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1. Introduction 

Neuroblastoma (NB) 1 is the most common extracranial tumor in childhood and accounts for 

nearly half of neoplasms diagnosed during infancy (Maris, 2010; Brodeur, 2003). A striking 

feature of these tumors has been their heterogeneous course, which ranges from 

spontaneous regression to inevitable progression and death (Brodeur, 2003). Current 

pharmacological approaches in the treatment of NBs include standard combination 

chemotherapy using dose-intensive cycles of carboplatin, etoposide, cyclophosphamide, and 

doxorubicin, with the addition of topoisomerase I inhibitors. For intermediate-risk NB, a 

high rate of survival among patients may still be achieved with significant reduction of 

doses and duration of chemotherapy (Baker et al., 2010). The retinoic acid analogue 

isotretinoin (13-cis-retinoic acid) is additionally used in high-risk NB patients with 

progressive or recurrent disease (Maris, 2010; Reynolds et al., 2003).  

Animal cancer models have offered valuable preclinical testing systems for studying the 

impact of specific genes in the appearance and the progress of the disease as well as the 

efficacy of novel therapeutic regimes. Animal models of NB have been developed by 

subcutaneous inoculation (xenografting) of established human NB cell lines in 

immunocompromised mice; for instance, the cell line SK-N-BE2c was successfully used to 

develop an animal model and test the effects of imatinib (Meco et al., 2005). Yet, the major 

                                                 

* Corresponding Authors (George Leondaritis, Dimitra Mangoura) 

1 Abbreviations used: ERK, extracellular signal-regulated kinase; GAP, GTPase-activating protein; GEF, 
guanine nucleotide exchange factor; DAG, diacylglycerol; TH, tyrosine hydroxylase; GAP43, growth-
associated protein 43; NPY, neuropeptide Y; TPA, 12-O-tetradecanoyl-phorbol-13-acetate; dBcAMP, 
dibutyryl cAMP; BrdU, 5-bromo-2-deoxyuridine. 
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drawback was the lack of metastases. Pseudometastatic models were next developed by 

tail-vein injections of human NB cell lines in athymic mice (Pastorino et al., 2010). A 

clinically relevant model should, however, reflect the characteristics of advanced NB in 

children, that is large adrenal gland tumors and multiple small metastatic lesions. Such 

models have been generated only in nude mice with murine NB cells (NXS2) or by 

allografting human NB cell lines (Pastorino et al., 2010). Spontaneous adrenal 

neuroblastomas may be developed, yet rarely, in experimental animals (Rice, 2004), while, 

neither carcinogen-induced nor genetically engineered animal NB models have been 

successfully generated thus far. 

Therefore, the development of novel therapeutic strategies, including both new targets and 

models, is urgently needed. Progress is expected through elucidation of the key molecular 

pathways that drive NB proliferation, differentiation, or apoptosis. Clinical trial data have 

also suggested that induced differentiation may be an alternative therapeutic approach, and 

retinoic acid analogues have been introduced in the clinical practice (Reynolds & Lie, 2000; 

Brodeur, 2003). The clinical observation of spontaneous differentiation into benign 

ganglioneuromas has provided the basis for studying neuronal differentiation of NB cells in 

culture (Reynolds & Lie, 2000; Edsjo et al., 2003; Hahn et al., 2008), and such studies have 

provided invaluable mechanistic insight into the fundamental mechanisms of neuronal 

differentiation and neurotransmitter phenotype acquisition (Mangoura et al., 2006b; Edsjo et 

al., 2007). The agents, mostly used to study NB cell differentiation in culture are phorbol 

esters, membrane permeable non-hydrolyzable cAMP analogues, and the clinically relevant 

vitamin A metabolite retinoic acid, alone or in combination with specific neurotrophic and 

growth factors (Table 1). These agents target distinct proximal signalling pathways: phorbol 

esters activate novel and conventional protein kinase C (PKC) isoforms, cAMP analogues 

activate protein kinase A (PKA) and exchange proteins activated by cAMP (Epacs), while 

retinoic acid acts as a ligand for nuclear hormone receptors/transcription factors (RARs) 

(Table 1). Yet, a significant level of crosstalk amongst these agents has been demonstrated in 

the induction of NB differentiation. Activation of PKCs and the ensuing Ras/ERK signalling 

cascade have been highlighted as central modulators of NB differentiation, with novel 

(PKCǆ) and conventional (PKCǂ) PKC isoforms critically controlling the signalling output 

and dynamics of MAPKs (Griner & Kazanietz, 2007). The importance of the PKC/Ras/ERK 

pathway is further emphasized by recent studies showing that neurofibromin, a prominent 

tumor suppressor and a neuronal RasGAP protein (a) is a PKCǂ and PKCǆ substrate 

(Mangoura et al., 2006a) actively phosphorylated during phorbol ester-induced 

differentiation (Leondaritis et al., 2009) and (b) provides responsiveness to retinoic acid 

(Holzel et al., 2010). In these studies, the role of PKCǂ and PKCǆ may be viewed as 

differential and even opposing, with PKCǆ emerging as a crucial, neuronal differentiation-

specific PKC isoform. 

In this chapter, we introduce the basic aspects of the PKC/NF1/Ras/ERK pathway and its 

implications in neuronal differentiation, we discuss critical findings from studies with NB 

cells that highlight the importance of this pathway in NB differentiation, and present 

original experiments that further expand current knowledge. Finally, we propose that 

agents promoting NB differentiation via distinct primary targets may actually converge on 

establishing a balance between PKCǂ and PKCǆ activities that coordinates neurofibromin 

(NF1)-dependent Ras/ERK activation and NB differentiation. 
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2. PKC isoforms, NF1, and the Ras/ERK pathway in differentiation of 
neuroblastoma cells 

2.1 The PKC/NF1/Ras/ERK pathway  
2.1.1 The PKC family: Structure, regulation, and substrates 

The PKC family of serine/threonine protein kinases consists of at least ten isoforms that are 
classified into three subgroups based on their structure and specific cofactor requirements. 
Conventional PKCs (cPKCs: ǂ, ǃI, ǃII and Ǆ) are activated by the second messengers Ca2+ 
and DAG, while novel PKCs (nPKCs: ǅ, ǆ, ǈ and ǉ) are activated only by DAG. In contrast to 
conventional and novel, atypical PKCs (aPKCs: Ǉ and ǌ/Ǌ) are insensitive to both Ca2+ and 
DAG, but responsive to the Par6–Cdc42 complex (Parker & Murray-Rust, 2004; Rosse et al., 
2010). PKCs are considered hubs for the transduction of signals from G protein-coupled and 
tyrosine kinase receptors (Parker & Murray-Rust, 2004; Griner and Kazanietz 2007), having 
long been recognized as a link between receptor-dependent generation of DAG by 
phospholipases C and D, and the key event for enganging the ERK pathway, the activation 
of Ras and Raf (Mangoura and Dawson, 1993; Marais et al., 1998). Attesting to the 
widespread effects of PKC activation, numerous studies have investigated the involvement 
of all PKC isoforms in oncogenesis and cellular differentiation, proliferation, polarity, 
migration, apoptosis, and survival (Bosco et al., 2011; Rosse et al., 2010; Larsson, 2006).  
PKCs are founding members of the AGC kinase group and share a common structure 
consisting of a conserved C-terminal kinase catalytic domain and a more divergent N-
terminal regulatory region. The regulatory region contains C1 and C2-domains (cPKC and 
nPKCs) that recognize the second messengers DAG/phospholipids or Ca2+/phospholipids, 
respectively, and a pseudosubstrate sequence that serves in autoinhibition by interacting 
with the substrate-binding pocket of the catalytic domain. Binding of second messengers or 
allosteric effectors on the C1/C2-domains of the regulatory region results in stabilized 
interaction with the plasma membrane and activation (Parker & Murray-Rust, 2004; Griner 
and Kazanietz 2007). PKCs are additionally regulated by specific phosphorylation events 
that “prime” the kinase for activation. As for all AGC kinases, PDK1 phosphorylates 
threonines (Thr) in the activation loop (Thr566 in PKCǆ). Residues in the turn motif (Thr710 
in PKCǆ) and the C-terminal hydrophobic motif of c/nPKCs (Ser729 in PKCǆ) are often 
phosphorylated by the mTORC2 complex (Freeley et al., 2011). These phosphorylations 
critically depend on the occupation of the catalytic site by ATP, stabilize the active 
conformation of PKCs, and result in a fully primed kinase (Cameron et al., 2009). Additional 
auto- or in-trans phosphorylation events by other PKC isoforms may have more subtle 
effects, such as modulation of catalytic activity, protein stability, or binding to other proteins 
(Freeley et al., 2011). Specifically for PKCǆ, phosphorylation on Ser368 in the regulatory 
region by cPKCs suggests a high level of functional crosstalk within members of the PKC 
family (Durgan et al., 2008).  
By the acute and reversible post-translational modification of phosphorylation, PKCs 

regulate the activity and subcellular localization of several of their protein substrates. PKCs 

phosphorylate an array of substrates that include transcription factors, receptors, ion 

channels, and cytoskeletal proteins (Mangoura and Dawson 1993; Mangoura, 1997; Parker & 

Murray-Rust, 2004; Larsson, 2006; Mangoura et al., 2006a). In many cases, however, proof of 

direct PKC phosphorylation of substrates in vivo has remained limited, with several 

molecules representing remote “PKC targets”. PKCs also act as scaffols, as they interact with 

other proteins independently of their enzymatic properties as kinases (e.g. Saurin et al., 
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2008; Valcova et al., 2007). Mechanistically and pharmacologically important PKC-binding 

proteins are the RACKs (receptors for activated C-kinases), which stabilize the interaction of 

activated PKCs with plasma membrane (Schechtman & Mochly-Rosen, 2001). Studies of the 

PKC-RACK interactions by Mochly-Rosen and co-workers, have shown that isoform-specific 

activators or inhibitors may be rationally designed, from unique 7-8 amino acid sequences in 

each PKC or in their respective RACKs (Budas et al., 2007; Csukai & Mochly-Rosen, 1999). As 

such, ǆV1-2 and ψǆRACK peptides, specific inhibitor and activator peptides for PKCǆ, 
respectively, and analogous peptides for other PKCs have been used in numerous studies in 

culture and in vivo with great success (Asimaki and Mangoura, 2011; Asimaki et al., 2011).  

2.1.2 The Ras/ERK pathway and modulation by PKCs 

Ras GTPases, are key molecules for growth and neurotrophic factor signalling through the 

three kinase MAPK module, consisting of Rafs (MAPKKK), MEK1/2 (MAPKK), and 

ERK1/2 (MAPK) (Raman et al., 2007 and refs. therein). All Ras proteins, namely H-, N- and 

K-Ras, cycle between active GTP-bound and inactive GDP-bound states; activation of 

guanine nucleotide exchange factors (GEFs) after membrane receptor stimulation promotes 

the exchange of GDP for GTP and activation of Ras (Buday & Downward, 2008). The 

opposite event is controlled by GTPase-activating proteins (GAPs) that activate the intrinsic 

GTPase activity of Ras and lead to GTP hydrolysis and Ras inactivation (Scheffzek et al., 

1998). Ras-GTP recruits Raf to the membrane and together with other kinases activates Raf 

kinase activity (Stokoe and McCormick, 1997). Subsequently, relay phosphorylations 

through MEKs result in phosphorylation and activation of ERK, which is considered as the 

terminal effector of the pathway (Raman et al., 2007).  The Ras/ERK pathway controls 

various cellular processes such as proliferation, migration, and differentiation. A recent 

review by Katz et al., provides an overview of the Ras/ERK pathway impact on cellular 

differentiation and oncogenesis (Katz et al., 2007). Our focus is the PKC input on the 

regulation and dynamics of activation of Ras and ERK. 

Mechanistically, PKC activation is necessary for the formation of Ras and activated Raf-1 
complexes (Marais et al. 1998; Hamilton et al., 2001). PKCs may directly phosphorylate Raf 
(Ueda et al., 1996), RasGEFs (Ebinu et al. 1998; Roose et al., 2005; Zheng et al., 2005), and 
RasGAPs (Izawa et al., 1996; Mangoura et al., 2006a; Leondaritis et al., 2009), hence 
regulating the output of Ras/ERK signalling at multiple levels.  PKCs on GEFs: Members of 
the GRP family of RasGEFs possess C1-domains that “recognize” DAG produced by 
phospholipases in the membrane upon membrane receptor stimulation, and through these 
interactions translocate to the membranes too (Ebinu et al. 1998). The GEF activity of 
RasGRP1,3 is greatly enhanced by concurrent phosphorylation by DAG-activated nPKCs, at 
least in T- and B-cells (Roose et al., 2005; Zheng et al., 2005). PKCs may also activate SOS1, 
the other major RasGEF, directly by phosphorylation (Rubio et al., 2006) or indirectly, by 
recruiting Grb2/SOS1 complexes via the Syk tyrosine kinase (Kawakami et al., 2003). PKCs 
on RasGAPs: Most of the cellular RasGAP activity is attributed to p120GAP and 
neurofibromin, and earlier studies have suggested a PKC-dependent inhibition of RasGAP 
activity in certain cell types (Downward et al., 1990). PKCs indirectly modulate the GAP 
activity of p120GAP via its interaction with RACK1 (Koehler & Moran, 2001), and 
neurofibromin, the main neuronal RasGAP, is directly regulated by PKC. Neurofibromin is 
phosphorylated by PKCs in vitro, particularly at the C-terminal domain (Izawa et al., 1996). 
Evidence for direct PKCǂ and PKCǆ-dependent neurofibromin phosphorylation was 
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documented later in cultured neurons, and neuroblastoma and glioma cell lines (Mangoura 
et al., 2006a). Moreover, phosphorylation of neurofibromin results in both its increased 
association with actin and enhancement of its GAP activity (Mangoura et al., 2006a). PKC-
phosphorylation sites on neurofibromin are present in the N-terminal CSRD domain 
(Mangoura et al., 2006a) and in the C-terminal domain (Leondaritis et al., 2009). The residue 
Ser2808 in the C-tail of neurofibromin is indeed a PKC-specific site and its phosphorylation 
correlates well with enhanced signalling through the Ras/ERK pathway in TPA-treated SH-
SY5Y cells (Leondaritis et al., 2009). Interestingly, studies with glioblastoma cell lines or 
tumors have indicated that PKCǂ may promote proteasome-dependent neurofibromin 
proteolysis, hence insufficient neurofibromin RasGAP activity to control Ras and accelerated 
cellular proliferation (McGillicuddy et al., 2009). Whether neurofibromin phosphorylation 
on Ser2808 (or other sites) is directly involved is, however, unknown. In sharp contrast, 
phosphorylation of neurofibromin in-non tumor cellular contexts has been correlated with 
increased stability of the protein, at least in melanocytes (Kaufmann et al., 1999) and 
neurons (Mangoura et al., 2006a). In conclusion, PKCs have the potential to directly impact 
on the activation state of Ras by modulating the activity of both GEFs and GAPs in a variety 
of ways. It should be also noted that in certain cell lines, PKC-dependent ERK activation 
may occur independently of Ras, since the dominant-negative form of Ras (RasS17N) that 
resists GEF-dependent activation does not inhibit TPA-induced ERK activation (Ueda et al., 
1996; Rubio et al., 2008 and refs. therein).  Overall, c/nPKCs like PKCǂ, PKCǈ, PKCǅ and 
PKCǆ and aPKCs have been suggested to provide an activatory input on ERK pathway 
mostly at the level of Raf (Ueda et al., 1996; Schönwasser et al., 1998; Paruchuri et al., 2002).  

2.1.3 NF1 and PKCε in neuronal differentiation 

All major transduction molecules of the Ras/ERK pathway, namely Ras and Raf, are also 

potent inducers of differentiation and neuritic outgrowth in several neuronal cell lines 

(Wood et al., 1993; Olsson & Nanberg, 2001; Hynds et al., 2003). Moreover, it is the intensity 

and duration of Ras/ERK activation that determines the biological outcome. Seminal 

observations were first made in PC12 cells treated with EGF or NGF. Both growth factors 

activate the same Ras/ERK pathway, yet, transient ERK activation by EGF induces cell 

proliferation, whereas a sustained ERK activation by NGF induces neurite outgrowth and 

differentiation (Marshall, 1995 and refs. therein). The reasons for these fundamental 

differences are still debated (Santos et al., 2007; von Kriegsheim et al., 2009).  At any rate, 

both nPKCs (for example PKCǅ, Santos et al., 2007) and neurofibromin (von Kriegsheim et 

al., 2009) may actively mediate the long-lasting ERK activation that drives PC12 cell 

differentiation. 

Neurofibromin is highly expressed in neurons with lower levels of expression detected in 

oligodendrocytes, Schwann cells, astrocytes, and other cell types (Li et al., 2001 and refs 

therein). Support for a specific role of neurofibromin in neuronal differentiation derives 

from several studies which show that its expression is developmentally regulated in the 

CNS and dorsal root ganglia in mouse and chick embryos, and that its peaks in expression 

coincide with the onset of neuronal differentiation (Vogel et al., 1995; Li et al., 2001). Studies 

in mice where neurofibromin has null expression after genetic ablation of central exons that 

render the protein unstable (functional knockout) have revealed an essential role for 

neurofibromin in the dependence of PNS neurons to neurotrophins (Vogel et al., 1995). 

Specifically, larger numbers of sensory and sympathetic neurons survive and continue to 
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differentiate in the absence of NGF in culture (Vogel et al., 1995; Vogel et al., 2000; Zhu et al., 

2001), in a Ras-depended manner (Vogel et al., 2000). Interestingly, functional ablation of 

neurofibromin in CNS neurons via a synapsin-Cre approach does not result in altered 

morphology or survival rates (Zhu et al., 2001). Analysis in the PC12 cell model, utilizing 

siRNA-downregulation or overexpression of neurofibromin dominant-negative construct 

approaches, has yielded somewhat contradictory results. In one study, neurofibromin 

silencing did not affect NGF-induced differentiation, yet, it enabled EGF to partially 

promote differentiation (von Kriegsheim et al., 2009). In other studies, overexpression of a 

neurofibromin-based dominant negative construct, known to increase Ras-GTP and p-ERK 

levels, or siRNA-silencing of neurofibromin resulted in inhibition of NGF-induced 

differentiation (Ynoue et al., 2003; Patrakitkomjorn et al. 2008). These disparing results may 

stem from differences in the time period of siRNA silencing, extent of neurofibromin 

downregulation, and concentrations and times of NGF treatment. Nonetheless, these data 

attest to a developmental time-dependent function of neurofibromin during neuronal 

differentiation.  

Many studies in neuronal cell lines and primary neurons have implicated most of PKC 

isoforms in survival and differentiation mechanisms (Mangoura et al., 1993; Hundle et al., 

1997; Lallemend et al., 2005; Shirai et al., 2008). In their majority, PKCs have been shown to 

have a positive role in neuritic outgrowth; yet, in a recent large-scale analysis in 

hippocampal neurons PKCǊ and PKCǈ scored as potent negative neurite growth regulators 

(Buchser et al., 2010).  PKCǆ on the other hand is regarded as the isoform involved in 

differentiation of both CNS and PNS neurons (Mangoura et al., 1993; Larsson, 2006; 

Mangoura, 1997; Hundle et al., 1997; Shirai et al., 2008). In fact, in the developing chick 

brain, it is the major isoform found in early post-mitotic, just starting to differentiate 

neurons (Mangoura et al., 1993). A significant number of studies on the pro-differentiation 

role of PKCǆ have been actually performed on NB cell lines, as will be presented in more 

detail in the following sections. 

2.2 Neuroblastoma differentiating agents and underlying signalling mechanisms 
2.2.1 Retinoids 

Agents, neurotransmitters, growth factors, and neurotrophic factors used in culture models 
of NB differentiation are summarized in Table 1. Typical differentiating agents are the 
retinoids all trans-RA, 13-cis RA, and N-(4-hydroxyphenyl) retinamide (4-HPR, or 
fenretidine) (Reynolds & Lie, 2000), which cause growth arrest concomitantly with 
downregulation of MYCN expression, upregulation of an array of neuronal markers 
(neuron-specific enolase, neuropeptide Y, GAP43, MAP2, neurofilament-M, and 
synaptophysin), induction of neurite outgrowth, and increases in neurotransmitter 
biosynthetic enzyme activity and expression. The neurotransmitter phenotype induced by 
RA depends on the cell line, with cells developing sympathetic noradrenergic or cholinergic 
phenotypes (Edsjo et al., 2007 and refs. therein). Efforts to establish a consensus on what 
constitutes the RA-induced differentiation has recently led to recognition of a set of 10 genes 
as a potential signature and a more general yet reliable predictor of differentiation in NBs 
(Hahn et al., 2008). Moreover, a gene-expression high-throughput screening of small 
molecule libraries revealed a synergistic action of RA (all trans RA and 13-cis RA) and 
histone deacetylase inhibitors towards induction of NB differentiation, both in culture and 
in vivo (Hahn et al., 2008). 
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Agent Phenotype/Markers Signalling pathway
Cell lines/Comments/  

References 

Retinoids    

all-trans RA/13-cis 
RA 

growth arrest, 
↑ neuronal markers, 

morphology 

RAR, PKCs, ATM, 
ERK (inconclusive)

Most NB cell lines, resistance, 
heterogeneity 

(see text) 

4-HPR (fenretinide) 
growth arrest 

apoptosis/necrosis 
variable differentiation

RAR-independent, 
ceramide, PKCs, 

ROS 

RA-sensitive and resistant NB cell 
lines (1-3) 

Phorbol esters    

TPA (12-O-
tetradecanoyl-
phorbol-13-acetate) 

growth retardation 
↑ neuronal markers 

morphology 
PKCs ( ERK, RARs)

best studied in SH-SY5Y (also SK-
N-SH, SK-N-SN) (see text) 

cAMP analogues    

dBcAMP 
growth arrest 

↑ neuronal markers 
morphology 

PKA/Epac, CREB, 
PI3K/ERK 

Most NB cell lines (see text) 

Growth factors    

IGF-1/bFGF 
↑ neuronal markers 

morphology 
PKCs, ERK, RARǃ SH-SY5Y (4-5) 

NGF 
↑ neuronal markers 

morphology 
TrkA, PKCs TrkA/SH-SY5Y, IMR32 (5) 

GDNF 
growth inhibition     

cell cycle arrest 
↑ neuronal markers 

RET/TrkA SH-SY5Y, LA-N-5 (6) 

GPCR agonists    

Adenosine 
↑ neuronal markers 

morphology 
PKC, ERK, PKA 

(receptor-specific) 
SH-SY5Y (7) 

PACAP 
↑ neuronal markers 

morphology 
cAMP, ERK/p38 SH-SY5Y (8) 

Other    

Uridine 
growth retardation 
↑ neuronal markers 

morphology 
PKCǆ LAN-5 (9) 

Table 1. NB differentiating agents and signalling mechanisms studied; growth retardation 
refers to decreased proliferation rate; morphology refers to increased neuritic outgrowth 
measured as a percentage of neurite-bearing cells or average neurite length; neuronal 
markers refer to increases in neuron-specific enolase, NPY, GAP43, synaptophysin, and TH 
(mRNA or protein level); signalling pathway implication has been derived mostly by 
pharmacological and genetic manipulation studies. Only selected pathways are presented to 
best serve the focus of this chapter. Details of some of the experiments are discussed in the 
text and further information may be found in the respective references [1-3, (Edsjo et al., 
2007; Janardhanan et al., 2009; Reynolds & Lie, 2000); 4-5, (Perez-Juste & Aranda, 1999; 
Fagerstrom et al., 1996); 6, (Peterson & Bogenmann, 2004); 7, (Canals et al., 2005); 8, 
(Monaghan et al., 2008); 9, (Silei et al., 2000)]. 

Studies with NB cell lines are subjected to some degree of heterogeneity in the response 
which may stem from: the passage number, culture conditions, concentration of agents, 
length of treatment, and certainly the read-out assay system. Thus conflicting reports are not 
rare, for example the NB cell line IMR32 has been described as resistant (Joshi et al., 2007), 
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sensitive (Holzel et al., 2010), or weakly responsive to RA (Guzhova et al., 2001). Similarly, 
SK-N-BE2 cells have been characterized as RA-resistant in a long-term 25-30 day colony 
formation assay (Holzel et al., 2010), and as sensitive when increased neuritic outgrowth 
was recorded after 2-4 days of exposure (Zeidman et al., 1999a, 2002). For RA, in particular, 
this is a significant issue, since prediction of resistance to retinoid therapy is very important 
in the clinical setting. Until recently, no predictive markers of RA responsiveness were 
established for clinical use. A connection with amplification of MYCN has been suggested 
(Reynolds et al., 2000), yet, MYCN-overexpressing stable SK-N-SH cells retain their capacity 
to differentiate in response to a variety of agents, including RA (Edsjo et al., 2004). Several 
other genes investigated in NBs have not come through as predictors, and even RARs have 
been questioned, because RA-resistant cells are sensitive to fenretinide (N-(4-
hydroxyphenyl) retinamide), the synthetic retinoid that acts independently of RARs 
(Reynolds et al., 2000; Reynolds and Lie, 2000). More recently, neurofibromin deficiency in 
NB cells was proposed as a strong predictor of RA responsiveness, as shRNA silencing of 
neurofibromin was shown to confer resistance to retinoic acid independently of MYCN 
expression. Neurofibromin-deficient cells continue to proliferate in the presence of low 
concentrations of RA, bypassing check points for growth arrest and induction of 
differentiation, and exhibiting reduced expression of RA-target genes, Ret included (Holzel 
et al., 2010). Expression of Ret, the GDNF receptor, is very important for differentiation of 
NB cells (Peterson & Bogenmann, 2004; Esposito et al., 2008), especially through its action on 
upregulation of TrkA, a powerful and favorable prognostic marker in NB tumors (Edsjo et 
al., 2007; Brodeur, 2003). 
The need for prognostic markers and therapeutic targets has strongly driven research on the 

signalling mechanisms that regulate RA-induced NB differentiation. Apparently RARs 

constitute a major requirement for the action of RA, as RA confers a significant upregulation 

of RARǃ that drives gains in growth arrest and morphological NB differentiation (Maden, 

2007). Besides the well-appreciated role of RARǃ, other key signalling pathways appear to 

contribute to or modulate the RA-induced NB differentiation. These pathways are rapidly 

engaged upon addition of RA and often persist over a long time period. Thus, RA added to 

SH-SY5Y or SK-N-BE rapidly (within 20 min) activates the ATM kinase (Fernandes et al., 

2007), which is a component of the DNA damage signal transduction pathway. ATM’s 

autophosphorylation persists for over 4 days and correlates with enhanced ATM-dependent 

CREB phosphorylation and cell differentiation (Fernandes et al., 2007). Importantly, ATM 

inhibition or depletion does not prevent RA-induced upregulation of target genes, rather 

impairs cell survival (Fernandes et al., 2007).  

A large body of evidence suggests a positive role of Ras, Raf, and prolonged ERK activation 

in neuronal differentiation in PC12 cells and several other cellular models (see section 2.1.2), 

but the situation is certainly more complicated when RA-induced NB differentiation is 

concerned. ERK is invariably activated by RA in the short- (Delaune et al., 2008) or long-

term (Lee & Kim, 2004; Miloso et al., 2004), yet inhibition of the ERK activating kinase MEK 

by U0126 or PD98059 has yielded contradictory results on whether RA-induced ERK 

activation is necessary for neuritic outgrowth in SH-SY5Y and SK-N-BE(2)C cells (Miloso et 

al., 2004; Lee & Kim, 2004). Stable overexpression of RKIP (Raf kinase inhibitor protein), a 

scaffold protein crucial for Raf and ERK pathway activation, accelerated the rate of neuritic 

outgrowth and increased the expression of neuronal markers in response to RA in SH-SY5Y 

cells, all concurrent with sustained ERK activation (Hellmann et al., 2010). Furthermore, in 
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SH-SY5Y and LA-N-5 cells, ERK mediates an early (within 1h) RA-induced formation of 

promyelocytic leukemia nuclear bodies, an event associated with NB differentiation 

(Delaune et al., 2008). Apparently, ERK activity may impinge differentially on early and late 

gene regulation and inhibitor studies have not always addressed these issues with sufficient 

detail (Miloso et al., 2004; Lee & Kim, 2004; Delaune et al., 2008; Holzel et al., 2010). In 

addition, evidence from the various differentiation protocols and agents suggests that the 

transcription programs for neuritic outgrowth or expression of neuron-specific genes may 

be independently regulated in NB cells.  In all, ERK activity appears to be crucial for the 

expression of neuron-specific genes, in the absence of a positive signalling stimulus for the 

induction of neuritic outgrowth (see below in section 2.2.2).  

Besides its role as a differentiating agent, 13-cis-RA antagonizes significantly the cytotoxic 
effects of agents like etoposide and cisplatin (Hadjidaniel & Reynolds, 2010), which suggests 
another mechanism of impact of the RA responsiveness, this time involving the Ras/ERK 
pathway. For example, an inverse correlation between resistance to doxorubicin and ERK 
pathway activation has been suggested in SK-N-SH cells (Mattingly et al., 2001), while NFkB 
activation by doxorubicin and etoposide in SH-SY5Y cells, thought to be required for drug-
induced toxicity, depends also on Ras and MEK activities (Armstrong et al., 2006). With the 
newly established role of neurofibromin in RA responsiveness and its direct implication in 
signalling through the Ras/ERK pathway for neuronal differentiation, neurofibromin may 
indeed contribute to some extent in (the prevention of) cytotoxic responses, an aspect not yet 
considered.  
Experimental evidence from chemical inhibition or overexpression of dominant-negative 
mutants studies has implicated several PKC isoforms, mostly nPKCs, in RA-induced 
differentiation. RA-induced ERK activation in SH-SY5Y cells was significantly reduced in 
the presence of the c/nPKC inhibitor GF1092303X, as well as the RA-induced cell survival 
and neuritic outgrowth (Miloso et al., 2004). A peptide derived from the actin-binding site of 
PKCǆ has been shown to attenuate RA-induced neuritic outgrowth in SK-N-BE(2), while RA 
induced an increase of the cytoskeleton-associated PKCǆ pool (Zeidman et al., 2002). Besides 
PKCǆ, PKCǉ and PKCǅ have also been suggested to play a role in RA-induced 
differentiation (Nitti et al, 2010). In LAN-5 cells, RA-induced differentiation is inhibited by 
PKCǉ-antisense oligonucleotides (Sparatore et al., 2000), while in SH-SY5Y cells, modulation 
of PKCǅ activity by inhibition with rottlerin or overexpression of dominant-negative PKCǅ 
suggested a positive role of PKCǅ activity in SH-SY5Y differentiation via the function of 
NADPH oxidase system (Nitti et al, 2010).  

2.2.2 Phorbol esters 

Long-term treatment of SH-SY5Y cells with the phorbol ester 12-O-tetradecanoyl-phorbol-
13-acetate (TPA) has been extensively studied as a NB and human sympathetic neuron 
differentiation model, providing instrumental insights on the role of PKC in NB 
differentiation. TPA, acting as a DAG analog, directly binds and activates c/nPKCs, the 
main transducers of the TPA differentiation signal. Treatment of SH-SY5Y cells with low 
nanomolar concentrations of TPA results in the acute activation of PKCs and progressively 
drives cells towards a well-described sympathetic phenotype. This phenotype is 
characterized by increased neuritic outgrowth and upregulation of neuron-specific genes, 
such as GAP-43, neuropeptide Y, and tyrosine hydroxylase (Pahlman et al. 1981; Troller et 
al. 2001; Olsson & Nanberg 2001), increases in noradrenaline content (Pahlman et al., 1984; 
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Heikkila et al. 1993), and development of membrane excitability (Jalonen & Akerman, 1988). 
Besides SH-SY5Y and the parental cell lines SK-N-SH and SK-N-SN, IMR32 cells also 
respond to TPA treatment with induction of neuronal genes that specify neurotransmitter 
phenotypes (Mangoura et al., 2006b). PKC activation may mediate significant crosstalk with 
the RARs, as TPA induces the upregulation of RARǃ expression in an nPKC/Ras/Raf-
dependent manner (Perez-Juste & Aranda, 1999). Also in IMR32 cells, a synergistic 
transcriptional action of PKC and Ras with NF1 has been demonstrated in the induction of 
TH expression by TPA (Mangoura et al., 2006b). 
The prominent role of PKCs in TPA-induced SH-SY5Y differentiation has been established 
in many studies and the most important aspects have been reviewed by Larsson, Pahlman, 
and co-workers (Larsson, 2006; Edsjo et al., 2007), where they note that PKCǆ is primarily 
responsible for TPA-induced differentiation, in particular for the induction of neuritic 
outgrowth. Characteristically, transfections with PKC constructs have suggested a dominant 
role of the PKCǆ regulatory domain as well as of its, unique amongst other PKCs, actin-
binding properties in inducing neuritic outgrowth (Zeidman et al., 1999a, Zeidman et al., 
2002) 2. Thus, the PKCǆ pro-differentiating effects may involve mechanisms that do not 
directly implicate its kinase activity (Zeidman et al., 1999a). The kinase activity is also very 
important, as c/nPKC inhibitors, such as GF1092303X and Ro-318220, have been repeatedly 
shown to effectively inhibit TPA-induced ERK activation (Olsson et al., 2000; Troller et al., 
2001; Leondaritis et al., 2009), neurofibromin phosphorylation (Leondaritis et al., 2009), and, 
TPA-induced neuritic outgrowth, expression of neuronal markers, and increase of 
neurotransmitter content (Heikkila et al., 1993; Fagerstrom et al., 1996; Troller et al., 2001; 
Olsson et al., 2000). Yet, further elucidation of the roles of individual PKCs would greatly 
benefit from more specific ATP-targeted inhibitors of cPKCs and nPKCs (Way et al., 2000). 
In this context, studies that used long-term inhibition of cPKCs with Go6976 to assess 
proliferation and survival of NB cells need to be re-evaluated, in lieu of recent studies 
suggesting that (a) Go6976 is a highly potent inhibitor of Aurora A and B kinases (Stolz et 
al., 2009), (b) Aurora A is overexpressed in most NB cell lines and stage 3-4 NB tumors and 
(c) Aurora A inhibitors have broad anti-NB activity (Maris, 2010 and refs therein).  
An important feature of TPA-induced differentiation of SH-SY5Y cells is the apparent 
bifurcation of proximal signalling requirements for neuritic outgrowth or neuronal marker 
expression. Indeed, inhibition of ERK activation by PD98059 abolishes TPA-induced 
upregulation of neuropeptide Y and GAP-43, but has no effect on neuritic outgrowth 
(Olsson & Nanberg, 2001). In agreement, inhibition of PKCǃI by LY379196 reduces TPA-
induced ERK activation, and expression of GAP43 and neuropeptide Y, yet has no effect on 
neuritic outgrowth (Troller et al., 2001). Collectively, most studies converge on two 
important aspects: (i) the occurrence of an active cPKCǂ and cPKCǃΙ-ERK axis in regulation 
of the early (within 24h) induction of neuronal markers and (ii) the mandatory role of PKCǆ, 
via both catalytic and scaffolding mechanisms, in the later induction of neuritic outgrowth 
and maintenance of differentiation.  

2.2.3 Cyclic AMP analogues 

cAMP analogues, such as bi-butyryl-cAMP (dbcAMP), have been long used, often in 
combination with bromodeoxyuridine (BrdU), to induce NB differentiation. Many neuronal 

                                                 

2Florakis et al., 2006, Federation of European Neuroscience Societies (FENS) Forum 3:A051.5 
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cell lines, like PC12 and NB cells (SH-SY5Y and IMR32), respond to these powerful 
intracellular signal transducers with increased neuritic outgrowth and upregulation of 
neuronal markers, such as GAP43 and TH (e.g Christensen et al., 2003; Birkeland et al., 2009). 
The effect of cAMP analogues may also be reproduced with forskolin, a direct activator of 
adenylyl cyclase (AC). Forskolin models the established ability of many GPCR agonists 
coupled to Gs/AC activation to drive differentiation via increased production of cAMP in 
various NB and other cellular contexts (Monaghan et al., 2008; Canals et al., 2005). Two major 
pathways serve as proximal transducers of the cAMP signal: the Epac1/2 (exchange protein 
activated by cAMP)/Rap GTPase and the PKA pathways (Bos, 2006), both of which may 
contribute to differentiation (Christensen et al., 2003; Birkeland et al., 2009). In addition to PKA 
and Epac, PI3K has also been implicated in cAMP-induced differentiation of NB cells as well 
as in the maintenance of elongated neurites (Sanchez et al., 2004).  
 

 

Fig. 1. Upregulation of PKCǆ and downregulation of PKCǂ during cAMP-induced differ-

entiation of IMR32 cells. Cells were incubated in MEM plus 10% heat-inactivated FBS in the 

absence (control, C) or presence (D) of dBcAMP+ BrdU. Fixation, antibodies, 

immunostaining, and microscopy (a), as well as Western blotting (b) and RT-PCR (c) were 

performed as described (e. g., Mangoura et al., 1993; Li et al., 2001; Mangoua et al., 2006b; 

Leondaritis et al., 2009) 

A typical example of cAMP-differentiated IMR32 cells is illustrated in Fig. 1a. After 4-6 days 

of 1 mM dBcAMP and 2.5 ǍM BrdU cells have acquired pyramidal-shaped cell bodies and 
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elongated neurites that often extend up to 4-5 times the cell body length. Double staining for 

F-actin and ǃIII-tubulin reveals the extended organization of microtubules into organized, 

axon-like bundles, quite rich in F-actin (Fig. 1a, arrows in upper versus arrows in lower 

panels). PKCs have not been widely implicated in cAMP-induced NB differentiation, yet our 

analysis of the protein levels of PKC isoforms reveals great differences in control and 

differentiated cells (Fig. 1b). Specifically, the levels of the cPKC ǃII, and nPKC ǅ or Ǉ remain 

unaltered, cPKCǂ is extensively downregulated and nPKCǆ upregulated (Fig. 1b). 

Downregulation of PKCǂ is probably a post-translational event, as its mRNA levels remain 

constant throughout dBcAMP+BrdU exposure (Fig. 1c, 0 versus 4 and 6 days). In contrast, 

PKCǆ mRNA expression is significantly and progressively upregulated over the same time 

period (Fig. 1c). From these observations it is clear that cPKCǂ and nPKCǆ may impinge on 

cAMP-differentiation pathways, in a similar manner to that described for RA and TPA-

differentiation pathways in sections 2.2.1 and 2.2.2.  

2.3 Aspects of PKC regulation in neuroblastoma differentiation  
2.3.1 cPKCs vs nPKCs and differentiation  

Ample evidence exists for PKC requirement in NB differentiation by TPA and RA (Table 1, 
sections 2.2.1 and 2.2.2). Furthermore, PKC activity is implicated in NB differentiation 
mechanisms set in motion by growth factors, neurotrophic factors, and GPCR agonists 
(Fagerstrom et al., 1996; Silei et al., 2000; Canals et al., 2005; Monaghan et al., 2008) (Table 1). 
In some instances, PKCǆ has been identified as the crucial isoform (e.g. Silei et al., 2000; 
Fagerstrom et al., 1996), but there is still some controversy for the contribution of other 
nPKCs, namely PKC ǅ and ǉ. PKCǉ, expressed occasionally in NB cells or tumors (Zeidman 
et al., 1999b), may contribute to apoptotic pathways in SK-N-BE(2) and SH-SY5Y cells 
(Schultz & Larsson, 2004; Schultz et al., 2003). Unlike ǉ, ǅ is commonly expressed (Zeidman 
et al., 1999b), yet again, transfection studies with full-length, catalytically inactive, or active 
PKCǅ variants have revealed a pro-apoptotic role (Schultz et al., 2003; Schultz & Larsson, 
2004). A major role of PKCǅ in the sensitization of NB cells (SH-SY5Y and SK-N-BE(2C)) to 
etoposide (Marengo et al., 2011) was just recently described, validating similar observations 
in other cell types (Griner and Katanietz, 2007). The function of aPKCs in NB differentiation 
is not clear at present, except recent indications that inhibition of PKCǊ has pro-apoptotic, 
and antiproliferative effects (Pilai et al., 2011).  
The balance between abundance and activity of cPKCs versus nPKCs during initiation (early 
responses) or maintenance of NB differentiation has emerged as an important question. 
cPKCs are thought to be involved in early responses, such as induction of neuronal markers 
and commitment of NB cells to survival pathways. nPKCs appear to control the long term 
phenotypic result consisting of elaboration of dentrites, as well as stabilization of the 
transcriptional networks that specify differentiation and neurotransmitter phenotype 
acquisition. This distinct mode of action may be best appreciated by the altered regulation of 
expression levels of the cPKC ǂ and the nPKC ǆ during cAMP-induced differentiation of 
IMR32 cells (Fig. 1). This shift in balance of PKCǂ/PKCǆ expression during differentiation 
has been repeatedly observed in developmental studies and the analysis of the periods of 
neurogenesis and neurodifferentiation, or in culture models that recapitulate these periods 
(Mangoura et al., 1993; Battaini et al., 1994). Furthermore, it has been suggested that growth 
factor-induced differentiation of SH-SY5Y may occur even when PKCǂ is ablated after 
treatment with high (1 ǍM) TPA concentrations (Fagerstrom et al., 1996).  Remarkably, 
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experiments in IMR32 cells directly corroborate and expand this notion. As shown in Fig. 2, 
direct, specific downregulation of PKCǂ expression with phosphorothioate-modified 
antisense oligonucleotides (5’-GGGACCATGGCTGACGT-3’, 15 Ǎg/mL x 5 days) results in 
a differentiated phenotype, indistinguishable from that caused by dBcAMP+BrdU (Fig. 1). 
Thus, suppression of PKCǂ alone may suffice for the induction of morphological 
differentiation in NB cell lines. 
 

 

 

Fig. 2. Specific downregulation of PKCǂ induces differentiation in IMR32 cells. PKCǂ 
translation was silenced with antisense-PKCǂ oligonucleotides. Arrows indicate different 
long, tubulin-rich processes and intense cortical actin staining (upper panel). 
Downregulation of PKCǂ protein levels was confirmed by Western blotting (lower panel). 
Methods were performed as in Fig. 1 

2.3.2 PKCs and cytoskeletal changes during NB differentiation 

The input of PKC activation on cytoskeletal changes associated with neuritic outgrowth 

during NB differentiation in all three cytoskeleton systems, namely microtubules, F-actin, 

and intermediate filaments is well established. The F-actin cortical cytoskeleton may be 

viewed, in a general sense, as a direct target of the differentiation process (Mangoura et al., 

1997). Among prominent PKC substrates of particular relevance are proteins that directly 

bind to F-actin, such as MARCKS, GAP43, adducin, fascin, and ERM proteins (Larsson, 

2006). MARCKS and GAP43 have a pivotal role in remodeling the F-actin cytoskeleton 

during neurite outgrowth, growth cone motility, and synapse formation (Laux et al., 2000; 

Larsson, 2006). Neurofibromin is another PKC substrate that may associate with the F-actin 

cytoskeleton in neurons and SH-SY5Y cells (Li et al., 2001; Mangoura et al., 2006a). 

Analysis of cytoskeletal protein localization after a prolonged (24h) treatment of IMR32 cells 

with TPA reveals also a sustained recruitment of neurofibromin in Triton X-100 insoluble 

fractions (HP lanes, Fig. 3) where cortical cytoskeleton proteins reside; concurrently, 

neurofibromin is not detected in the urea-soluble fractions (UF lanes, Fig. 3), where cytosolic 

organelle and nuclear proteins are found. At the same time, there is substantial loss of the 

intermediate filament protein vimentin in Triton X-100-soluble (cytosol) and -insoluble 

fractions (T2 and HP lanes, respectively), consistent with its downregulation upon 

differentiation of NB cells (Yabe et al., 2003). In parallel, vinculin, an F-actin binding protein 

and developmentally-regulated (Cheng et al., 2000) PKC substrate (Mangoura, 1997), 
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becomes enriched in cytoplasmic actin fractions (T2 lanes), suggestive of the extended 

reorganization of the actin cytoskeleton at the onset of neuritic outgrowth. 

PKCs may serve also as upstream regulators of other signalling modules that modify 

cortical actin cytoskeleton proteins. For example, nPKCs, and specifically PKCǆ, are 

necessary for Src/FAK-dependent formation of active Cas/Crk complexes in differentiated 

SH-SY5Y cells (Fagerstrom et al., 1998; Bruce-Staskal & Bouton, 2001) and in neurons 

(Mangoura, 1997). Importantly, Src activation and phosphorylation is a PKCǆ-sensitive, long 

lasting (>16h) event during TPA- and IGF1/bFGF-induced differentiation of SH-SY5Y cells, 

suggesting the engagement of this pathway in the extensive remodeling of actin 

cytoskeleton during elongation and elaboration of neurites (Fagerstrom et al., 1998). 

Notably, PKCǆ was recently shown to organize a proximal signalling protein complex 

containing Src and Fyn tyrosine kinases, essential for downstream ERK activation in 

neurons (Asimaki & Mangoura, 2011), and in SH-SY5Y cells (Asimaki et al., 2007). 

 

 

Fig. 3. Changes in cytoskeletal protein localization during early phases of TPA-induced 
differentiation in IMR32 cells. Cells were treated with 100 nM TPA for 24 h and cell lysates 
were fractionated into Triton X 100-soluble cytoplasmic actin fractions (T2), Triton X 100-
insoluble cortical actin fractions (HP), and urea-soluble fractions (UF, representing also 
nuclear proteins), as described (Fox et al., 1993). Protein abundance in the fractions was 
analysed using Western blotting and the indicated antibodies (Mangoura, 1997; Li et al., 
2000; Mangoura et al., 2006a). 

Independent studies on gene expression profiles in advanced NB tumors have shown that 

many genes involved in Fyn signalling and organization of the F-actin cytoskeleton are 

downregulated (Berwanger et al., 2002). The importance of Fyn, in particular, was further 

validated when expression of active Fyn elicited differentiation and growth arrest in NB 

cells (Berwanger et al., 2002). These studies collectively highlight the tight inter-regulation 

between the abundance and activation of PKCǆ and Src/Fyn, and the re-organization of the 
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F-actin cytoskeleton during NB differentiation. Further support for this aspect is lend by the 

high concentration of PKCǆ in growth cones of differentiated SH-SY5Y and SK-N-BE(2) cells 

(Fagerstrom et al., 1996; Zeidman et al., 1999a, 2002).  

2.3.3 Differentiating agents regulate a functional PKCα/PKCε balance that controls 
neurofibromin phosphorylation and downstream ERK signalling in neuroblastoma 
cells 

Neurofibromin is currently emerging as an important signalling protein positioned at the 

intersection of NB differentiation pathways, as A, it acts as a rheostat for the activation of 

the Ras/ERK pathway (Cichowski et al., 2003; Mangoura et al., 2006a, b), B, it is a NB 

tumor suppressor with only 50% of NB cell lines bearing two normal alleles, and 6% of 

primary NBs bearing genomic NF1 aberrations (Holzel et al., 2010), C, it is a PKC 

substrate (Mangoura et al., 2006a) and it is extensively and persistently phosphorylated at 

a PKC-specific site, the C-terminal Ser2808, in TPA-differentiated SH-SY5Y cells 

(Leondaritis et al., 2009), D, it provides responsiveness to RA (Holzel et al., 2010). 

Neurofibromin has been also implicated in cAMP signalling in other cell types (Rubin & 

Gutman, 2005) and this suggests that it may impinge on cAMP-induced NB differentiation 

as well. Yet, the effects of NB differentiating agents on neurofibromin abundance 

(Cichowski et al., 2003), phosphorylation (Izawa et al., 1996; Mangoura et al., 2006a; 

Leondaritis et al., 2009), and RasGAP activity (Mangoura et al., 2006a), all critical aspects 

of its function as a Ras/ERK pathway modulator, have not been thoroughly addressed 

with the exception of TPA-differentiated SH-SY5Y (Leondaritis et al., 2009). Long-term 

treatment of SH-SY5Y with TPA or RA results in differentiation with variations in the 

acquired neurotransmitter phenotypes (Pahlman et al., 1984), yet morphologically, all 

cells long extensions, heavily decorated with ǃ-tubulin (Fig. 4a, arrows) and F-actin in 

their growing neuritic tips (Fig. 4a, arrowheads), these features are virtually absent in 

control cells (Fig. 4a, upper panel).  

It is a striking event that neurofibromin is significantly phosphorylated (2-3 fold over control) 

at the PKC-specific, C-terminal Ser2808 site in SH-SY5Y cells even after 8 day of differentiation 

with TPA or RA (Fig. 4b). Thus, persistent PKC-specific neurofibromin phosphorylation 

appears to be a common feature of both TPA- and RA-differentiated SH-SY5Y cells. 

Neurofibromin may be acutely phosphorylated after stimulation by EGF or TPA by either 

PKCǂ or PKCǆ in neurons (Mangoura et al., 2006a). In SH-SY5Y cells, TPA-dependent, acute 

neurofibromin Ser2808-phosphorylation appears to be mediated primarily by cPKCs 

(Leondaritis et al., 2009). In the long term, PKCǂ mRNA levels are modestly increased in TPA- 

and RA-differentiated cells (2-3 fold over control), concurrently with extensive upregulation of 

PKCǆ mRNA levels (>10-fold over control) (Fig. 4c). At the protein level, however, 

differentiation is accompanied by reciprocal changes in PKCǂ and PKCǆ abundance and 

activity: PKCǂ protein levels are substantially downregulated, while PKCǆ protein levels are 

significantly upregulated, at least in RA-differentiated cells (Fig. 4d). Most importantly, 

phosphorylation of PKCǆ at Ser729, the hydrophobic motif residue, which is essential for 

priming the catalytic competence of PKCǆ (Cameron et al., 2009; Freeley et al., 2011), is 

significantly increased in both TPA- and RA-differentiated cells (Fig. 4d). Furthermore, 

phosphorylation of MARCKS, which can reliably serve as a proxy marker for total PKC 

activity, is also significantly increased in TPA- and RA-differentiated cells (Fig. 4d).  
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a. Cells were incubated in RPMI+10% HI-FBS in the absence (control, upper panel) or presence of 10 ǍM 
RA (middle panel), or 20 nM TPA (lower panel) for 8 days. Fixation and staining was performed as in 
Fig. 1. Images are projections of 5 0.5Ǎm Z-stacks, deconvoluted with the nearest-neighbor algorithm 
(Slidebook software, Neurosciences Imaging Facility). b. Ser2808 phosphorylation of neurofibromin was 
studied with the use of sc-67 antibody in Western blot-phosphatase assays as described (Leondaritis et 
al., 2009). Note the significant gains in immunoreactivity to sc-67 in TPA- and RA-treated samples on 
membranes treated with phosphatase (left panel) that define the level of phosphorylation of 
neurofibromin on Ser2808. Quantification suggests a 2-3 fold increase of neurofibromin’s Ser2808 
phosphorylation in differentiated cells ( lower panel). c) mRNA levels of PKCǂ, PKCǆ, and GAPDH 
were measured as described previously (Mangoura et al., 2006b). d) Abundance and phosphorylated 
forms of indicated proteins were assayed by Western blotting in total cell lysates; IP indicates that PKCǆ 
was immunoprecipitated from cell lysates and asterisk a crossreactive protein in the 
immunoprecipitates. Antibodies for p120GAP, p-Ser729 PKCǆ, p-MARCKS and p-ERK1/2 were as in 
Leondartis et al., 2009 and Asimaki & Mangoura, 2011. 

Fig. 4. TPA and RA-differentiated SH-SY5Y cells exhibit similar patterns of morphology, 
neurofibromin phosphorylation, PKCǂ/PKCǆ expression and activation, and PKC 
downstream signalling. 
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Thus, differentiation in SH-SY5Y cells is characterized by intense, PKCǆ-dependent 

signalling; this may impact directly on phosphorylation and activation of downstream 

targets, such as neurofibromin (Fig. 4b) and ERK (Fig. 4d). In aggregate, this experimental 

evidence suggests that PKCǆ activation, neurofibromin Ser2808-phosphorylation, and ERK 

activation are all long-term effects, clearly associated with NB differentiation. Amongst 

these signal transduction, transcriptional, and translational events, regulation of PKCǆ arises 

as a nodal and fundamental feature of the differentiation process itself. 

3. Conclusions 

Regulation of long-term signalling that confers long lasting gene expression, and elicits and 

maintains differentiation in NB cells has yet to be fully explored. Moreover, the acute versus 

prolonged changes in posttranslational modifications of proteins within a signalling 

pathway that would support the fine tuning of pathway’s output towards cell 

differentiation are still largely unresolved. NB cells constitute a unique model to address 

these issues, in hope that understanding the differentiation mechanism may provide 

predictors for NB therapy and clues for novel druggable targets or for increased efficacy of 

existing drugs. In this chapter we focused on PKCs (PKCǆ), neurofibromin, and the ERK 

pathway as important components of the action of differentiating agents in NB cells. Our 

experimental observations may well apply to most NB cells as the two cell lines used, IMR32 

and SH-SY5Y, do not share a common pattern of genetic alterations: IMR32 cells are MYCN-

positive and have wild-type ALK, while SH-SY5Y are MYCN-negative and have an 

activating mutation in ALK. Another focal point discussed for its important clinical 

implications, is the involvement of the tumor suppressor neurofibromin in RA- and TPA-

induced differentiation.  

PKCǆ is expected to impact significantly on NB differentiation through both its catalytic 

and scaffolding properties which may operate simultaneously. Apparently, cPKCs and 

nPKCs may be important for NB cell proliferation and apoptosis, and these may be 

regulated by PKCǆ. Also of clinical importance is the possibility that nPKCs (PKCǅ, ǆ or 

others) may modulate NB cell responses to cytotoxic drugs. A second point concerning 

PKCǆ is its characterization as an oncogene in non-neural tumors (Basu & Sivaprasad, 

2008). This PKCǆ eccentricity is shared with other members of the signaling mechanisms 

involved in NB differentiation, for example with H-Ras, a well-known oncogene when 

mutated, yet a favorable prognostic marker in MYCN-negative NB tumors when 

overexpressed, or TrkA, an oncogene and yet a favorable predictor when highly 

expressed in NBs (Brodeur, 2003). Both latter proteins are crucial for neuronal 

differentiation and survival in different cellular models, as PKCǆ. Therefore, we post the 

hypothesis that increases in PKCǆ in non NB tumors may reflect the cell’s response to 

increase its differentiation.  

In summary, novel approaches to treat NB in future are likely to be based on the continuing 

elucidation of the underlying signalling pathways that govern NB cell proliferation, 

apoptosis and differentiation, including, but not limited to, the PKC/ neurofibromin/ Ras/ 

ERK pathway. Combinatorial and multimodal therapies towards maximum efficacy and 

low toxicity will critically depend on the integration and implementation of this knowledge 

in further preclinical and clinical studies. 
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