberate TGF- from surrounding tissues to cells 

after degradation of extracellular matrix proteins (Imai et al., 1997). Since MMPs shed the 

extracellular region of E-cadherin (Zheng et al., 2009; Imai & Okada, 2009), the TGF-MMP 

loop enhances disruption of E-cadherin-mediated adherence junctions of carcinoma cells. 

Therefore, the state of E-cadherin comprehensively regulated by the intrinsic and extrinsic 

factors of carcinoma cells (Fig. 4). 

 
Fig. 4. A schematic representation for the E-cadherin expression and repression machineries. 
In carcinoma cells of epithelial origin, expression of E-cadherin is regulated by several 
pathways that directly or indirectly control the expression. Blue lines indicate stimulation 
and red lines indicate suppression. 

6. Loss of E-cadherin expression in oral squamous cell carcinomas 

As mentioned above, multi-factors may regulate the E-cadherin repression in oral carcinoma 
cells. Although germ-line mutation with the loss of heterozygosity is rare (Saito et al., 1998), 
epigenetic aberrations, including the promoter hypermethylation and expression of 
transcription repressors, are commonly observed in an aggressive subset of OSCCs. The 
hypermethylation is detected in 35-85% of OSCCs (Viswanathan et al., 2003; Yeh et al., 2002) 
and prompts carcinoma cells to develop invasive tumors (Nakayama et al., 2001). Kudo et 
al. (2004) reported that the hypermehtylation was observed in oral carcinoma cells at the 
invasive front but not in non-invasive areas. Although increasing number of investigations 
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revealed the presence of E-cadherin transcription repressors, their expression is largely 
dependent on cell and tissue types (Peinado et al., 2004). Snail is a most studied molecule 
that is responsible for repression of E-cadherin gene expression in many types of carcinomas 
including OSCCs (Yokoyama et al., 2001). 

Snail expression is observed at the invasive front oral carcinoma cells of patients with poor 
prognosis (Yu et al., 2011). Although we could not find a reverse correlation between 
expression of Snail and E-cadherin in oral carcinoma cells, ZEB2 expression was 
upregualted in the E-cadherin-low cells and detected in carcinoma cells at the invasive front 
of OSCC patients with poor prognosis (Maeda et al., 2005). Upregulation of Twist in OSCCs 
is reported while its significance to E-cadherin expression is uncertain (Vered et al., 2010; 
Liang et al., 2011). In addition to the loss of E-cadherin expression, the involvement of 
catenins is also documented. The role of p120ctn in E-cadherin expression and carcinoma 
progression has been attracting a lot of attention. Loss of p120ctn expression in the oral 
epithelium in mice spontaneously develops invasive OSCCs, induces the EMT of carcinoma 
cells, and recruits chronic inflammatory reactions within carcinoma tissues (Stairs et al., 
2011). Cell membrane-associated E-cadherin become endocytosis upon the loss of p120ctn, 
leading to the reduction of cell-cell adhesion (Liu et al., 2007). The loss or mislocalization of 
p120ctn correlates with poor patient prognoses of carcinomas of the colon, bladder, stomach, 
breast, prostate, lung and pancreas (Thoreson & Reynolds, 2002). Cytoplasmic mislocation 
of p120ctn in oral carcinoma cell lines, while it is localized at the cell membrane of normal 
oral keratinocytes, was reported previously (Lo Muzio et al., 2002). However, the loss of 
expression in the epidermis does not have an obvious effect on cell-cell adhesion but 
reduces expression level of E-cadherin. The mice show epidermal inflammation due to 

activation of nuclear factor-kappa B (NF-B) signaling (Perez-Moreno et al., 2006). Chronic 
inflammation increases production of inflammatory cytokines and reactive oxygen species 
and DNA damage, and results in development and progression of carcinomas (Meira et al., 
2008). Oral carcinoma cells upregulate the E-cadherin-targeting miR-92 (Scapoli et al., 2010). 
Although expression of miR-200 in OSCCs is not known at present, nasopharyngeal 
carcinomas downregulate it which destabilizes ZEB1/2 mRNA (Chen et al., 2009). 

Regardless of the cause, loss of E-cadherin results in the liberation of -catenin from 
adherence junctions and the increase of the cytoplasmic free-pool, which synergistically acts 
with the canonical WNT signaling. In fact, carcinoma cells at the invasive front, where loss 
of E-cadherin and expression of WNTs are observed, exhibit the cytoplasmic and/or nuclear 

staining of -catenin (Uraguchi et al., 2004; Miyazawa et al., 2004). Silencing of -catenin by 
RNA interference reduces proliferation of oral carcinoma cells (Duan & Fan, 2011). A recent 
study suggests that the loss of E-cadherin-mediated cell-cell adhesion and sequestering the 

-catenin from E-cadherin have a differential role establishing metastatic properties of 
carcinoma cells (Onder et al., 2008). Although a precise mechanism is under debate, loss of 
E-cadherin expression and the gain of WNT expression may synergistically increase the 

cytoplasmic -catenin and preserve it from degradation, allowing the nuclear translocation 
and transcriptional control of target genes toward the tumor progression. The WNT 
signaling represses transcription of E-cadherin gene but stimulates WNT protein 
expressions per se. The WNTs also upregulate E-cadherin suppressors, including Snail and 
Twist, and downregulate miR-200 (Saydam et al., 2009). E-cadherin suppresses activation of 

NF-B, which strongly enhances aggressive behaviors of oral carcinoma cells and is 
upregulated in patients with poor outcome (Solanas et al., 2008). A mouse EMT model 
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demonstrated the essential contribution of NF-B to the induction of EMT, maintenance of 

the mesenchymal phenotype, and metastasis (Huber et al., 2004). NF-B suppresses E-
cadherin expression through ZEB1 and ZEB2 induction (Chua et al., 2007). Therefore, 
reduction and loss of E-cadherin expression in OSCCs is under the control of multiple 
factors and pathways including the gene transcription, catenins and growth factor signaling. 

7. Cadherin switch and oral carcinoma progression 

E-cadherin and N-cadherin are the most prominent members of the classic cadherins, and a 
numbers of studies have been reported about their roles in carcinoma progression. During 
the progression of many human gastrointestinal tumors, gradual loss of E-cadherin 
expression at the invasive front accompanies a de novo N-cadherin expression (Wheelock et 
al., 2008). Replacing the member of cadherins, usually E-cadherin-to-N-cadherin in 
carcinoma cells, is referred as the cadherin switch. Followed by the cadherin switch, 
carcinoma cells acquire motile, invasive and metastatic abilities. Although functional 
implications are unknown at present, expression pattern of N-cadherin in a belt-like 
structure in low-grade prostate carcinomas becomes a dotted pattern at the interface of 
interaction with stromal fibroblasts in parallel with loss of E-cadherin expression (Tomita et 
al., 2000). Inhibition of N-cadherin expression or function blocks motility and invasion of 
carcinoma cells (De Wever et al., 2004). The cadherin switch is initiated by the internal and 
microenvironmental programs of carcinoma cells. Carcinoma cell adhesion on extracellular 
matrix proteins, including laminin (Kim et al., 2011), type I collagen (Shintani et al., 2008) 
and fibronectin (Lefort et al., 2011), induces N-cadherin expression. Another key regulator of 

N-cadherin is TGF-, which can act to carcinoma cells after the extracellular matrix 
degradation and promotes invasion of oral carcinomas (Imai et al., 1997; Lu et al., 2004). 

In OSCCs, TGF- and N-cadherin is predominantly expressed at the invasive front and 

stimulates the motility of cells (Franz et al., 2007). The TGF- signaling promotes oral 

carcinoma cells to express N-cadherin without affecting E-cadherin expression and regulate 

the motility (Diamond et al., 2008). Li et al. (2009) reported that N-cadherin was positively 

stained in 92.4% of tongue carcinomas while E-cadherin in 11.3%. A previous study 

reported that N-cadherin was upregulated in OSCCs with reduced expression of E-cadherin, 

and that N-cadherin expressing OSCCs had a tendency to be less histologically 

differentiated, more invasive and metastatic to lymph nodes (Pyo et al., 2007). However, 

from a stand of view that the carcinoma cell EMT is a representative event at the invasive 

front, there is no clear experimental study to investigate the role of the EMT in OSCC 

progression so far. 

8. Conclusion 

Investigators have reported numerous molecules related to the stimulation and the 
suppression of OSCC progression. Among the molecules, E-cadherin is one of most well-
studied and powerful suppressor of carcinoma progression. It is frequently downregulated 
in aggressive OSCCs at the invasive front. Its expression is negatively regulated by many 
factors, including genetic and epigenetic factors, transcriptional repressors, miRNAs, 
growth factor signaling, shedding and catenin expression. In addition to loss of E-cadherin 
expression, carcinoma cells become to express N-cadherin referred as the cadherin switch. 
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The cadherin switch takes an important part in the EMT, which strongly stimulate 
aggressive behaviors of carcinoma cells. Since E-cadherin expression is negatively regulated 
by multi-dimension, re-activation of E-cadherin in carcinoma cells may not be a 
straightforward strategy to treat OSCC patients. However, unveiling the regulatory 
mechanism and roles of E-cadherin downregulation and cadherin switch will greatly 
improve our knowledge on the pathology of OSCCs and contribute to establish the future 
direction for the patient treatment. 
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