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1. Introduction 

1.1 Visual servoing for robotics applications 

Numerous advances in robotics have been inspired by reliable concepts of biological 

systems. Necessity for improvements has been recognized due to lack of sensory capabilities 

in robotic systems which make them unable to cope with challenges such as anonymous and 

changing workspace, undefined location, calibration errors, and different alternating 

concepts. Visual servoing aims to control a robotics system through artificial vision, in a way 

as to manipulate an environment, in a similar way to humans actions. It has always been 

found that, it is not a straightforward task to combine "Visual Information" with a "Arm 

Dynamic" controllers. This is due to different natures of descriptions which defines 

"Physical Parameters" within an arm controller loop. Studies have also revealed an option of 

using a trainable system for learning some complicated kinematics relating object features to 

robotics arm joint space. To achieve visual tracking, visual servoing and control, for accurate 

manipulation objectives without losing it from a robotics system, it is essential to relate a 

number of an object's geometrical features (object space) into a robotics system joint space 

(arm joint space). An object visual data, an play important role in such sense. Most robotics 

visual servo systems rely on object "features Jacobian", in addition to its inverse Jacobian. 

Object visual features inverse Jacobian is not easily put together and computed, hence to use 

such relation in a visual loops. A neural system have been used to approximate such 

relations, hence avoiding computing object's feature inverse Jacobian, even at singular 

Jacobian postures. Within this chapter, we shall be discussing and presenting an integration 

approach that combines "Visual Feedback" sensory data with a "6-DOF robotics Arm 

Controller". Visual servo is considered as a methodology to control movements of a 

robotics system using certain visual information to achieve a task. Visionary data is 

acquired from a camera that is mounted directly on a robot manipulator or on a mobile 

robot, in which case, motion of the robot induces camera motion. Differently, the camera 

can be fixed, so that can observe the robot motion. In this sense, visual servo control relies 

on techniques from image processing, computer vision control theory, kinematics, 

dynamic and real time computing. 
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Robotics visual servoing has been recently introduced by robotics, AI and control 

communities. This is due to the significant number of advantages over blind robotic 

systems. Researchers have also demonstrated that, VISUAL SERVOING is an effective and a 

robust framework to control robotics systems while relying on visual information as 

feedback. An image-based scheme task is said to be completely performed if a desired 

image is acquired by a robotic system. Numerous advances in robotics have been inspired 

by the biological systems. In reference to Fig. (1), visual servoing aims to control a robotics 

system through an artificial vision in a way as to manipulate an environment, comparable to 

humans actions. Intelligence-based visual control has also been introduced by research 

community as a way to supply robotics system even with more cognitive capabilities. A 

number of research on the field of intelligent visual robotics arm control have been 

introduced. Visual servoing has been classified as using visual data within a control loop, 

enabling visual-motor (hand-eye) coordination. There have been different structures of 

visual servo systems. However, the main two classes are; Position-Based Visual Servo 

systems (PBVS), and the Image-Based Visual Servo systems (IBVS). In this chapter, we 

shall concentrate on the second class, which is the Image-based visual servo systems. 

 

 

Fig. 1. Overall structure of an ANN based visual servoing 
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1.2 Literature surveys   

EGT, Epipolar Geometry Toolbox, (Eleonora et al., 2004), was also built to grant MATLAB 
users with a broaden outline for a creation and visualization of multi-camera scenarios. 
Additionally, to be used for the manipulation of visual information, and the visual 
geometry. Functions provided, for both classes of vision sensing, the PINHOLE and 
PANORAMIC, include camera assignment and visualization, computation, and estimation 
of epipolar geometry entities. Visual servoing has been classified as using visual data within 
a control loop (Cisneros, 2004), thus enabling visual-motor (Hand-Eye) coordination. 
Image Based Visual Servoing (IBVS) Using Takagi-Sugeno Fuzzy Neural Network 
Controller has been proposed by (Miao et. al, 2007). In their study, a T-S fuzzy neural 
controller based IBVS method was proposed. Eigenspace based image compression method 
is firstly explored which is chosen as the global feature transformation method. Inner 
structure, performance and training method of T-S neural network controller are discussed 
respectively. Besides that, the whole architecture of TS-FNNC was investigated. 
An Image Based Visual Servoing using Takagi-Sugeno fuzzy neural network controller has 
been proposed by Miao, (Miao et. al, 2007). In this paper, a TAKAGI-SUGENO Fuzzy 
Neural Network Controller (TSFNNC) based Image Based Visual Servoing (IBVS) method 
was proposed. Firstly, an eigenspace based image compression method is explored, which is 
chosen as the global feature transformation method. After that, the inner structure, 
performance and training method of T-S neural network controller are discussed 
respectively. Besides, the whole architecture of the TS-FNNC is investigated. 
Panwar and Sukavanam in (Panwar & Sukavanam 2007) have introduced Neural Network 
Based Controller for Visual Servoing of Robotic Hand Eye System. For Panwar and 
Sukavanam, in their paper a neural network based controller for robot positioning and 
tracking using direct monocular visual feedback is proposed. Visual information is provided 
using a camera mounted on the end-effector of a robotics manipulator. A PI kinematics 
controller is proposed to achieve motion control objective in an image plane. A Feed 
forward Neural Network (FFNN) is used to compensate for the robot dynamics. The FFNN 
computes the required torques to drive the robot manipulator to achieve desired tracking. 
The stability of combined PI kinematics and FFNN computed torque is proved by Lyapunov 
theory. Gracia and Perez-Vidal in (Gracia & Perez-Vidal 2009), have presented a research 
framework through which a new control scheme for visual servoing that takes into account 
the delay introduced by image acquisition and image processing. The capabilities (steady-
state errors, stability margins, step time response, etc.) of the proposed control scheme and 
of previous ones are analytically analyzed and compared. Several simulations and 
experimental results were provided to validate the analytical results and to illustrate the 
benefits of the proposed control scheme. In particular, it was shown that this novel control 
scheme clearly improves the performance of the previous ones. 
Alessandro and researchers, as in (Alessandro et. al. 2007), in their research framework, they 
proposed an image-based visual servoing framework. Error signals are directly computed 
from image feature parameters, thus obtaining control schemes which do not need neither a 
3-D model of the scene, nor a perfect knowledge of the camera calibration matrix. Value of 
the depth "Z" for each considered feature must be known. Thus they proposed a method to 
estimate on-line the value of Z for point features while the camera is moving through the 
scene, by using tools from nonlinear observer theory. By interpreting "Z" as a continuous 
unknown state with known dynamics, they build an estimator which asymptotically 
recovers the actual depth value for the selected feature. 
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In (Chen et. al. 2008), an adaptive visual servo regulation control for camera-in-hand 

configuration with a fixed camera extension was presented by Chen. An image-based 

regulation control of a robot manipulator with an uncalibrated vision system is discussed. 

To compensate for the unknown camera calibration parameters, a novel prediction error 

formulation is presented. To achieve the control objectives, a Lyapunov-based adaptive 

control strategy is employed. The control development for the camera-in-hand problem is 

presented in detail and a fixed-camera problem is included as an extension. Epipolar 

Geometry Toolbox as in (Gian et. al. 2004), was also created to grant MATLAB users with a 

broaden outline for a creation and visualization of multi-camera scenarios. In addition, to be 

used for the manipulation of visual information, and the visual geometry. Functions 

provided, for both class of vision sensing, the pinhole and panoramic, include camera 

assignment and visualization, computation, and estimation of epipolar geometry entities. 

Visual servoing has been classified as using visual data within a control loop, enabling 

visual-motor (hand-eye) coordination.  

Image Based Visual Servoing Using Takagi-Sugeno Fuzzy Neural Network Controller has 

been proposed by (Miao et. al. 2007). In their study, a T-S fuzzy neural controller based IBVS 

method was proposed. Eigenspace based image compression method is firstly explored 

which is chosen as the global feature transformation method. Inner structure, performance 

and training method of T-S neural network controller are discussed respectively. Besides 

that, the whole architecture of TS-FNNC is investigated. For robotics arm visual servo, this 

issue has been formulated as a function of object feature Jacobian. Feature Jacobian is a 

complicated matrix to compute for real-time applications. For more feature points in space, 

the issue of computing inverse of such matrix is even more hard to achieve.  

1.3 Chapter contribution 

For robotics arm visual servo, this issue has been formulated as a function of object feature 

Jacobian. Feature Jacobian Matrix entries are complicated differential relations to be 

computed for real-time applications. For more feature points in space, the issue of 

computing inverse of such matrix is even more hard to achieve. In this respect, this chapter 

concentrates on approximating differential visual information relations relating an object 

movement in space to the object motion in camera space (which usually complicated 

relation), hence to joint space. This is known as the (object feature points). The proposed 

methodology will also discuss how a trained learning system can be used to achieve the 

needed approximation. The proposed methodology is entirely based on utilizing and 

merging of three MatLab Tool Boxes. Robotics Toolbox developed by Peter Corke (Corke, 

2002), secondly is the Epipolar Geometry Toolbox (EGT) developed by Eleonora Alunno 

(Eleonora et. al. 2004), whereas the third is the ANN MatLab Tool Box. 

This chapter is presenting a research framework which was oriented to develop a robotics 

visual servo system that relies on approximating complicated nonlinear visual servo 

kinematics. It concentrates on approximating differential visual changes (object features) 

relations relating objects movement in a world space to object motion in a camera space 

(usually time-consuming relations as expressed by time-varying Jacobian matrix), hence to a 

robotics arm joint space.  

The research is also presenting how a trained Neural Network can be utilized to learn the 

needed approximation and inter-related mappings. The research whole concept is based on 
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utilizing and mergence three fundamentals. The first is a robotics arm-object visual 

kinematics, the second is the Epipolar Geometry relating different object scenes during 

motion, and a learning artificial neural system. To validate the concept, the visual control 

loop algorithm developed by RIVES has been thus adopted to include a learning neural 

system. Results have indicated that, the proposed visual servoing methodology was able to 

produce a considerable accurate results. 

1.4 Chapter organization 

The chapter has been sub-divided into six main sections. In this respect, in section (1) we 

introduce the concept of robotics visual servo and related background, as related to visual 

servo. In section (2), we present a background and some related literatures for single 

scene via signal camera system. Double scene, as known as Epipolar Geometry is also 

presented in depth in section (3). Artificial Neural Net based IBVS is also presented in 

Section (4), whereas simulated of learning and training of an Artificial Neural Net is 

presented in section (5). Section (5) presents a case study and a simulation result of the 

proposed method, as compared to RIVES algorithm. Finally, Section (6) presents the 

chapter conclusions. 

 

 

Fig. 2. Camera geometrical representation in a 3-D space 
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Fig. 3. Camera image plane and geometry 

2. Single camera model: {object to camera plane kinmeatics} 

Fig. (2) shows a typical camera geometrical representation in a space. Hence, to assemble a 

closed loop visual servo system, a loop is to be closed around the robotics arm system. In 

this study, this is a PUMA-560 robotics arm, with a Pinhole camera system. The camera 

image plane and associated geometry is shown in Fig. (3). For analyzing closed loop visual 

kinematics, we shall employ a Pinhole Camera Model for capturing object features. For 

whole representation, details of a Pinhole camera model in terms of image plane ( aξ , aψ ) 

location are expressed in terms ( ξ ,ψ , and ζ ), as in Equ. (1). In reference to Fig. (2), we can 

express ( )a a,ξ ψ  locations as expressed in terms ( ), ,ξ ξΨ : 

 

a a

a a

ξ
ξ φ

ζ

ψ
ψ φ

ζ

  
=  

 

  

=  
 

   (1) 

Both ( )a a,ξ ψ  location over an image plane is thus calculated by Equ. (1). For thin lenses (as 

the Pinhole camera model), camera geometry are thus represented by, (Gian et. al. 2004) : 
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a

1 1 1

φ ζζ

  
= −  

   
   (2) 

In reference to (Gian et. al. 2004), using Craig Notation, denotes coordinate of point P  in 

frame B . For translation case : 
 

 
B A B

A
P P O= +    (3)  

OA
B  is a coordinate of the origin OA  of frame "A" in a new coordinate system "B". Rotations 

are thus expressed : 
 

 ( )

A T
B

B B B B A T
A A A A B

A T
B

i

R i j k j

k

 
 
 = =
 
 
 

   (4) 

In Equ (4), B
Ai  is a frame axis coordinate of "A" in another coordinate "B". In this respect, for 

rigid transformation we have:  
 

B B A
AP R P=  

 
B B A B

AAP R P O= +    (5) 

 

For more than single consecutive rigid transformations, (for example to frame "C"), i.e. form 

frames CBA →→ , coordinate of point P  in frame " C " can hence be expressed by: 

( )
B B B A B C

A BA AP R R P O O= + +         

 ( ) ( )
B C A C A CB

A A AB BP R P R O OR= + +    (6) 

For homogeneous coordinates, it looks very concise to express
B

P  as :  

 

B B AB
AA

T

P R PO

O1 1 1

    
    =
    
    

   (7) 

 

CC BC
B B

T

P PR

O

o
1 11

    
    =

        
  (8) 

 

C C B AC B
B AB A

T T

P R R PO O

O O1 1 1 1

     
     =
     
     

  (9) 

We could express elements of a transformation ( Γ ) by writing : 
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11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

σ σ σ σ

σ σ σ σ
Γ

σ σ σ σ

σ σ σ σ

 
 
 
 =
 
 
 
 

   
T

A

O 1

Ω
Γ

 
 =
 
 

   (10) 

as becoming offline transformation. If ( )A R= , i.e., a rotation matrix ( Γ ), once TR R I= , 

then : 

   
T

R

O 1

Ω
Γ

 
 =
 
 

   (11) 

Euclidean transformation preserves parallel lines and angles, on the contrary, affine 

preserves parallel lines but not angles, Introducing a normalized image plane located at 

focal length 1φ = . For this normalized image plane, pinhole (C) is mapped into the origin of 

an image plane using: 

 ( )
T

P u vˆ ˆ ˆ=    (12) 

Ĉ  and P  are mapped to :   ( )
C

C

u
P

P u I

ˆ

1ˆ ˆ 0
1

1
ζ

 
   

  = =
     

 

   (13)  

 ( )























=

1

ζ

ψ

ξ

0
ζ

1

c

c

c

C
IP

ˆ    (14) 

we also have :         

c
0

c
0C

c

u k 0 a
1

v 0 k v

1 0 0 1

 φ ξ   
    
    = φ ψ
    ζ
     ζ    

  

 ( )

c

c

C c

u k u

v k Iv

0

0

0

1
0 0

1 0 0 1
1

ξ
φ

ψ
φ

ζ ζ

 
    
          =             

     
 

   (15) 

Now once kκ φ=  and Lβ φ= , then we identify these parameters oo, , ,u vκ β  as intrinsic 

camera parameters. In fact, they do present an inner camera imaging parameters. In matrix 

notation, this can be expressed as : 

www.intechopen.com



Robotics Arm Visual Servo:  
Estimation of Arm-Space Kinematics Relations with Epipolar Geometry 

 

437 

c

c

C c

u k u

v k v

0

0

0

1
0

1 0 0 1
1

ξ
φ

ψ
φ

ζ ζ

 
    
          =             

    
 

 

 

c

c

C cT

u u
R

v v
O

0

0

0 0

1
0 0

0
1 0 0 1 0

1

ξ
κ

Ω ψ
β

ζ ζ

 
    
            =               

     
 

   (16) 

Both ( R ) and ( Ω ) extrinsic camera parameters, do represent coordinate transformation 

between camera coordinate system and world coordinate system. Hence, any ( )u v,  point in 

camera image plan is evaluated via the following relation: 
 

 
w

C

u

pv M M1 2

1

1
ζ

 
    =  
   
 
 

     
w

C

u

pv M
1

1
ζ

 
 
  =
 
 
 

    (17) 

Here ( M ) in Equ (17) is referred to as a Camera Projection Matrix. We are given (1) a 

calibration rig, i.e., a reference object, to provide the world coordinate system, and (2) an 
image of the reference object. The problem is to solve (a) the projection matrix, and (b) the 
intrinsic and extrinsic parameters. 

2.1 Computing a projection matrix 

In a mathematical sense, we are given ( )w w w
i i iξ ψ ζ  and T

i iu v( )  for i = (1 …… n), we 

want to solve for M1  and M2 : 
 

 

w
i

i
w
i

i C w
i

u

v M M1 2

1

1
1

ξ

ψ

ζ ζ

 
  
  
   =
  

   
   

 

   (18)  

w
i

i
w
i

i C w
i

u

Mv
1

1
1

ξ

ψ

ζ ζ

 
  
  
   =
  

   
   

 
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w
i

i
w
ic

ii
w
i

u m m m m

v m m m m

m m m m

11 12 13 14

21 22 23 24

31 32 33 341
1

ξ

ψ
ζ

ζ

 
    
    
    = =
    
         
 

   (19) 

c w w w
ii i i iu m m m m11 12 13 14ζ ξ ψ ζ= + + +  

 c w w w
ii i i iu m m m m21 22 23 24ζ ξ ψ ζ= + + +   (20) 

c w w w
ii i i iu m m m m31 32 33 34ζ ξ ψ ζ= + + +  

 

w
i

i
w
ic

ii
w
i

u

v

11 12 13 14

21 22 23 24

31 32 33 341
1

ξ
σ σ σ σ

ψ
ζ σ σ σ σ

ζ
σ σ σ σ

 
    
    
    = =
    
         
 

  (21) 

 c w w w
ii i i iu 21 22 23 24ζ ξ ψ ζσ σ σ σ= + + +    (22) 

c w w w
ii i i iu 31 32 33 34ζ ξ ψ ζσ σ σ σ= + + +  

Obviously, we can let 34 1σ = . This will result in the projection matrix is scaled by 34σ . 

Once KM U= , 2 n 11K ×∈ ℜ is a matrix, a 11-D vector, and 2 n DU −∈ ℜ  vector. A least square 

solution of equation KM U=  is thus expressed by: 

M UK
+=    

 T TM UK K K
1−=    (23) 

K
+  is the pseudo inverse of matrix K , and m and 34m consist of the projection matrix M . 

We now turn to double scene analysis. 

3. Double camera scene {epipolar geometry analysis} 

In this section, we shall consider an image resulting from two camera views. For two 
perspective views of the same scene taken from two separate viewpoints 1Ο  and 2Ο , this is 

illustrated in Fig. (3). Also we shall assume that ( 1m  and 2m ) are representing two separate 

points in two the views. In other words, perspective projection through 1Ο  and 2Ο , of the 

same point wΧ , in both image planes 1Λ  and 2Λ . In addition, by letting ( 1c ) and ( 2c ) be 

the optical centers of two scene, the projection 1E  ( 2E ) of one camera center 1Ο ( 2Ο ) onto 

the image plane of the other camera frame 2Λ ( 1Λ ) is the epipole geometry.  
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It is also possible to express such an epipole geometry in homogeneous coordinates in terms 

1E  and 2E :  

 ( )
T

x yE E E1 1 1 1=  and ( )
T

x yE E E2 2 2 1=    (24) 

One of the main parameters of an epipolar geometry is the fundamental Matrix Η  (which is 

3 3ℜ∈ × ). In reference to the Η  matrix, it conveys most of the information about the relative 

position and orientation ( t,R ) between the two different views. Moreover, the fundamental 

matrix Η algebraically relates corresponding points in the two images through the Epipolar 

Constraint. For instant, let the case of two views of the same 3-D point wΧ , both 

characterized by their relative position and orientation ( t,R ) and the internal, hence Η  is 

evaluated in terms of 1K  and 2K , representing extrinsic camera parameters, (Gian et al., 

2004) : 

 ( )T

x
K t RK 1

2 1Η − −=    (25) 

In such a similar case, a 3-D point ( wΧ ) is projected onto two image planes, to points ( m2
) 

and ( m1
), as to constitute a conjugate pair. Given a point ( m1

) in left image plane, its 

conjugate point in the right image is constrained to lie on the epipolar line of ( m1
). The line 

is considered as the projection through C 2  of optical ray of m1
. All epipolar lines in one 

image plane pass through an epipole point.  

This is a projection of conjugate optical centre: 
c

E P
1

1 2
1

 
 =
 
 

  . Parametric equation of epipolar 

line of m1  gives T Em mP P
1

2 12 12 λ −= +  . In image coordinates this can be expressed as:  
 

 ( ) ( )
( ) ( )
( ) ( )
e v

u m
e v

2 1 1
2 1

2 3 3

λ

λ

 +
= =   + 

 
 

   (26) 

 ( ) ( )
( ) ( )
( ) ( )
e v

v m
e v

2 2 2
2 2

2 3 3

λ

λ

 +
= =   + 

 
 

   (27) 

here v mP P
1

2 2 1
−=   is a projection operator extracting the (ith ) component from a vector.  

When ( C 1
) is in the focal plane of right camera, the right epipole is an infinity, and the 

epipolar lines form a bundle of parallel lines in the right image. Direction of each epipolar 

line is evaluated by derivative of parametric equations listed above with respect to ( λ ) : 
 

 
[ ] [ ] [ ] [ ]

[ ] [ ]
v e v edu

d e v

2 21 3 3 1
2

2 3 3
( )λ λ

 − 
=     +   

   
 

 (28) 

 
[ ] [ ] [ ] [ ]

[ ] [ ]
v e v edv

d e v

2 22 3 3 2
2

2 3 3
( )λ λ

 − 
=     +   

   
 

  (29) 
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Fig 4. Camera image frame (Epipolar Geometry) 

The epipole is projected to infinity once ( )E2
3

0= . In such a case, direction of the epipolar 

lines in right image doesn't depend on any more. All epipolar lines becomes parallel to 

vector ( )
T

E E2 21 2
      
  . A very special occurrence is once both epipoles are at infinity. This 

happens once a line containing ( C 1
) and ( C 2 ), the baseline, is contained in both focal 

planes, or the retinal planes are parallel and horizontal in each image as in Fig. (4). The right 

pictures plot the epipolar lines corresponding to the point marked in the left pictures. This 

procedure is called rectification. If cameras share the same focal plane the common retinal 

plane is constrained to be parallel to the baseline and epipolar lines are parallel.  

4. Neural net based Image - Based Visual Servo control (ANN-IBVS) 

Over the last section we have focused more in single and double camera scenes, i.e. 

representing the robot arm visual sensory input. In this section, we shall focus on "Image-

Based Visual Servo" (IBVS) which uses locations of object features on image planes 

(epipolar) for direct visual feedback. For instant, while reconsidering Fig. (1), it is desired to 

move a robotics arm in such away that camera's view changes from ( an initial) to (final) 

view, and feature vector from ( 0φ  ) to ( dφ ). Here ( 0φ ) may comprise coordinates of vertices, 

or areas of the object to be tracked. Implicit in ( dφ ) is the robot is normal to, and centered 
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over features of an object, at a desired distance. Elements of the task are thus specified in 

image space. For a robotics system with an end-effector mounted camera, viewpoint and 

features are functions of relative pose of the camera to the target, ( c

tξ ). Such function is 

usually nonlinear and cross-coupled. A motion of end-effectors DOF results in complex 

motion of many features. For instant, a camera rotation can cause features to translate 

horizontally and vertically on the same image plane, as related via the following 

relationship : 

 ( )c
tfφ ξ=    (30) 

Equ (30) is to be linearized. This is to be achieved around an operating point: 

 ( )f c c
t tcJ x xδφ δ=    (31) 

 ( )f c
tc c

t

J x
x

φ ∂
=  

∂ 
   (32) 

In Equ (32), ( )f c
tcJ x  is the Jacobian matrix, relating rate of change in robot arm pose to rate 

of change in feature space. Variously, this Jacobian is referred to as the feature Jacobian, 

image Jacobian, feature sensitivity matrix, or interaction matrix. Assume that the Jacobian is 

square and non-singular, then: 

 ( )fc c
t tcJ fx x

1−
=     (33) 

from which a control law can be expressed by : 

 ( ) ( ) ( )( )fc
t t dc

cK f f tJx x
1−

= −    (34) 

will tend to move the robotics arm towards desired feature vector. In Equ (34), fK  is a 

diagonal gain matrix, and (t) indicates a time varying quantity. Object posture rates c
tx  is 

converted to robot end-effector rates. A Jacobian , f c
tcJ x( )  as derived from relative pose 

between the end-effecter and camera, ( )c
tx  is used for that purpose. In this respect, a 

technique to determine a transformation between a robot's end-effector and the camera 

frame is given by Lenz and Tsai, as in (Lenz & Tsai. 1988). In a similar approach, an end-

effector rates may be converted to manipulator joint rates using the manipulator's Jacobian 

(Croke, 1994), as follows: 

 ( )t t
ct J x

6 1 6
θθ θ−=    (35) 

tθ  represents the robot joint space rate. A complete closed loop equation can then be given 

by: 

  ( ) ( )( )ft t c
tt c dK J J J f f tx

6 1 6 1
θ θθ θ− −= −    (36) 

For achieving this task, an analytical expression of the error function is given by : 
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 ( ) 2
1 6

φ
φ φ γ+ + ∂

= Ζ + Ι − Ζ Ζ
∂Χ

   (37) 

Here, +γ ∈ℜ  and +Ζ  is pseudo inverse of the matrix Ζ , m n T T
1( ) (J )×Ζ ∈ℜ = ℜ Ζ = ℜ  and J  is 

the Jacobian matrix of task function as J
∂φ 

=  
∂Χ 

. Due to modeling errors, such a closed-loop 

system is relatively robust in a possible presence of image distortions and kinematics 

parameter variations of the Puma 560 kinematics. A number of researchers also have 

demonstrated good results in using this image-based approach for visual servoing. It is 

always reported that, the significant problem is computing or estimating the feature 

Jacobian, where a variety of approaches have been used (Croke, 1994). The proposed IBVS 

structure of Weiss (Weiss et. al., 1987 and Craig, 2004), controls robot joint angles directly 

using measured image features. Non-linearities include manipulator kinematics and 

dynamics as well as the perspective imaging model. Adaptive control was also proposed, 

since f 1 cJ ( )−
θ θ , is pose dependent, (Craig, 2004). In this study, changing relationship between 

robot posture and image feature change is learned during a motion via a learning neural 

system. The learning neural system accepts a weighted set of inputs (stimulus) and 

responds. 

4.1 Visual mapping: Nonlinear function approximation ANN mapping 

A layered feed-forward network consists of a certain number of layers, and each layer 
contains a certain number of units. There is an input layer, an output layer, and one or more 
hidden layers between the input and the output layer. Each unit receives its inputs directly 
from the previous layer (except for input units) and sends its output directly to units in the 
next layer. Unlike the Recurrent network, which contains feedback information, there are no 
connections from any of the units to the inputs of the previous layers nor to other units in 
the same layer, nor to units more than one layer ahead. Every unit only acts as an input to 
the immediate next layer. Obviously, this class of networks is easier to analyze theoretically 
than other general topologies because their outputs can be represented with explicit 
functions of the inputs and the weights.  
In this research we focused on the use of Back-Propagation Algorithm as a learning method, 
where all associated mathematical used formulae are in reference to Fig. (5). The figure 
depicts a multi-layer artificial neural net (a four layer) being connected to form the entire 
network which learns using the Back-propagation learning algorithm. To train the network 
and measure how well it performs, an objective function must be defined to provide an 
unambiguous numerical rating of system performance. Selection of the objective function is 
very important because the function represents the design goals and decides what training 
algorithm can be taken. For this research frame work, a few basic cost functions have been 
investigated, where the sum of squares error function was used as defined by Equ. (38): 

 ( )
P N

pi pi

p i

E t y
NP

2

1 1

1

= =

= −   (38)     

where p indexes the patterns in the training set, i indexes the output nodes, and tpi and ypi 

are, respectively, the target hand joint space position and actual network output for the ith 
output unit on the pth pattern. An illustration of the layered network with an input layer, 
two hidden layers, and an output layer is shown in Fig. (5). In this network there are i 
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inputs, (m) hidden units, and (n) output units. The output of the jth hidden unit is obtained 
by first forming a weighted linear combination of the (i) input values, then adding a bias:  

  
ji

l

i jj
i

a w x w1 1
0

1=

 
= + 
 
  (39) 

where jiw(1)  is a weight from input (i) to hidden unit (j) in the first layer. jw(1)
0  is a bias for 

hidden unit j. If we are considering a bias term as being weights from an extra input x0 1= , 

Equ. (39) can be rewritten to the form of: 

 
l

j iji
i

a w x1

0=

 
=  
 
  (40) 

The activation of hidden unit j then can be obtained by transforming the linear sum using a 
nonlinear activation function g x( ) :  

  ( )j jh g a=   (41) 

 

 

Fig. 5. Employed four layers artificial neural system 

Outputs of the neural net is obtained by transforming the activation of the hidden units 
using a second layer of processing units. For each output unit k, first we get the linear 
combination of the output of the hidden units, as in Equ. (42):  
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kj j k

m

k
j

a w h w
2 2

0
1=

 
= +  
 
   (42) 

absorbing the bias and expressing the above equation to: 

    
kj j

m

k
j

a w h2

0=

 
=   
 
   (43) 

Applying the activation function ( )g x2  to Equ. (43), we can therefore get the kth output : 

 ( )k ky g a2=    (44) 

Combining Equ. (40), Equ. (41), Equ. (43) and Equ. (44), we get a complete representation of 
the network as: 

 
ij

m l

k kj i
j i

y g w g w x
22

2
0 0= =

  
=      

     (45) 

 

 

Fig. 6. Features based data gathering: Training patterns generations 
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The network of Fig. (5) is a synthesized ANN network with two hidden layers, which can be 

extended to have extra hidden layers easily, as long as we make the above transformation 

further. Input units do transform neural network signals to the next processing nodes. They 

are hypothetical units that produce outputs equal to their supposed inputs, hence no 

processing is done by these input units. Through this approach, the error of the network is 

propagated backward recursively through the entire network and all of the weights are 

adjusted so as to minimize the overall network error. The block diagram of the used 

learning neural network is illustrated in Fig. (6). The network learns the relationship 

between the previous changes in the joint angles k 1−ΔΘ , changes in the object posture c
auΔ  , 

and changes joint angles kΔΘ . This is done by executing some random displacements from 

the desired object position and orientation. The hand fingers is set up in the desired position 

and orientation to the object. Different Cartesian based trajectories are then defined and the 

inverse Jacobian were used to compute the associated joints displacement ( )h kΘ . Different 

object postures with joint positions and differential changes in joint positions are the input-

output patterns for training the employed neural network. During the learning epoch, 

weights of connections of neurons and biases are updated and changed, in such away that 

errors decrease to a value close to zero, which resulted in the learning curve that minimizes 

the defined objective function shown as will be further discussed later. It should be 

mentioned at this stage that the training process has indeed consumed nearly up to three 

hours, this is due to the large mount of training patterns to be presented to the neural 

network. 

4.2 Artificial neural networks mapping: A biological inspiration 

Animals are able to respond adaptively to changes in their external and internal 
environment and surroundings, and they use their nervous system to perform these 
behaviours. An appropriate model/simulation of a nervous system should be able to 
produce similar responses and behaviours in artificial systems. A nervous system is built by 
relatively simple; units, the neurons, so copying their behaviour and functionality should be 
the solution, (Pellionisz, 1989). In reality, human brain is a part of the central nervous 
system, it contains of the order of (10+10) neurons. Each can activate in approximately 5ms 
and connects to the order of (10+4) other neurons giving (10+14) connections, (Shields & 
Casey, 2008). In reality, a typical neural net (with neurons) is shown in Fig. (5), it does 
resemble actual biological neuron, as they are made of: 

• Synapses: Gap between adjacent neurons across which chemical signals are transmitted: 
(known as the input)  

• Dendrites: Receive synaptic contacts from other neurons 

• Cell body /soma: Metabolic centre of the neuron: processing 

• Axon: Long narrow process that extends from body: (known as the output) 
By emulation, ANN information transmission happens at the synapses, as shown in Fig. (5). 
Spikes travelling along the axon of the pre-synaptic neuron trigger the release of 
neurotransmitter substances at the synapse. The neurotransmitters cause excitation or 
inhibition in the dendrite of the post-synaptic neuron. The integration of the excitatory and 
inhibitory signals may produce spikes in the post-synaptic neuron. The contribution of the 
signals depends on the strength of the synaptic connection (Pellionisz, 1989). An Artificial 
Neural Network (ANN) is an information processing paradigm that is inspired by the way 
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biological nervous systems, such as the brain, process information. The key element of this 
paradigm is the novel structure of the information processing system. It is composed of a 
large number of highly interconnected processing elements (neurons) working in unison to 
solve specific problems. ANN system, like people, learn by example.  
An ANN is configured for a specific application, such as pattern recognition or data 
classification, through a learning process. Learning in biological systems involves 
adjustments to the synaptic connections that exist between the neurons. This is true of ANN 
system as well (Aleksander & Morton, 1995). The four-layer feed-forward neural network 
with (n) input units, (m) output units and N units in the hidden layer, already shown in the 
Fig. (5), and as will be further discussed later. In reality, Fig. (5). exposes only one possible 
neural network architecture that will serve the purpose. In reference to the Fig. (5), every 
node is designed in such away to mimic its biological counterpart, the neuron. 
Interconnection of different neurons forms an entire grid of the used ANN that have the 
ability to learn and approximate the nonlinear visual kinematics relations. The used learning 
neural system composes of four layers. The {input}, {output} layers, and two {hidden layers}. 

If we denote ( w
cν ) and ( w

cω ) as the camera’s linear and angular velocities with respect to the 

robot frame respectively, motion of the image feature point as a function of the camera 

velocity is obtained through the following matrix relation: 

 

c c c c c
cx x x x x

xc c c c w
z z z w c

c c c wc c c cc y w ccx x x x
xc c c

z z z

p p p p p
p

p p p R

p p Rp p p p
p

p p p

0 0
0

0
1 1

ναλ
γ

ω

 
− 

       = −        − − − 
 

   (46)  

Instead of using coordinates ( x
cP ) and ( y

cP ) for the object feature described in camera 

coordinate frame, which are a priori unknown, it is usual to replace them by coordinates (u) 

and (v) of the projection of such a feature point onto the image frame, as shown in Fig. (7). 
 

 

Fig. 7. Neural net based visual servo system 
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5. Simulation case study: Visual servoing with pin-hole camera for 6-DOF 
PUMA robotics arm  

Visual servoing using a "pin-hole" camera for a 6-DOF robotics arm is simulated here. The 

system under study is a (PUMA) and integrated with a camera and ANN. Simulation block 

is shown Fig. (7). Over simulation, the task has been performed using 6-DOF-PUMA 

manipulator with 6 revolute joints and a camera that can provide position information of the 

robot gripper tip and a target (object) in robot workplace. The robot dynamics and direct 

kinematics are expressed by a set of equations of PUMA-560 robotics system, as 

documented by Craig, (Craig, 2004). Kinematics and dynamics equations are already well 

known in the literature, therefore. For a purpose of comparison, the used example is based 

on visual servoing system developed by RIVES, as in (Eleonora, 2004). The robotics arm 

system are has been servoing to follow an object that is moving in a 3-D working space. 

Object has been characterized by some like (8-features) marks, this has resulted in 24, 8 3×ℜ∈

size, feature Jacobian matrix. This is visually shown in Fig. (7). An object 8-features will be 

mapped to the movement of the object in the camera image plane through defined 

geometries. Changes in features points, and the differentional changes in robot arm, 

constitute the data that will be used for training the ANN. The employed ANN architecture 

has already been discussed and presented in Fig. (5). 

5.1 Training phase: visual training patterns generation  

The foremost ambition of this visual servoing is to drive a 6-DOF robot arm, as simulated 

with Robot Toolbox (Corke , 2002), and equipped with a pin-hole camera, as simulated with 

Epipolar Geometry Toolbox, EGT (Gian et al., 2004), from a starting configuration toward a 

desired one using only image data provided during the robot motion. For the purpose of 

setting up the proposed method, RIVES algorithm has been run a number of time before 

hand. In each case, the arm was servoing with different object posture and a desired location 

in the working space. The EGT function to estimate the fundamental matrix Η , given U1 

and U2, for both scenes in which U1 and U2 are defined in terms of eight ( ξ , ψ , ζ ) feature 

points:  

 

U

U

1 2 8
1 1 1

1 2 8
1 1 1 1

1 2 8
1 1 1

1 2 8
2 2 2

1 2 8
2 2 2 2

1 2 8
2 2 2
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ζ ζ ζ
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 
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 =
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 
 













    (47) 

Large training patterns have been gathered and classified, therefore. Gathered patterns at 

various loop locations gave an inspiration to a feasible size of learning neural system. Four 

layers artificial neural system has been found a feasible architecture for that purpose. The 
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net maps 24 (3×8 feature points) inputs characterizing object cartesian feature position and 

arm joint positions into the (six) differential changes in arm joints positions. The network is 

presented with some arm motion in various directions. Once the neural system has learned 

with presented patterns and required mapping, it is ready to be employed in the visual 

servo controller. Trained neural net was able to map nonlinear relations relating object 

movement to differentional changes in arm joint space. Object path of motion was defined 

and simulated via RIVES Algorithm, as given in (Gian et al., 2004), after such large number 

of running and patterns, it was apparent that the learning neural system was able to capture 

such nonlinear relations. 

5.2 The execution phase  

Execution starts primary while employing learned neural system within the robotics 

dynamic controller (which is mainly dependent on visual feature Jacobian). In reference to 

Fig. (7), visual servoing dictates the visual features extraction block. That was achieved by 

the use of the Epipolar Toolbox. For assessing the proposed visual servo algorithm, 

simulation of full arm dynamics has been achieved using kinematics and dynamic models 

for the Puma 560 arm. Robot Toolbox has been used for that purpose. In this respect, also 

Fig. (8) shows an "aerial view" of actual object "initial" posture and the "desired" posture. 

This is prior to visual servoing to take place. The figure also indicates some scene features. 

Over simulation, Fig. (9) shows an "aerial view" of the Robot arm-camera servoing, as  

 

 

Fig. 8. Top view. Actual object position and desired position before the servoing 
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approaching towards a desired object posture. ANN was fed with defined patterns during 
arm movement. Epipolars have been used to evaluate visual features and the update during 
arm movement. 

5.3 Object visual features migration  

Fig. (10) shows the error between the RIVES Algorithm and the proposed ANN based visual 
servo for the first (60) iterations. Results suggest high accuracy of identical results, 
indicating that a learned neural system was able to servo the arm to desired posture. 

Difference in error was recorded within the range of (4×10−6) for specific joint angles. Fig. 
(11) shows migration of the eight visual features as seen over the camera image plan. Just 
the once the Puma robot arm was moving, concentration of features are located towards an 
end within camera image plane. In Fig. (12), it is shown the object six dimensional 
movements. They indicate that they are approaching the zero reference. As an validation of 

the neural network ability to servo the robotics arm toward a defined object posture, Fig. 
(13) show that the trained ANN visual servo controller does approach zero level of 
movement. This is for different training patterns and for different arm postures in the 6-

dimenstional space. Finally, Fig. (14) shows the error between RIVES computed joint 
space values and the proposed ANN controller computed joint space values. Results 
indicate excellent degree of accuracy while the visual servo controller approaching the 
target posture with nearly zero level of erroe for different training visual servo target 

postures.  
 

 

Fig. 9. Robot arm-camera system: Clear servoing towards a desired object posture 
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Fig. 10. Resulting errors. Use of proposed ANN based visual servo 

 

 

Fig. 11. Migration of eight visual features (as observed over the camera image plan) 
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Fig. 12. Puma arm six dimensional movements 

 

 

Fig. 13. ANN visual servo controller approaching zero value for different training visual 
servo target postures 
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Fig. 14. Error of arm movements: ANN based controller and RIVES output difference ANN 
visual Servo 

6. Conclusions  

Servoing a robotics arm towards a moving object movement using visual information, is a 
research topic that has been presented and discussed by a number of researchers for the last 

twenty years. In this sense, the chapter has discussed a mechanism to learn kinematics and 
feature-based Jacobian relations, that are used for robotics arm visual servo system. In this 
respect, the concept introduced within this chapter was based on an employment and 

utilization of an artificial neural network system. The ANN was trained in such away to 
learn a mapping relating the " complicated kinematics" as relating changes in visual loop 
into arm joint space. Changes in a loop visual Jocobain depends heavily on a robotics arm 
3-D posture, in addition, it depends on features associated with an object under visual 

servo (to be tracked). Results have shown that, trained neural network can be used to 
learn such complicated visual relations relating an object movement to an arm joint space 
movement. The proposed methodology has also resulted in a great deal of accuracy. The 

proposed methodology was applied to the well-know Image Based Visual Servoing, 
already discussed and presented by RIVES as documented in (Gian et al., 2004). Results 
have indicated a close degree of accuracy between the already published "RIVES 
Algorithm" results and the newly proposed "ANN Visual Servo Algorithm". This 

indicates ANN Visual Servo, as been based on some space learning mechanisms, can 
reduce the computation time.  
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