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1. Introduction 

The study of the aetiology of periodontal diseases has continued for decades with much 
progress shown in the last two decades. Having moved through periods of “whole” plaque 
(with emphasis on mass) being attributed to the disease process, to “specific” species being 
implicated, we have finally returned to examining the oral microbiota as an ecological niche 
involving not only a selected few species but looking at plaque as a whole where all the 
players are invited to participate with their roles no longer individually defined but viewed 
as a team effort with recognition of their individual strengths and contributions. Recent 
findings using advanced technology, are confirming findings viewed by electron 
microscopy nearly half a century ago, but we now have the knowledge and expertise to 
interpret those findings with deeper understanding. This chapter will attempt to examine 
the microbial succession within the plaque biofilm from health to disease, bearing in mind 
the susceptibility of the host, the microbial heterogeneity and the expression of virulence by 
the putative pathogens.  

2. Theories proposed by early pioneers 

Microbial plaque has been implicated as the primary aetiologic factor in chronic 
inflammatory periodontal disease (CIPD, Listgarten, 1988). Studies of experimental 
gingivitis in man and in animal models have confirmed that a positive correlation exists 
between plaque accumulation and CIPD, and that plaque control reverses the inflammatory 
process (Lindhe et al., 1973; Löe et al., 1965; Page & Schroeder, 1976, 1982 Theilade et al., 
1966). It has also become evident, at least in relation to chronic gingivitis, that plaque mass 
rather than quality is the main correlate with disease severity (Abdellatif & Burt, 1987; 
Ramfjord et al., 1968). It was initially postulated that CIPD occurred as the result of an 
overgrowth of indigenous plaque microorganisms (Gibbons et al., 1963; Löe et al., 1965; 
Socransky et al., 1963; Theilade et al., 1966). But, since many of the organisms observed in 
periodontal health were also observed at diseased sites (Slots, 1977), the results indicated 
that shifts in microbial populations rather than specific pathogens would play a role in 
initiating disease. Failure to demonstrate an overt pathogen gave rise to the non-specific 
plaque hypothesis (NSPH, Loesche, 1976), which generally assumes that all plaque is 
capable of causing disease. If the plaque mass is increased, irritants produced by the plaque 
microbes are increased until gingival inflammation ensues. 
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However, the NSPH failed to explain why certain individuals with longstanding plaque and 
gingivitis do not develop periodontitis, while others, with minimal plaque, had lower 
resistance to disease. Comparisons of health and diseased sites, demonstrated an increase in 
Gram-negative organisms in the latter (Hemmens & Harrison, 1942; Rosebury et al., 1950; 
Scultz-Haudt et al., 1954). By 1977, the focus had shifted from supra to subgingival plaque 
and since sampling and cultural methods had improved, more sophisticated studies were 
possible in relation to the microbial aetiology of CIPD. It was shown that subgingival plaque 
composition differs, not only between subjects, but also between sites within the same 
mouth (Listgarten & Hellden, 1978; Socransky et al., 1992). The culture of plaque samples 
from single diseased sites lead to the association of certain bacterial species with various 
forms of CIPD (Listgarten, 1992; Socransky & Haffajee, 1992,). 
While the NSPH focuses on quantitative changes, the specific plaque hypothesis (SPH) 
focuses on qualitative changes. Evidence for the specific plaque hypothesis has been derived 
from studies of subgingival microflora associated with health and disease, from evaluations 
of the pathogenic potential of various members of the periodontal microbiota as well as 
selective suppression of the microflora by chemotherapy using both human and animal 
models. These criteria have been used in association studies, since no single pathogen has 
been isolated which fulfils the criteria for Koch’s postulates, namely, that a specific organism 
should be isolated in pure culture in all lesions of the disease and a similar disease produced 
in animals when inoculated with the causative organism, resulting in the recovery of that 
same organism from the lesions of the infected animals. These postulates have proved 
inadequate for CIPD since cultural studies of CIPD have revealed over 700 bacterial species, 
many of which are extremely difficult to cultivate, creating problems with animal 
inoculations. Another factor is that the disease produced in experimental studies with 
animals need not necessarily be the same disease observed in humans (Socransky, 1979), nor 
does a bacterium which is known to be pathogenic always cause disease in selected hosts 
even though they may be of the same species (Socransky & Haffajee 1992). It is therefore 
impracticable to compare virulence in different host species, even though the same 
pathogen is used. Alternatives for Koch’s postulates were suggested by Socransky (1979), 
namely, that there be association of the organism with disease followed by elimination after 
treatment, and that host response, animal pathogenicity and mechanisms of pathogenicity 
are considered. 
Association of a given organism with disease is demonstrated by an increase in the 
proportion of that organism at the site of infection and a decrease or absence in health and 
after treatment. The marked differences between plaques seen in health and disease, and the 
establishment in the subgingival plaque of species such as Porphyromonas gingivalis and 
Aggregatibacter actinomycetemcomitans (Aa), which are seldom, if ever, detected in health or 
gingivitis, led to the hypothesis that severe periodontitis was caused by exogenous 
microorganisms (Genco et al., 1988). However, this hypothesis failed to define a specific 
means of host entry or colonisation. Nor was the acquisition or mode of transmission 
adequately explained. Although treatment resulted in suppression or elimination of these 
species, the authors failed to include the effect of treatment on many of the indigenous 
species as well. Acceptance of an exogenous infection hypothesis was considered by many 
as an over-simplification of a very complex situation. Re-evaluation of the different 
hypotheses indicated that they all contained contradictions. Overlaps often occurred 
regarding suspected “periodontopathogens” in active and inactive sites. This negated both 
the SPH and the NSPH. Eradication of “exogenous pathogens” resulted in a microbial shift 
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from a disease-related to a health-associated microbiota, incorporating both the SPH and the 
NSPH. To confuse the issue even further, miscroscopic (Africa et al., 1985a; Reddy et al., 
1986) and cultural studies (Africa, unpublished data) of plaque from two groups of subjects 
with heavy plaque accumulations, showing no clinical evidence of associated loss of 
attachment, demonstrated disease-associated microbial species. High percentages of 
spirochaetes and motile rods were indicated in these darkfield studies, while the cultural 
studies demonstrated the presence of Porphyromonas gingivalis and Prevotella intermedia 
amongst their predominant cultivable species. However, distinct differences in the 
cultivable microflora accompanying these species were observed when the periodontitis 
group was compared with the two periodontitis-resistant groups. This would indicate that 
the host response, along with microbial interactions within the plaque microbiota, 
determined disease progression and that neither the SPH nor the NSPH per se could be 
applied in this case. Theilade (1986) proposed an acceptance of a compromise between the 
two, in order to accommodate the microbial succession from health to disease, when 
attempting to establish the association of specific species with CIPD. 
The inability to explain why some individuals developed disease and others not, created 
difficulties in comparing data, especially since inter-individual as well as intra-individual 
variability was often demonstrated. With more than 700 microbial species inhabiting the 
periodontal pocket, many of which are uncultivable and/or difficult to identify, 
contradictions often occur regarding the association of specific species with a particular 
disease entity. 
These research outcomes are complicated by differences in sampling and detection methods 

and inaccuracies in the classification and diagnosis of disease. Added to that, is the fact that 
animal models of disease are often used for in vivo investigations of monomicrobial 

infections. The disease is therefore induced and differs from natural pathogens in humans 
(Arnett and Viney, 2007) where the disease process is initiated by the normal microbiota 

overcoming the tolerance threshold of the host, resulting in a polymicrobial infection 
(Gemmell et al., 2002; Kesavalu et al., 1997). 

Because a precise definition of disease activity has not been clearly established, earlier 
studies of the microbial aetiology of CIPD have failed to implicate any single plaque bacterial 
species as the definitive causative species. Many of the subgingival flora could not be classified 
by existing taxonomic schema at the time, with the result that oral microbiologists often forced 
their isolates into existing species descriptions, a process which was not only incorrect but 
which confused and hampered the process of implicating specific aetiological agents in 
periodontal disease. The bacteria discussed in the subsequent sections can only be implicated 
by association with disease and have not been proven as single pathogens fulfilling the criteria 
of Koch’s postulates. The flora of sites sampled at a particular time may not relate to that 
present at a time of an episode of disease activity or quiescence. Results may reflect previous 
episodes of disease activity and may have no bearing on the current level of disease activity 
(Listgarten, 1992; Socransky & Haffajee, 1992). 

3. The ecological plaque hypothesis 

The finding of suspected pathogens in mouths free of disease could either be due to 
avirulent clonal types of the microbial species or due to low levels of bacterial species in an 
insusceptible or “carrier” host. With the advent of molecular biology, our understanding has 
been greatly improved and our approach to identifying the putative pathogens has gone full 
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circle. We are once again looking at bacterial succession and ecological changes but with 
improved knowledge where, with the assistance of modern technology, we are viewing 
bacterial plaque as a “biofilm” of microbes possessing the chromosomal and extra 
chromosomal genetic properties necessary to initiate disease in a susceptible host. In order 
to initiate disease, a potential pathogen has to colonise a susceptible host with an 
appropriate infectious dose in an environment conducive to optimal bacterial interactions 
which will favour the expression of its virulence properties (Socransky & Haffajee, 1992). 
This environmental activity results in patterns of bacterial succession favouring the 
ecological plaque hypothesis (Marsh, 1991). The ecological plaque hypothesis suggests that 
periodontal disease is an opportunistic endogenous infection brought about by an ecological 
shift in the plaque biofilm from a predominantly Gram-positive facultatively anaerobic 
microflora to a Gram-negative obligate anaerobic or micro-aerophilic flora, resulting from 
host-microbial and microbe-microbe interactions, creating an anaerobic environment which 
favours their growth (Konopka, 2006). Thus any bacterial species may be pathogenic since 
ecological changes in the environment may dictate the pathogenicity and virulence 
mechanisms for that particular organism (Marsh, 1991, 1994, 1998). Disease may thus be 
prevented by interruption of the environmental factors responsible for the ecological shifts 
as well as elimination of the putative pathogen. 

4. The oral cavity as a microbial ecosystem 

The oral cavity is home to a multitude of microbes colonising a variety of surfaces, namely 
the tooth, tonsils, tongue, hard and soft pellets, buccal cavity, lips and associated gingival 
tissue. (Kolenbrander & Landon, 1993; Paster et al., 2001; Rosan & Lamont, 2000; Whittaker 
et al., 1996). With specific microbial species demonstrating tropism for specific tissues (Aas et 
al., 2005; Gibbons, 1996; Mager et al., 2003; Van Houte et al., 1970), all of which interact with 
each other as well as with the oral environment, the oral cavity meets the criteria for the 
definition of a microbial ecosystem (Konopka, 2006; Marsh, 1992; Raes & Bork, 2008). 
Factors which determine the oral microflora include environmental factors (temperature, 
oxygen tension, pH, availability of nutrients), host factors (host tissues and fluids, genetics, 
diet) and microbial factors (adherence, retention and coaggregation, microbial intra- and 
interspecies interactions, clonal heterogeneity, virulence mechanisms) thus creating a 
dynamic and complex ecosystem (Kuramitsu et al., 2007; Kolenbrander, 2006; Marsh, 2005; 
Overman, 2000; Rosan & Lamont, 2000; Sissons et al., 2007; Socransky & Haffajee, 2002; Ten 
Carte, 2006).  
Dental plaque is a dynamic biofilm formed by the ordered succession of > 700 bacterial 
species. The recognition of dental plaque as an oral biofilm has now become widely 
accepted. (Aas et al.,2005; Bowden, 2000; Filoche et al., 2010; Haffajee et al. ,2008; Jenkinson & 
Lamont, 2005; Marsh, 1991, 2003, 2006; Marsh & Percival, 2006; Socransky & Haffajee, 2005). 
In health these endogenous species live in symbiosis with the host , but changes in the oral 
microbial ecology due to nutritional and atmospheric gradients, synergistic and/or 
antagonistic interactions between microbial species, may alter the balance of the host and 
render an organism pathogenic ( Carlsson, 1997; Kolenbrander, 2000; Lamont & Jenkinson, 
1998; Marsh, 1999, Newman, 1988; Pratten & Wilson 1999, Quireynen et al. 1995, 2001, Rosan 
& Lamont, 2000; Sbordone & Bortolaia, 2003; Socransky & Haffejee, 1992, 1995; Socransky et 
al., 1998). Most periodontopathogens are commensals in the oral cavity and express their 
virulence only in a susceptible host or when changes occur in their ecosystem. Microbial 
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species exhibit different properties when they form communities in the plaque biofilm and 
work together rather than in isolation. With synergy prevailing over antagonism, they 
respond to changes in the environment as a single unit rather than as individual species 
(Caldwell et al., 1997). Formation of the plaque biofilm and a discussion of ecological 
succession in the development of CIPD, is essential in understanding the changes which 
occur in the periodontium during the progression from health to disease. Ecological 
succession is the process whereby a microbial population (e.g. plaque microbiota) 
undergoes a continuous series of changes in composition as different species colonise and 
become established at the expense of others. The microbial population present at any given 
time will determine the subsequent successional changes. 

4.1 Formation of the plaque biofilm 

The tooth surface is a non-shedding surface which allows for the colonisation of microbial 
species and the establishment of a plaque biofilm. If a tooth surface is professionally 
cleaned, a deposit called the acquired pellicle develops within 15-30 minutes. It is a thin, 
clear cuticle composed of mainly glycoproteins and its source is generally considered to be 
precipitations of mucoids from saliva, containing molecules which are recognised by 
bacterial adhesins during the initial selective adsorption of Gram-positive cocci 
(streptococci) to the surface of the acquired pellicle. 
Saliva not only provides substrates for bacterial growth by the secretion of proteins and 

glycoproteins (endogenous nutrients) but also serves as a mode of transport for 

carbohydrates and peptides (exogenous nutrients) of dietary origin (Homer et al., 1996; 

Palmer et al., 2001; Scannapieco, 1994). When a microorganism adsorbs to the acquired 

pellicle, growth and multiplication will occur, accompanied by accumulation of bacterial 

products. Attachment of microorganisms is further enhanced by the production of dextrans 

by the streptococci and by the ability of bacterial cells to coaggregate (Kolenbrander, 2000). 

Differences in microbial growth rates cause population shifts to occur quickly once the 

initial microbial population has been established. 

The cleansing activities of the mouth such as saliva, abrasion and swallowing are limited to 

the colonisation of supragingival plaque only. The subgingival plaque, due to the anatomy 

of the gingival sulcus, is undisturbed by the cleansing activites of the mouth and because a 

relatively stagnant environment is formed, harbours many more motile bacteria than 

supragingival plaque. Because the oxidation-reduction potential (Eh) of the gingival sulcus 

is very low (Loesche, 1988), the subgingival environment would favour the growth of a 

more anaerobic microflora than would be found in supragingival areas where the 

environment selects for the growth of aerobic and facultative microflora. The indigenous 

anaerobic microflora includes members of the genera Actinomyces, Bacteroides, 
Bifidobacterium, Campylobacter, Capnocytophaga, Fusobacterium, Leptotrichia, Peptococcus, 

Peptostreptococcus, Propionibacterium, Veillonella and many motile organisms such as 

Selenomonas, a few spirochaetes and vibrios. Many of these species co-exist with facultative 

and capnophilic bacteria in periodontal health and disease. 

4.2 Bacterial interactions during biofilm development 

Pathogens do not exist in isolation in the oral cavity but as part of a microbial community 

which may display synergistic or antagonistic interactions. Microbial diversity is spatially 

structured, not only by geographic location, but also by environment (O’Malley, 2008). 
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Early plaque is composed of mainly Gram-positive cocci which are gradually replaced by 
more filamentous Gram-positive forms and finally, an abundance of Gram-negative forms 
which were not found initially (Kolenbrander et al., 1985 ; Haffajee & Socransky, 1988). 
Gram-negative colonisation of the gingival sulcus occurs only after the lawn of Gram-
positive organisms has been established, since Gram-negative organisms cannot adhere 
directly to the tooth surface (Slots, 1977). An increase in the thickness of the plaque biofilm 
results in the creation of nutritional and atmospheric gradients which alter the environment, 
reducing oxygen levels and allowing for the growth of anaerobes (Bradshaw et al., 1998; 
Cook et al., 1998; Lamont & Jenkinson, 1998). Coaggregation enables the colonisation of 
organisms that do not have receptor sites. Their colonisation is therefore facilitated by the 
colonisation of a synergistic species. Coaggregation can be defined as intrageneric, 
intergeneric or multigeneric cell-to-cell recognition (Kolenbrander, 1989) in a biofilm 
community and was reported to occur between viable as well as dead cells, providing 
evidence that interactions are mediated by existing specific surface molecules rather than 
cells responding actively to each other ( Kolenbrander, 1993). An important factor of plaque 
biofilm formation is the spatial relationship of the community members (Dawes 2008; Mager 
et al. 2003; Mineoka et al., 2008). The proximity of phenotypes allows for their interactions 
and influences their ability to survive within the biofilm.  
Among the early studies of spatial relationships in plaque biofilm formation are the studies 
by Nyvad and colleagues (Nyvad, 1993; Nyvad & Fejerskov, 1987a; Nyvad & Fejerskov, 
1987b; Nyvad & Killian, 1987). Using a stent that holds enamel pieces (commonly used in 
supragingival oral film investigations), they placed it in the oral cavity and monitored the 
formation of plaque biofilms. Among the first species to colonise were streptococci and 
actinomyces, including Streptococcus sanguinis, Streptococcus oralis, Streptococcus mitis, 
Streptococcus salivarius and Actinomyces viscosus. Plaque biovars were seen to develop at 
exactly the same rate from individual to individual, reaching a plateau around 12 hours 
after stent insertion (Nyvad & Kilian, 1987). Electron microscopy confirmed a change in 
species composition over the next 12 hours with both Gram-positive and Gram-negative 
bacteria appearing, providing evidence for direct interaction between species in the biofilm 
(Nyvad & Fejerskov, 1987b).  
Further studies confirmed the importance of cell-to-cell recognition in early plaque 
development and examination of undisturbed plaque. Palmer et al,(2003) used antibodies to 
detect adhesins or their complimentary receptors on bacteria known to coaggregate. They 
examined the reactions using immunofluorescence and confocal microscopy and found that 
many of the cells which reacted with the adhesin antibody were adjacent to cells reactive 
with the receptor antibody. Diaz et al., (2006) used ribosome-directed fluorescence in situ 
hybridisation (FISH) to examine spatial relationships and produced similar results. 
Electron microscopy has demonstrated that where 2 or more species coaggregate with a 
common partner using the same mechanism, they are likely to compete for receptor sites e.g. 
“corncob” formations, where coccoid cells such as streptococci attach to a long rod such as 
Fusobacterium nucleatum (Jones, 1972; Listgarten et al., 1973) or S. sanguinis and 
Corynebacterium matruchotii (Bowden, 1999; Palmer, 2001; Socransky et al., 1998; Wilson, 
1999). Another example is the ” test-tube brush” arrangement formed by Eubacterium yurii 
(Margaret & Krywolap, 1986). If 2 or more bacteria coaggregate with a common partner 
using different mechanisms of adhesion, the common partner acts as the coaggregation 
bridge for the coaggregation of the other 2 species e.g. Prevotella loescheii PK 1295 provides 
the bridge linking Streptococcus oralis 34 to Actinomyces israelii PK 14 (Weiss et al., 1987).  
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Intergeneric coaggregations occur with Fusobacterium and other bacteria such as 
Aggregatibacter actinomycetemcomitans (Rosen et al., 2003), Tannerella forsythia (Sharma et al., 
2005), and oral Treponema (Kolenbrander, 1995). Intrageneric coaggregations occur among 
different strains of oral fusobacteria (Kolenbrander, 1995), P. gingivalis (Lamont et al., 1992), 
oral streptococci, and Actinomyces (Kolenbrander et al., 1989). Coaggregation bonds between 
P. gingivalis and oral streptococci or Actinomyces naeslundi are rendered resistant to removal 
if P. gingivalis adheres directly to Streptococcus gordonii (Brooks et al., 1997; Cook et al., 1998; 
Demuth et al., 2001, Rosan & Lamont, 2000; Quirynen et al., 1995).  
The production of metabolic products by plaque bacteria may promote or inhibit the growth 
of other species (Kolenbrander, 2000; Quirynen et al., 1995, 2001). Examples of cross-feeding 
include but are not limited to, the production of lactic acid by Streptococcus and Actinomyces, 
needed for the metabolism of Veillonella which, in turn, produce menadione which favours 
the growth of Porphyromonas and Prevotella. Fusobactrium produces fatty acids needed for the 
growth and metabolism of Treponema and in synergy with P. gingivalis, produces metabolic 
products needed for the growth of Mogibacterium (Eubacterium) timidum (Miyakawa & 
Nakazawa, 2010). Other beneficial microbial interactions include the prevention of 
colonisation of a pathogenic species by using receptors which may be needed for the 
attachment of latecomers (Rosen et al., 2003) or by the production of substances which affect 
the growth of, or prevent the production or expression of, virulence factors by the pathogen 
(Socransky & Haffajee, 1992). 

4.3 Quorum sensing 

Another mechanism by which bacteria are able to communicate is via quorum sensing 

molecules. Quorum sensing has been described in both Gram-positive and Gram-negative 

bacteria. It has been defined by Miller (2001) as “the regulation of gene expression in 

response to fluctuations in cell population density”.As they grow, quorum sensing bacteria 

produce to the external environment a series of molecules called autoinducers. The 

autoinducers accumulate as the bacterial population increases and once they reach a certain 

threshold, different sets of target genes are activated, thus allowing the bacteria to survive 

environmental changes. Cell-cell communication may occur between and within bacterial 

species (Miller, 2001) and controls various functions reflecting the needs of a specific 

bacterial species to inhabit a particular niche such as the production of virulence factors, or 

by the transmission and acquisition of the generic information needed to produce virulence 

factors from other species in the biofilm development (Passador et al., 1993; Reading et al., 

2006). Several strains of P. intermedia, T. forsythia, F. nucleatum and P. gingivalis were found to 

produce quorum sensing signal molecules (Frias et al., 2001; Sharma et al., 2005). 

4.4 Host susceptibility and inter-individual variation 

It was previously understood that plaque control was effective in preventing and treating 

periodontal diseases. Now it is clear that the plaque biofilm alone is not enough to initiate or 

control the disease process. A susceptible host is needed and the susceptibility is genetically 

determined with individuals responding differently to various stimuli (Relman, 2008; 

Tombelli & Tatakis, 2003).  
The severity of periodontal diseases differs amongst populations of different race (Douglas 
et al., 1983), in different areas of the same country, (Teixeira et al., 2006; Viera et al, 2009, ) as 
well as in different countries (Cortelli et al., 2005; Gajardo et al., 2005; Haffajee et al., 2004; 
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Sanz et al., 2000; Rylev & Kilian, 2008). Asian and African popoulations have on average 
more severe periodontal disease than Europeans and Americans (Glickman, 1972; Baelum et 
al., 1986; Botero et al, 2007). While this may largely be due to differences in oral hygiene 
habits, customs and traditions, confounding factors may affect the immune response which, 
in turn, will affect the level of disease activity (Table 1). 
As previously mentioned, not all individuals are susceptible to periodontitis and the 
literature shows that some individuals present with gingivitis which appears to remain 
contained. A much quoted study of the plantation workers in Sri Lanka (Löe, 1986), who 
practised no oral hygiene and had no access to professional dental care, demonstrated that 
some, but not all, developed periodontitis, while others remained with minimal disease. 
Studies by Africa et al., (1985a) and Reddy et al.( 1986) reported on a periodontitis resistant 
population in South Africa . Although one of the first studies to report on increased 
prevalence of suspected periodontopathogens in the absence of periodontitis, thus 
suggesting a variability in host susceptibility to periodontitis as well as ‘carriers” of 
avirulent strains, no genetic studies were done to confirm this.  
Plaque biofilm formation has been described as a highly ordered sequential attachment of 
specific species over time, a process found to occur at the same rate for everyone (Palmer 
2003). However, the architecture and function is person-specific and even though the same 
bacterial species may often be found in the same site of many different individuals, each 
individual may have a unique microbial fingerprint (Dethlefsen et al., 2007), which dictates 
the outcome of disease progression and response to treatment (Filoche et al., 2007, 2008; 
Haffajee et al., 2006; Preza et al., 2008; Sissons et al., 2007; Teles et al., 2006). Not only do 
different persons harbour different oral microbiota, but different sites within the same 
mouth as well as different sites of the same tooth in the same mouth also differ in microbial 
composition due to environmental differences (Dawes et al., 2008; Haffajee et al., 2006, 2009; 
Mager et al., 2003; Mineoka et al., 2008).  
The bacterial challenge presented by the bacteria of the plaque biofilm activates the host 
inflammatory response which is also influenced by the factors listed in Table 1. The severity 
of periodontal disease is modified by the expression of three elements of the host response, 
namely, interleukin-1 (IL-1), prostaglandin-E2 (PGE2) and matrix metalloproteinases 
(MMPs) that destroy both collagen and bone. Increased production of IL-1 appears to be 
hereditary with specific IL-1 gene variation associated with response to the bacterial 
challenge (Assuma et al., 1988; Cavanaugh et al., 1998; Gemmell et al., 1998; Ishihara et al., 
1997; McGee et al., 1998; Okuda et al., 1998; Roberts et al., 1997).  
 

Factor Selected References
Smoking Bergström et al., 2000; Calsina et al., 2002; Feldman et al., 1983; Haber, 

1994; Haber et al., 1993; Stam, 1986; 
Genetics  Engebretson et al., 1999; Genco, 1998; Gore et al., 1998; Grossi et al., 1998;  

McDevitt et al., 2000; Mark et al., 2000; Michalowicz et al., 2000; Lang et 
al., 2000; Shirodaria et al., 2000; 

Diabetes Genco, 1988; Grossi et al., 1998
Hormones Marcuschamer et al., 2009
Stress Armitage 1999; Bascones & Figuero 2006; Flemming, 1999; Genco, 1998; 

Newman, 1998. 
Age Genco, 1998; Horning et al, 1992 

Table 1. Factors which may influence host susceptibility. 
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4.5 Gene expression 

As mentioned above, host susceptibility may be genetically determined; so also, can many 
important virulence traits be ascribed to heterogeneity among subspecies of bacteria. Some 
strains are associated with health or “carrier” states while others are associated with disease. 
In order to confirm this, researchers have embarked on demonstrating multiple clonal types 
within the periodontopathogens and reported on their different virulence properties.  
Gene expression is regulated in response to changes in the environment with either up- or 
down-regulation of the production of virulence factors (Finlay & Falkov, 1989; Maurelli et 
al., 1989; Miller et al., 1989), or when the organism comes into direct contact with partner 
community bacteria (Sharma, 2010) thus acquiring their virulence through cell-cell 
interactions (Araki et al., 2004; Brook et al., 1984; Kuriyama et al, 2010; Van Dalen et al., 
1998).  
The persistence of clones appears to vary for different species, with many clones 
simultaneously inhabiting the oral cavity at different periods. Genomic polymorphisms 
within bacterial strains along with the response of the host will determine the disease 
situation and progression in the individual patient (Hohwy et al., 2001; Kononen et al., 1994; 
Tambo et al., 2010). Early colonising species showing wide clonal diversity (reflected in 
antigenic variety) elicit natural immunity which benefits the host, while frequent turnover 
of clones within a particular host may allow the species to overcome the host response and 
exert its pathogenicity (Smith, 1988).  
Multiple genotypes have been demonstrated in Prevotella (Yanagiswa et al., 2006), P. 
gingivalis (Amano et al., 2000; Nakagawa et al., 2000), F. nucleatum (George et al., 1997; 
Haraldsson et al., 2004; Thurnheer et al., 1999), T. denticola and other spirochaetes (Choi et al., 
1994; Reviere et al., 1995), and Aa (Preus et al., 1987a,b). Cross-sectional and longitudinal 
studies of T. forsythia in periodontal disease (Hamlet et al., 2002, 2008) found the prtH 
genotype to be significantly raised in subjects with disease and lowered in subjects showing 
no attachment loss. It is generally accepted that species involved in infection will display a 
high degree of genetic similarity (Perez-Chaparo et al., 2008). In the case of P. gingivalis, 
many different individuals may be colonised by a single genotype, but their clonal types 
may differ. Based on their nucleotide sequences, P. gingivalis fima gene has been classified 
into 5 genotypes (I-V). Types I and V are most prevalent in healthy adults (Amano et al., 
2000), with type I showing the most significant association (Amano et al., 1999a; Nakagawa 
et al., 2000). Anamo et al.( 1999, 2000) reported Type II to be significantly associated with 
periodontitis, followed by type IV while the converse was found by Griffen et al.(1999), 
using ribosomal intergenic spacer region (ISR) heteroduplex typing, and Teixeira et al. 
(2009). These differences may be attributed to differences in techniques used and/or study 
population. Another explanation may be that virulent alles may be distributed at several 
genetic loci throughout the clones with only certain combinations producing a strain which 
may be associated with disease (Loos et al., 1993). More than 100 genes were reported to be 
missing from the genome of a non-invasive strain of P. gingivalis (Dolgilevich et al., 2011). 
Types III and IV of P. gingivalis are believed to be virulent, showing reduced ability to 
adhere to host proteins, while non-encapsulated strains of type I are recognised as avirulent 
and showed better adhesion to salivary proteins (Nakagawa et al., 2000).  
A key virulence factor of Aa is the powerful leucotoxin which is able to disrupt and 

destroy cells of the immune system. Aa serotypes c and b have been associated with 

health and disease respectively (Asikainen et al., 1991). The leucotoxic clone JP2 is 

associated with serotype b and is characterised by enhanced leucotoxin expression 
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associated with the 530bp deletion in the promoter region of the ltx operon. It is 

speculated that the clone might have a distinct host tropism being found mostly in 

adolescents in Mediterranean regions of Africa (e.g. Morocco) and West Africa from 

where it was transferred to the Americas during the slave trade. Although frequently 

found in subjects with aggressive periodontitis, clonal types other than JP2 have been 

associated with disease and carrier states. Recent evidence of aggressive periodontitis 

amongst adolescents in Morocco who do not have the JP2 clone (Rylev et al. 2011), and the 

finding of the JP2 clone in a Caucasian mother and daughter in Sweden who have no 

disease (Claesson et al. (2011), indicate that carriers do exist in Caucasians and that other 

serotypes may be associated with disease in African populations. Table 2 shows some 

examples of different serotypes in different population groups.  

 

Ethnicity %Aa 

isolates 

Serotype distribution 

 

  a b c d e NT 

Chinese 

 (Mombelli et al., 1998) 

 

61.6 

 

15 

 

0 

 

38.3 

 

0 

 

8.3 

 

0 

Chinese 

 (Mombelli et al., 1999)  

 

62.7 

 

18 

 

7.7 

 

57.7 

 

0 

 

7.1 

 

9.4 

Vietnamese 

Finish 

(Holtta 1994) 

78 

13 

36 

6 

27 

6 

63 

0 

0 

0 

0 

0 

0 

0 

Turkey 

(Dogan et al., 2003) 

 

66 

 

0 

 

0 

 

34 

 

0 

 

0 

 

34 

Germans 

Koreans 

(Kim et al., 2009) 

27 

22 

20 

0 

33 

0 

25 

61.9 

0 

19 

0 

0 

0 

0 

 

Spanish 

(Blasi, 2009) 

 

72.5 

 

37.5 

 

20 

 

15 

 

0 

 

0 

 

0 

Brazilian 

(Roman-Torres et al, 2010) 

 

80 

 

31.8 

 

<10 

 

52.9 

 

0 

 

0 

 

0 

Table 2. Distribution of serotypes in different ethnic groups (NT = non typeable).  

Serotypes a and b are prevalent in Europeans while serotype c is prevalent in Asian and 

Mediterranean groups (Table 2 and Sakellari et al., 2011). Cortelli et al., (2005) recommended 

that serotype b be used as a diagnostic marker for aggressive periodontitis since they found 

a high prevalence of the JP2 clone in a Brazilian population. These findings have been 

contradicted by other studies on Brazilians which showed very low, if any, serotype b 

strains (Vieira et al., 2009; Roman-Torres et al., 2010). Yet another study showed similar 

frequencies of serotypes b and c but associated serotype b with health and c with disease 

(Teixeira et al., (2006). The contradictions in these results may be due to the fact that Brazil 

has a multi-ethnic population of predominantly African and Mediterranean origin, while 

the native Brazilians, descending from almost extinct ethnic groups who live in cultural 

isolation with no mixing with other ethnic groups (Vieira et al., 2009), have not been exposed 

to the toxic strains of Aa.  
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5. Plaque bacteria associated with health and periodontal disease 

5.1 Plaque in health 

The tooth surface harbours a microbial population which not only lives in harmony with 
host tissues, but also serves a protective function by occupying an ecological niche which 
would otherwise be colonised by potentially pathogenic bacteria. Bacterial species belonging 
to the genera Streptococcus and Actinomyces rapidly colonise bacteria–free surfaces, thus 
explaining their prevalence in dentitions which are well maintained (Listgarten, 1988). The 
relatively aerobic environment of the healthy gingival sulcus tends to preclude the growth 
of obligate anaerobes and the predominant flora includes members of the genera 
Actinomyces, Atopobium, Eubacterium, Micromonas, Peptococcus, Staphylococcus, Streptococcus, 
Veillonella while phylotypes Bacteroidetes and Deferribacteres have also been reported. 
Vibrios and spirochaetes are present in low numbers if at all (Dalwai et al., 2006; Grossi et al., 
1994; Kumar et al., 2003; Listgarten & Helldén, 1978; Loesche, 1980; Marsh, 1994; Rosan & 
Lamont, 2000).  
Direct darkfield and phase contrast microscopic counts from healthy sites also indicate that 
spirochaetes (1-3%) and motile rods (1-6%) are present in low numbers, while coccoid cells 
(62-79%) predominate (Lindhe et al., 1980; Addy et al., 1983; Africa et al., 1985b; Adler et al., 
1995; Stelzel et al., 2000). Studies of healthy sites following treatment also show similar low 
counts of these forms due to their reduction or complete elimination, with a concomitant 
increase in cocci (Listgarten et al 1978; Loesche et al 1987; Africa et al., 1985b; Adler et al., 
1995; Stelzel et al., 2000).  
In the section that follows, the association of microbial species with periodontal diseases will 
be discussed according to the classification outlined in the World Workshop Proceedings 
(Armitage, 1999) and will be restricted to a selection of the species most frequently 
associated with periodontal diseases.  

5.2 Plaque in gingivitis 

The new classification of periodontal diseases recognises that gingivitis is more prevalent 
than periodontitis and has thus included in the classification of “gingival diseases” all the 
previous sub-classifications of periodontitis related to endocrine and host immune 
disturbances, associations with therapeutic agents and malnutrition. In addition, plaque 
induced gingivitis has been classified separately from non-plaque induced gingivitis 
involving other aetiologic agents such as Treponema pallidum, Neisseria gonorrhoeae, 
streptococci, herpesviruses, and Candida which may also present in the oral cavity 
(Armitage, 1999). A detailed description of the classification is outside of the scope of this 
chapter and readers are advised to read the chapter on disease classification for details.  
For ease of reading and association, this section will describe the microbiota under the broad 
headings of gingivitis, chronic periodontitis and aggressive periodontitis only, since many 
of the species overlap in the subclassifications of the three disease entities and may all be 
contained within the broad listing of putative pathogens in Table 3.  
If the plaque biofilm remains undisturbed, demonstrable inflammation of the gingiva will 

occur in 2-4 days due to the production of various noxious bacterial metabolites such as 

endotoxins, mucopeptides, lipoteichoic acids, metabolic end-products and proteolytic 

agents, which may penetrate the gingival tissues. In addition, the increased production of 

gingival fluid contains growth-promoting factors for a wide range of bacteria. The initial 

phase of gingivitis is characterised by predominantly Gram-positive cocci, followed by 
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fusiform bacilli after 2-4 days. Neutrophil transmigration through junctional and pocket 

epithelium is enhanced, accompanied by perivascular collagen destruction. Thinning and 

ultimate ulceration of the cuff epithelium may occur, followed by infiltration of lymphocytes 

and other mononuclear cells. Further loss of collagen from the marginal gingiva will occur, 

accompanied by an increase in vibrios and spirochaetes (Table 3) with a predominantly 

polymorphonuclear (PMN) leucocyte and plasma cell infiltrate apparent in the connective 

tissue. Bleeding on probing may occur and a relatively shallow gingival pocket may be 

evident. At this stage, chronic gingivitis can either be induced or eliminated by plaque 

control.  

 

Bacterial species Gingivitis Chronic 

periodontitis 

Aggressive 

periodontitis 

   Localised Generalised 

Aggregatibacter 

actinomycetemcomitans (Aa) 
 + + + 

Campylobacter rectus + +  + 

Capnocytophaga +  + + 

Cryptobacterium curtum  +   

Eikenella corrodens + + + + 

Enterobacteriaceae  + +  

Eubacterium saphenum  +   

Fusobacterium nucleatum + + +  

Micromonas 
(Peptostreptococcus) micros 

 + +  

Mogibacterium (Eubacterium) 
timidum 

 +   

Peptostreptococcus anaerobius + +   

Pophyromonas endodontalis  +   

Porphyromonas gingivalis + +  + 

Prevotella intermedia + + + + 

Slackia (Eubacterium) exigua  +   

Tannerella forsythia  +  + 

Treponema amylovorum  +  + 

Treponema denticola + +  + 

Treponema lecithinolyticum    + 

Treponema maltophilum  +   

Treponema medium + +   

Treponema pectinovorum + +  + 

Treponema socranskii + +  + 

Treponema vincentii + +  + 

Veillonella parvula +    

Table 3. Bacterial species most frequently detected in periodontal diseases. 
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5.3 Plaque in chronic periodontitis 

Previously referred to as adult periodontitis, this disease affects many teeth with no 
evidence of rapid progression. The onset appears to be after 30 years, but the condition may 
also be found in children and adolescents. Amounts of microbial deposits are usually 
associated with the severity of disease. Although chronic periodontitis can occur in a 
localised and a generalised form, both forms appear to be identical in their aetiology and 
pathogenesis. The microbial pattern varies, with reports of unusual species appearing in the 
literature. The species listed in Table 3, date post 1999 only, following the reclassification of 
periodontal diseases, since studies before 1999 might now fall within a different disease 
category under the new classification and create confusion.  
When periodontal disease becomes active or destructive, the numbers of the bacteria in the 
unattached zone increases and Gram-negative organisms, particularly the motile organisms, 
predominate. If this condition is allowed to persist, the periodontal tissues are rapidly 
destroyed. Direct microscopy studies using both darkfield and phase contrast have revealed 
significant differences between subgingival microbial floras of healthy and diseased 
subjects. Listgarten & Helldén (1978) demonstrated that in chronic periodontitis-affected 
subjects, spirochaetes constituted 37.7% and motile rods 12.7% of the total microscopic 
count, with coccoid cells as low as 22.3%. These microbiological changes may signal an 
increase in periodontal disease activity. Many cycles of exacerbation and remission may 
continue till the alveolar bone is destroyed and the teeth lost (Socransky et al., 1984).  
Table 3 lists some of the species most frequently associated with periodontal diseases 
(Botero et al., 2007; Casarin et al., 2010; Dogan et al., 2003, Gajardo et al., 2005; Kumar et al., 
2003; Teixeira et al., 2006; Riep et al., 2009). Species associated with chronic periodontitis are 
predominantly Gram-negative with few Gram-positive anaerobes. Spirochaetes 
predominate along with P. gingivalis and T. forsythia. Bacterial antagonism and synergism 
are indicated with Aa seldom reported along with P. gingivalis , while species like F. 
nucleatum, P. intermedia and other species of the “orange complex” (Socransky et al.,(1998) 
are necessary for the colonisation of the “red complex” consortium. Subjects with high 
proportions of P. gingivalis were found to have few or no P. intermedia and vice versa 
(Loesche et al., 1985, Africa, unpublished data). Recent studies would indicate that this 
inhibition has been overcome, probably due to interactions of emerging species or due to 
clonal diversity within the two species, resulting in a mutual tolerance. 
Recently, our attention has been drawn to the colonisation of the asaccharolytic anaerobic 
Gram-positive rods (AAGPRs) which have been associated with periodontitis (Miyakawa & 
Nakagawa, 2010). Although some of these species have been reported in the past, their role 
in disease has not received much attention. While they have an inability to form biofilms 
when cultured individually, they appear to be dependent on P. gingivalis and F. nucleatum 
for their colonisation of, and establishment in, the plaque biofilm. Their irregular finding in 
plaque cultural studies may be due to their fastidious growth requirements and difficulties 
in their colony recognition. Some of the AAGPR species may form part of the viable but not 
cultivable (VNC) species in the oral cavity, playing a role in prolonging and stabilising of 
biofilms formed by P. gingivalis. Because they are able to inhibit cytokine production by 
human gingival fibroblasts stimulated by other bacteria, it is possible that they may prolong 
inflammation, causing chronic disease (Miyakawa & Nakagawa, 2010).  
The role of Enterobacteriaceae in chronic periodontitis is not clear and they are thought to 
indicate superinfection. It is speculated that they are opportunists which thrive after 
periodontal treatment. The drugs of choice for treating periodontal disease include 
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amoxicillin, doxycycline, tetracycline and metronidazole. The Enterobacteriaceae show 
resistance to these drugs and may therefore persist after administration of therapy (Botero et 
al., 2007). More studies are needed to explain their presence in the plaque biofilm and to 
elucidate their role in infection.  
 Herpes viruses may contribute to the pathogenesis of chronic and aggressive periodontitis 

(Table 4). There is speculation that Epstein-Barr virus-1 (EBV-1) and cytomegalovirus (CMV) 

may be involved in synergistic mechanisms with Aa, P. gingivalis and T. forsythia (Chalabi et 

al., 2010; Dawson et al., 2009; Imbronito et al., 2008; Slots 2010, Fritschi et al., 2008).  

 

Microbe Chronic 
Periodontitis 

Localised 
Aggressive 

Periodontitis

Generalised 
Aggressive 

Periodontitis 

Herpes simplex virus-1 + - + 

Cytomegalovirus + -  

Epstein-Barr virus + - + 

Dialister pneumosintes + - - 

Prevotella denticola + - - 

Staphylococcus aureus - - + 

Table 4. Species less frequently reported but also implicated in periodontal diseases. 

5.4 Aggressive periodontitis 

This form of periodontitis is less common than chronic periodontitis and mostly affects 
young patients. Localised and general forms of the disease differ in aetiology and 
pathogenesis. Localised aggressive periodontitis (LAP) mostly restricted to the first 
molars and incisors, is characterised by rapid loss of attachment and bone destruction in 
otherwise clinically healthy individuals while generalised aggressive periodontitis (GAP) 
presents a clinical picture similar to LAP but the bone loss is generalised. Aggressive 
periodontitis was previously called localised and generalised juvenile periodontitis. 
Plaque films are thinner than in chronic periodontitis and age is no longer a criterion for 
diagnosis (Armitage, 1999).  
Comparison of the microbiology of chronic periodontitis with aggressive periodontitis 

shows major overlaps , with very few species showing unique specificity for either condition 

(Table 3). The organisms most strongly associated with LAP and GAP are Aa and P. 

gingivalis respectively. The prevalence of Aa in LAP and GAP is often contradictory with 

some reporting it only in LAP and others reporting it in both LAP and GAP. However, the 

prevalence appears to be higher in LAP. A positive correlation was found between a highly 

toxigenic group of Aa and deep pockets, young age and mean attachment loss (Cortelli et al., 

2005). Aa was found to be present in very low numbers in a Colombian population (Botero 

et al., 2007) when compared with Asian populations (Yang et al., 2005; Leung et al., 2005) and 

a Brazilian population (Cortelli et al., 2005). The Colombian population harboured E. 

corrodens, P. gingivalis and T. forsythia along with Enterobacteriaceae. The latter may be 

associated with halitosis in humans (Goldberg et al., 1997). As with chronic periodontitis, 

very few studies make a distinction between LAP and GAP. Most studies report on 

“aggressive periodontitis” (Botero et al., 2007; Cortelli et al., 2005; Sakellari et al., 2004) which, 

in the context of this chapter is interpreted as GAP.  
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6. Virulence mechanisms of plaque bacteria 

Although the terms pathogenicity and virulence relate to the ability of a microorganism to 
produce disease, pathogenicity refers to the species and virulence refers to degrees of 
pathogenicity of strains within species. Microbial virulence is investigated by comparing the 
properties of virulent and avirulent strains. In vitro studies of enzymes, antigens, metabolic 
and biological properties indicate virulence markers which may be responsible for 
inhibiting host defence mechanisms or tissue damage. These results could often be 
misleading since many bacteria from infected animals have been shown to differ chemically 
and biologically from tissue grown in vitro. This could be explained by differences in growth 
conditions and phenotypic changes. However, there are some bacterial virulence 
determinants which were originally examined in vivo and then reproduced in vitro by 
approximate changes in cultural conditions (Smith, 1976). In order for bacteria to be 
considered pathogenic, they should be examined for their ability to colonise the appropriate 
site and initiate infection, multiply within the host’s tissues, resist and overcome the host’s 
defences and cause damage to the host’s tissues. This section is limited to the discussion of 
selected microbial species and is based purely on association studies and the demonstration 
in vitro of their pathogenic potential but bearing in mind that true virulence is expressed in a 
susceptible host, rather than in vitro, where nutritional and other environmental conditions 
differ. Tables 5-8 list the important virulence factors of four of the species most frequently 
associated with periodontal diseases namely, T. denticola, P. gingivalis, Aa and T. forsythia 
respectively.  

6.1 Adhesion and colonisation 
Many of the suspected periodontopathogens have surface structures necessary for 
attachment, including fimbriae, capsules and lipopolysaccharides.  

6.1.1 Fimbriae 
The interaction between bacterial fimbriae and host factors could be an important 
component of the disease process.  
Fimbriae are extracellular appendages which facilitate the adhesion of a Gram-negative 
organism to a surface. Aa possesses fimbriae and amorphous material which assist in 
adhesion (Fives-Taylor et al., 1999). Protein sequence homology of P. gingivalis fimbriae 
polymers of repeating fimbrillin monomer subunits with a molecular weight of about 43kDa 
(Yoshimura et al., 1984; Lee et al., 1991) show no homology with the fimbriae of other Gram-
negative bacteria. The fimA gene of P. gingivalis appears to be involved in most of the 
adhesive mechanisms of the organism. P. gingivalis fimbriae also facilitate coaggregation 
with other plaque organisms such as T. denticola, oral streptococci, fusobacteria, actinomyces 
and oral epithelial cells, amongst others. Other reported functions of fimbriae include 
chemotaxis and cytokine induction (Goulbourne & Ellen, 1991; Hashimoto et al., 2003; 
Ishihara et al 1997; Rosen et al., 2008; Yao et al., 1996).  

6.1.2 Capsules and surface layers (S-layers) 

The outer layer of bacteria is often referred to as a capsule (uniform consistency) or a slime 
layer (ill- defined and loosely formed). Because it is this outer layer that is in direct contact 
with the environment, it is largely responsible for the ultimate survival of the producer 
bacterial cell.  
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The composition of capsular polysaccharide may vary among strains and may be composed 
of either carbohydrate or protein, depending on the conditions under which they were 
grown (Hofstad, 1992). In vitro studies have demonstrated a capsule on P. gingivalis 
(Listgarten & Lai, 1979; Woo et al., 1979), fusobacteria and peptostreptococci (Brook and 
Walker, 1985, 1986). Besides having adhesive properties, capsules are known to provide 
immunologic specificity and protection against phagocytosis.  
T. forsythia lacks fimbriae and possesses a surface layer of glycoproteins. These serve as 
ligands for lectin-like receptors on other bacteria e.g. F. nucleatum (Murray et al., 1988), 
epithelial cell adherence and invasion (Tanner et al., 1996; Sakakibara et al., 2007) and as an 
external protective layer (Sleytr & Messner, 1988), highly regulated to respond to 
environmental changes (Kato et al., 2002). S-layers have also been reported for C. rectus 
(Haapasalo et al., 1990), Prevotella buccae (Kornman & Holt, 1981) and Eubacterium yunii 
(Kerosuo et al., 1988).  
The oral spirochaetes possess an outer sheath or slime layer which envelopes the complete 

cell. In T. denticola, this layer is composed of 50% protein and 31% total lipid, of which 95% 

and 11% are phospholipid and carbohydrate respectively (Masuda & Kawata, 1982; 

Weinberg & Holt, 1990). The adhesive properties of T. denticola to hydroxyapatite 

(Cimansoni et al., 1987), human gingival epithelial cells (Olsen, 1984; Reijntjens et al., 1986), 

fibroblasts (Weinberg & Holt, 1990), fibronectin (Dawson & Ellen, 1990; Haapasalo et al., 

1992) fibrinogen and laminin (Haapasalo et al., 1992) as well as erythrocytes (Mikx & 

Keulers, 1992), have been demonstrated. The putative T. denticola adhesin was characterised 

as being a surface-bound 53 kDa protein (Cockayne et al., 1989; Umemoto et al., 1989; 

Haapasalo et al., 1992), while Weinberg & Holt (1990) described outer sheath surface 

proteins of 64 kDa and 54-58 kDa depending on the strain examined. These proteins were 

considered to be major degradation components of high molecular mass oligomers 

(Haapasalo et al., 1992). T. denticola major sheath protein (Msp) is thought to be responsible 

for its binding to F. nucleatum, Streptococcus crista, P. gingivalis and T. forsythia (Kolenbrander 

et al., 2000).  

6.1.3 Haemagglutinins 

Haemagglutinins are known virulence factors for a number of bacteria of which P. gingivalis 
produces 5 haemagglutinating molecules. Their role in colonisation is to mediate the 
binding of bacteria to human cell receptors. Our understanding of the complexities of the 
genetics and functions of the haemagglutinin process has been greatly informed by the 
cloning of the first haemagglutinin gene (hagA) from P. gingivalis (Progulske-Fox et al., 1989). 
Because P. gingivalis requires haem for growth, the binding to erythrocytes may also serve as 
a nutrient source (Progulske-Fox et al., 1989). Co-expression of genes associated with 
haemagglutination and proteolytic activity of P. gingivalis, suggest that they function in 
complexes on the cell surface (Shah et al., 1992). Haemagglutinating activity has also been 
described for T. forsythia (Tables 5- 8).  

6.2 Impairing host immune systems  

For adhesion to lead to colonisation, bacteria must be able to resist the host defence mechanisms 

such as phagocytosis and the protective antimicrobial factors which would otherwise destroy 

them. The innate immune system is the host’s first line of defence against bacterial infection. 

Immunomodulation by bacteria allows for their survival and subsequent invasion.  
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6.2.1 Interfering with PMN function 

The ability of T. denticola to suppress the production of ┚-defensin 3 by human gingival 
epithelial cells (Table 5) has been reported (Shin et al., 2010). By preventing binding of such 
antimicrobial peptides, Treponema can evade the host defences and survive. Neutrophil 
chemotaxis and phagocytic activity may be impaired by Treponema Msp interactions, leading 
to reorganisation of host cells.  
Aa produces a leukotoxin that alters cell membranes of PMNs and monocytes and interferes 
with antibody production (Table 7) thus ensuring its own survival (Fives-Taylor et al., 1999). 
The leukotoxin is encoded by a ltx operon consisting of four known genes, namely, ltxA, 
ltxB, ltxC and ltxD, which appear to be present in all strains of Aa with varied levels of 
expression with the JP2 ltx promoter being associated with high levels of leukotoxin 
expression.  
 

Virulence mechanism 
 

References 

Adhesion and colonisation 
Haemagglutinin  
Major sheath protein (Msp) 
 
 
Outer sheath (S-layer), outer sheath 
vesicles (OSV) 
 

 
Grenier, 1991 
Batista de silva et al., 2004; Kaplan et al., 2009; 
Kolenbrander et al., 1995, Rosen et al., 2008, Yao 
et al., 1996 
Kuchn & Kesty, 2005 
 

Impairment of host defences 
Methyl mercaptan 
Lipoproteins  
Suppression of ┚-defensin production
Internalisation by epithelial cells 
 

 
Johnson et al., 1992; Lancero et al., 1996 
Dashper et al, 2011 
Shin et al., 2010 
Colombo et al., 2007 

Tissue invasion / bone resorption 
Motility  
Metabolic end products 
 
Phosphatases  
Trypsin-like protease 
Tissue degrading enzymes 

 
Li et al., 1999; Kataoka et al., 1997 
Chu et al., 2002; Fiehn, 1989; Fukamachi et al., 
2005; Kuramitsu et al., 2007; Yoshimura et al., 2000 
Ishihara et al., 1995; Laughon et al., 1982;  
Loesche et al., 1987; Ohta et al., 1986 
Fiehn 1986b; Mikx, 1991; Uitto et al., 1986  
 

Table 5. Virulence factors of T. denticola. 

Spirochaetes, including T. denticola, have been reported to inhibit lysosome release 
(Taichman et al., 1982) thereby inhibiting PMN degranulation and other immune reactions 
to spirochaetes and other plaque microrganisms in the periodontal pocket (Hurlen et al., 
1984). Besides interfering with PMN function, spirochaetes are also able to suppress 
proliferation of fibroblasts (Boehringer et al., 1984), endothelial cells (Taichman et al., 1984) 
and lymphocyte responsiveness (Taichman et al., 1982; Shenker et al., 1984). The ability of 
bacteria to overcome the host defence mechanisms may also place the host at risk for 
opportunistic infections and could be relevant to the progression of periodontitis.  
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Virulence mechanism 
 

References 

Adhesion and colonisation 
Haemin  
Fimbriae 
Outer membrane proteins 

 
Holt & Bramanti, 1991 
Dickinson et al., 1988; Lamont & Jenkinson, 
1998 
 

Impairment of host defences 
Induction of cytokines 
Ability to subvert host intracellular events 
and localise intracellularly 
Proteases  
 

 
Frandsen et al., 1987; Hanazawa et al., 1992;  
Murakami et al., 2002; Schifferie et al., 1993;  
Shapira et al., 1997 

Tissue invasion / bone resorption 
Hyaluronidase, heparin 
Chondroitin sulphatase 
Phopholypase A 
Acid and alkaline phosphatases 
 

 
Bulkacz et al., 1981; Capestany et al., 2004; 
Frank, 1980; Frank & Vogel, 1978; Holt & 
Bramanti, 1991; Kawata et al., 1994; 
Lindemann et al., 1988; Sismey-Durrant & 
Hopps, 1991;  

Table 6. Virulence factors of P. gingivalis. 

Oppa, a T. denticola lipoprotein has been proposed to act as an adhesin for the purpose of 
covering the surface of T. denticola with host proteins in order to avoid, or at least delay, 
immune recognition (Dashper et al., 2011), while surface proteins of T. forsythia activate host 
cells to release pro-inflammatory cytokines and induce cellular apoptosis (Hasebe et al., 
2004). 

6.2.2 Endotoxins 

True endotoxins are derived only from Gram-negative bacteria and normally exist within 
the bacterium as integral components of the bacterial cell wall in the form of unique 
glycolipid, lipopolysaccharide (LPS). Endotoxin can be released from cells during active 
growth as well as by cell lysis. Normal macrophages are not cytotoxic but following 
exposure to LPS, can selectively release lysosomal enzymes. So also can PMNs and 
lymphocytes (Koga et al., 1985). Most of the LPS-related injury in tissues seems to be due to 
constituents of PMN lysosomes which, not only may digest connective tissue components, 
but also increase vascular permeability and activate other mediators of inflammation 
(kinins). LPS is thought to be able to induce B-lymphocyte differentiation, resulting in the 
production of immunoglobulin-synthesising cells, mainly IgG and IgM. It can also reduce 
adhesion of periodontal ligament fibroblasts and stimulate bone resorption in vitro (Koga et 
al., 1985; Wilson et al., 1986). Toll-like receptors (TLRs) bind to host epithelial cells and 
macrophages which sense LPS, thereby preventing triggering of intracellular signalling 
systems which lead to the production of inflammatory mediators and the migration of 
macrophages and PMNs to the site of infection (Dauphinee & Karsan, 2006).  
Treponemes lack the genes encoding the enzymes for LPS synthesis. The treponemal outer 
sheath contains lipooligosaccharides (LOS) with a diacylglycerol lipid anchor and hexose-
hexosamine-hexose core. Fragments in the lipid anchor resemble a glycolipid membrane 
anchor found in Gram-positive lipoteichoic acid (Dashper et al., 2010). The function of LOS 
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is similar to LPS, stimulating the expression of MMPs and fibroblasts thereby inducing the 
production of a variety of inflammatory mediators which could exacerbate the disease 
process (Choi et al., 2003).  
Induction of cytokine production from macrophages has been demonstrated with LPS in 
Bacteroides, Prevotella, and Porphyromonas (Fujiwara et al., 1990; Yoshimura et al., 1997). 
Because of the immunologic and physiologic effects that LPS has on the host-parasite 
relationship in periodontal disease, it should be considered as highly significant.  
 

Virulence mechanism References 

Adhesion and colonisation 
Fimbriae 
Vesicles 
Amorphous material 
 

 
Fives-Taylor et al., 1994 

Impairment of host defences 
Chemotaxis inhibitor 
Resistance to phagocytosis 
Capsular polysaccharide 
Surface antigens 
Inhibition of fibroblast cytokines 
Leukotoxin  
 

 
Ebersole et al., 1996; Fives-Taylor & Meyer, 
1999; 
Mangan et al., 1991; Nakashima et al., 1997;  
Wilson & Henderson, 1995 

Tissue invasion / bone resorption 
Lipopolysaccharide (LPS) 
Haemolysin 
Proteinases 
Phospholipase C 
Extracellular vesicles 
Collagenase 
Acid and alkaline phosphatases 
Epithelial toxin 
 

 
Kimizuku et al., 1996; Lai et al., 1981; 
Mayrand et al., 1996; Saglie et al., 1988;  
Wang et al., 2001; Wilson & Henderson, 
1995;  
Zambon, 1983 
 

Table 7. Virulence factors of Aggregatibacter actinomycetemcomitans (Aa). 

6.2.3 Protease production 

Porphyromonas, Prevotella and Capnocytophaga produce proteases against IgA and IgG 
(Grenier et al., 1989). Although all their virulence mechanisms have not been studied in great 
detail, bacterial species that produce these proteases are associated with invasion of mucous 
membranes where IgA may be found (Hofstad, 1992). Prevotella and P. gingivalis (Table 6) 
each produce different antigenic forms of IgAI protease (Frandsen et al., 1987).  

6.3 Colonisation and multiplication in vivo 

Having established themselves, the bacteria must be able to multiply within the host. 
Factors such as temperature, nutrients and atmospheric conditions should be supplied by 
the tissues or through bacterial interactions. In the gingival crevice, there is much evidence 
for symbiosis amongst plaque bacteria.  
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Virulence mechanism 

 

References 

 

Adhesion and colonisation 

Haemagglutinin 

S-layer 

Leucin rich proteins BspA 

Glucosidases  

 

 

Murakami et al. 2002 

Sabet et al., 2003 

Sakakibara et al., 2007 

Sharma et al., 1998, 2010 

Impairment of host defences 

Proteolytic enzymes corrupt host immunity 

Surface lipoproteins induce apoptosis 

 

 

Holt & Bramanti 1991 

Hasebe et al., 2004 

Tissue invasion / bone resorption 

Trypsin-like protease 

┙-D-glucosidase and N-acetyl-┚-glucosaminidase 

PrtH proteinase (forsythe detachment factor) 

Methylglyoxal product 

 

 

Grenier, 1995 

Hughes et al., 2003 

Maiden et al., 2004 

Saito et al., 1997 

Table 8. Virulence factors of T. Forsythia. 

6.3.1 Synergistic virulence expression  
Many virulence genes in plaque bacteria are only expressed when the bacterial species 

comes into contact with the host or with other partner community bacteria, e.g. the 

virulence properties of P. gingivalis are enhanced by interaction with F. nucleatum (Frias et 

al., 2001; Kinder & Holt, 1989; Kolenbrander & Andersen, 1987), T. denticola (Grenier, 1992; 

Ikegami et al., 2004), and T. forsythia (Yao et al., 1996).  

T. denticola and P. gingivalis display a symbiotic relationship in degrading proteins, 

utilisation of nutrients and growth promotion (Grenier, 1992; Grenier & Mayrand, 2001; 

Hollman & van der Hoeven, 1999; Kigure et al., 1995; Nilius et al., 1993; Yoneda et al., 2001).  

Interactions between T. forsythia and other bacteria such as members of the “red complex” 

result in synergistic mechanisms in alveolar bone loss and immune-inflammatory responses 

in rats (Kesavalu et al., 2007). This bacterial consortium has frequently been associated with 

the clinical progression of chronic and aggressive periodontitis (Holt & Ebersole, 2005; 

Lamont & Jenkinson, 1998; Socransky et al., 1998). Because of its motility, T. denticola is able 

to respond chemotactically to environmental stimuli. It appears that T. forsythia may be a 

necessary precursor for the colonisation of T. denticola and P. gingivalis, since these species 

were rarely found in subgingival plaque without T. forsythia (Dashper et al., 2011). Studies of 

subcutaneous abscess showed that inoculation with P. gingivalis resulted in more severe, 

ulcerative lesions than monoinfection with T. denticola, T. pectinovorum or T. vincentii 

(Kesavalu et al., 1997, 2007). Low doses of P. gingivalis co-infected with T. denticola 

significantly enhanced tissue damage, showing that P. gingivalis was needed for invasion 

and tissue damage to occur.  
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6.3.2 Toxin-antitoxin systems 

Toxin-antitoxin systems (TA) are composed of a stable toxin and a labile antitoxin which 
retard essential cell components and counteract the effects of the toxin respectively. They 
play a major role in biofilm formation in that they are involved in programmed cell death 
and reversible bacteriostasis (Kim et al., 2009; Makarova et al., 2009). T. denticola contains 33 
predicted TA systems which, when they show an increase in expression, may demonstrate a 
role for them in biofilm persistence and resistance to environmental assaults (Jayaraman, 
2008; Lewis, 2000).  

6.4 Damage of the host’s tissues 

An increase in microorganisms results in high concentrations of endotoxin, mucopeptides, 
lipoteichoic acids, metabolic products and proteolytic activity in the subgingival area.  

6.4.1 Outer membrane vesicles  

Gram-negative bacteria produce outer membrane vesicles (OMV) previously thought to be 
random blebbing of the outer sheath resulting in the formation of spherical vesicles 50-100nm 
in diameter (Devoe & Gilchrist, 1977; Grenier & Mayrand, 1987b). We now know that their 
formation is a highly regulated response to strengthen the bacterium during environmental 
changes. Such blebs have been identified in P. gingivalis (Grenier & Mayrand, 1987b), Aa (Kato 
et al., 2002) and Treponema. T. denticola outer sheath vesicles have been reported to penetrate 
tissues more readily than the bacterium itself (Cimansoni & McBride, 1987).  

6.4.2 Leucin-rich repeat proteins 

Leucin-rich repeat proteins (LRR) are found in many eukaryotic and prokaryotic cells with a 
variety of cellular locations and functions. They belong to the CTD family of proteins 
involved in protein-protein interactions and signal transduction. Genes encoding LRR 
proteins have been identified in P. gingivalis, T. denticola, P. intermedia and F. nucleatum. T. 
denticola LrrA protein plays a role in coaggregation with T. forsythia but not P. gingivalis or F. 
nucleatum. lrrA also mediates binding to epithelial cells (Ikegami et al., 2004, Rosen et al., 
2008). Six Lrr proteins are predicted in the T. denticola genome. Two Lrr proteins have been 
characterised from P. gingivalis. The InIJ protein of P. gingivalis (Capestany et al., 2006) is 
secreted and attached to the surface of the cell. It is important in coaggregation and biofilm 
development as well as for epithelial cell invasion. OMV of P. gingivalis promote the BspA-
mediated invasion of epithelial cells by T. forsythia (Inagaki et al., 2006, Lewis et al., 2008). T. 
forsythia BspA protein is also associated with alveolar bone loss (Capestany et al., 2006; 
Dashper et al., 2009; Inagaki et al., 2006; Sharma et al., 1995, 2005). To date, one Lrr protein 
has been characterised and another five predicted. P. intermedia BspA protein (Lewis et al., 
2008) is associated with bacterial adherence and invasion, and triggers the release of bone-
resorping proinflammatory cytokines from monocytes (Hajishenghallis et al., 2002).  

6.4.3 Enzymes 

Many Gram-negative bacteria contain proteolytic and hydrolytic enzymes in their 

periplasmic space and in addition, they produce extracellular enzymes. Plaque bacterial 

enzymes are many, with a resultant variety in capacity to damage the host tissues or 

modulate the behaviour of other strains; for example, they alter bacterial attachment and 

interfere with host defence systems by inactivating important proteinase inhibitors.  
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Spirochaetes are able to damage periodontal tissue directly by the production of surface 
components such as endotoxins and histolytic enzymes. Indirect damage may result from 
the initiation of excessive inflammation or tissue reaction in response to toxins, products of 
tissue breakdown, or specific hypersensitivity of the protective host inflammatory response 
to bacterial plaque antigens (Holt & Bramanti, 1991; Kontani et al., 1996; Kuramitsu et al., 
1995; Potempa & Pike, 2009; Travis et al., 1997).  
Certain plaque bacteria such as Capnocytophaga, T. forsythia, T. denticola, T. vincentii and P. 

gingivalis produce collagenolytic proteases referred to as trypsin-like enzyme (Laughon et 

al., 1982; Yoshimura et al., 1984). This enzyme is able to break down intrinsic protease 

inhibitors such as ┙-antitrypsin and could therefore interfere with the control of normal 

proteolytic processes on human mucosal surfaces (Travis et al., 1997). Trypsin-like enzymes 

also activate latent tissue collagenase (Uitto et al., 1986). The P. gingivalis trypsin-like enzyme 

differs from the T. denticola enzyme (Yoshimura et al., 1984) in that it is a true protease 

capable of degrading albumin, azocoll and gelatin and is stimulated by reducing agents 

such as dithiothreitol. Both enzymes are cell-bound and released by cell lysis (Loesche et al., 

1987).  

Mucopolysaccharidases (e.g. hyaluronidase and chondroitin sulphatase) are able to exert 

their effects by diffusing into the tissues and breaking down the intercellular acidic 

mucopolysaccharides of the epithelium without there being any direct bacterial penetration 

of the host tissues (Fiehn 1986b, Reijntjens et al., 1986). Hyaluronidases are produced by the 

gingival tissues as well as by oral spirochaetes and P. gingivalis and are present in most 

salivas but increased in subjects with poor oral hygiene and periodontal disease (Holt & 

Bramanti, 1991). Both P. gingivalis and T. denticola demonstrate chondroitin sulphatase 

activity (Fiehn, 1986b; Holt & Bramanti, 1991).  

Collagenolytic activity also requires gelatinase and other proteases (Uitto, 1987). Gelatinase 

may originate from both the plaque bacteria and human leucocytes and is potent in 

degrading basement membrane collagen (Uitto, 1987). Elastase participates in collagen 

degradation by solubilising the polymeric collagen fibres into individual tropocollagen 

molecules. Spirochaetes are known gelatinase and elastase producers (Uitto et al., 1986). The 

ability of spirochaetes to degrade basement membrane collagen could well be related to 

their ability to penetrate host tissues (Ellen & Galimanas, 2005; Kigure et al., 1995). Dentilisin 

is a protease located on the surface of the cell which contributes to disease by disrupting 

intercellular adhesion proteins (Choi et al., 2003) allowing for T. denticola to penetrate 

epithelial cell layers.  

The T. forsythia genome encodes several glycosidases which can hydrolyse terminal 

glycosidic linkages in oligosaccharides and proteoglycans from saliva, gingival crevicular 

fluid and periodontal tissue, thus promoting disease progression. They can also be involved 

in adherence, colonisation and cross-feeding of community bacteria (Sharma, 2010). 

Bacterial glycosidases may expose host cell-surface sugars which bind to haemagglutinins 

identified in T. forsythia (Murakami et al., 2002). Glycosidase activity was sometimes 

observed with T. denticola (Mikx, 1991) but not with T. vincentii nor T. pectinovorum (Fiehn, 

1986b; Mikx, 1991).  

P. gingivalis and oral spirochaetes show esterase activity (Lamont & Jenkinson, 1998; Mikx, 

1991). In conjunction with phospholipase, esterases may play a role in tissue destruction. 

Phospholipase may provide prostaglandin precursors and help initiate prostaglandin-

mediated bone resorption (Bulkacz et al., 1981). 
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A neutral phosphatase gene has been cloned and expressed from T. denticola (Ishihara & 
Kuramitsu, 1995). Bacterial acid and alkaline phosphatases cause alveolar bone breakdown, 
and have been demonstrated in small spirochaetes (Fiehn, 1986) and P. gingivalis (Frank & 
Voegal 1978, Slots, 1991), while peptidases contribute to the pathogenesis of periodontal 
disease by directly penetrating and degrading basement membrane collagen (Fiehn 1986b, 
Grenier et al., 1990).  
The outer envelope of Gram-negative bacteria consists of 2 layers, namely, the outer 
membrane and the peptidoglycan layer. The purpose of the peptidoglycan layer is to 
maintain cell shape. Cell lysis will therefore not only yield membrane fragments but 
fragments of peptidoglycan as well which interact with host tissue, resulting in a range of 
biological activities, including activation of complement and immunosuppression. 
Peptidoglycan is also considered to be involved in stimulating bone resorption (Nissengard 
et al., 1988) and may therefore constitute an important virulence factor in periodontal 
disease.  

6.4.4 Metabolic end-products 

A variety of potentially cytotoxic metabolites are synthesised by oral bacteria including 
hydrogen sulphide, low molecular weight organic acids and ammonia. Hydrogen sulphide 
is a metabolic end product of cysteine fermentation and is cytotoxic for epithelial cells and 
gingival fibroblasts (Beauchamp et al., 1984), exerting both pro-and anti-inflammatory 
mediators which may disturb host defences (Chen et al., 2010). Both T. denticola and P. 
gingivalis produce hydrogen sulphide. T. denticola produces hydrogen sulphide from 
glutathione and thus glutathione metabolism plays an important role in pathogenicity 
mediated by T. denticola (Chu et al., 2002).  
Volatile sulphur compounds may increase the permeability of the oral mucosa and reduce 
collagen and non-collagenous protein synthesiss. Methyl mercaptan, a volatile sulphur 
compound produced by T. denticola and P. gingivalis and derived from methionine, is known 
to reduce protein synthesis by human gingival fibroblasts, as well as inhibit cell migration in 
periodontal ligament cells (Johnson et al., 1992; Lancero et al., 1996).  
T. forsythia releases metabolites which favour the growth of P. gingivalis which in turn, 
degrades host proteins releasing nutrients such as peptides and amino acids for T. forsythia. 
The synergy between these two species and with T. denticola, provide evidence for their 
combined virulence expression in periodontal disease.  
Virulence is multifactorial, being influenced by microbial interactions (which often differ in 
vivo and in vitro) as well as host susceptibility. Molecular biology has contributed greatly to 
our understanding of virulence and disease progression but many questions still remain 
unanswered.  

7. Conclusion 

Certain subgingival plaque morphtypes predominate in different forms of periodontal 
disease and shifts in microbial proportions probably relate to health and disease. There is no 
proof of a causal relationship between the organisms described above and periodontal 
disease. One can only suggest an association. Because the oral microbiota contains around 
700 species of microrganisms, it has been accepted that periodontal disease is a 
polymicrobial infection, with shifts in the proportions of some species relating to different 
forms of periodontal disease.  
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Identification and monitoring of specific bacteria could aid in management and treatment by 

determining the causative species, monitoring of treatment and deciding on recall intervals. 

Most methods currently employed in microbiological assessment have major shortcomings. 

Inconsistencies between cultural microbiological data from cases with similar clinical 

features are often encountered. These inconsistencies may be attributed to differences in 

detection methods as well as to different stages of the disease process. Differences in data 

from different research centres could indicate not only technical problems, but also 

problems related to the classification of a given site as active or inactive. However, major 

advances have occurred during the past decade and continued efforts are being made to 

facilitate and standardise the microbiological diagnosis of periodontal diseases. Although 

this chapter describes a role for many species with different forms of periodontal disease, 

the interaction and role of bacterial products is vast and complex. Therefore the 

association of a given organism with disease (even though it may be constantly present) 

could be considered as being the result rather than the cause of disease. However, in 

examining association studies, spirochaetes cannot be ignored since they have been 

considered amongst the most highly suspect of the plaque microbiota, being consistently 

observed in different forms of periodontal disease and demonstrating significant 

pathogenic potential.  

The increased prevalence of Aa, T. denticola, P. gingivalis and T. forsythia in different forms of 

periodontal disease has earned them the recognition as diagnostic markers in the disease 

process. However, they should not be considered with the exclusion of other important 

contributers such as F. nucleatum. New and unusual species are emerging which may, in 

time, prove to be the real initiators of the disease process with the above species having to 

relinquish their position at the top of the list of suspected periodontopathogens. Many 

contradictions occur and while some advocate the use of microbial biomarkers, others find 

them misleading and suggest that microbiota should be examined for both pathogenic and 

protective flora and results interpreted as they pertain to the susceptibility of the host 

(Quirynen et al., 2001; Riep, 2007). 

Treatment must be effected with the bacterial communities of the biofilm in mind and 

should concentrate on preventing biofilm formation, interfering with the process of bacterial 

succession and elimination of specific organisms in the biofilm. The recent isolation of an Aa 

serotype b bacteriophage, which is able to lyse bacteria within a biofilm, holds some 

promise in this area (Castillo-Ruiz et al., 2011). Until this can be put to practice, professional 

plaque control coupled with individual oral hygiene practices will continue to serve in 

maintaining a healthy oral ecosystem. 
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