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1. Introduction

Parallel manipulators have been proposed to overcome accuracy problem in the end effector
positioning, exhibited by serial manipulators(Stewart, 1965)(Reboulet, 1988)(Merlet, 2000).
These parallel robots are primarly used in the applications for which the considered processes
require a high degree of accuracy, high speeds or accelerations. Aircraft simulator (Stewart,
1965), machining tools (Neugebauer et al., 1998)(Poignet et al., 2002), and various other
medical applications (Merlet, 2002)(Leroy et al., 2003)(Plitea et al., 2008) constitute some of the
many possible applications of parallel robots.
The computation of the inverse dynamic model is essential for an effective robot control. In
the field of parallel robots, many approaches have been developed for efficient computation
of the inverse dynamics. The formalism of d’Alembert has been used to obtain an analytical
expression of the dynamics model (Fichter, 1986)(Nakamura & Ghodoussi, 1989). The
principle of virtual works has been applied in (Tsai, 2000) for solving the inverse dynamics
of the Gough-Stewart platform and in (Zhu et al., 2005) for a Tau parallel robot. Lagrangian
formalism is applied in (Leroy et al., 2003) for the dynamics modeling of a parallel robot used
as a haptic interface for a surgical simulator. These various approaches do not seem effective
for a robot dynamic control under the real time constraint. A better computational efficiency
can be achieved by the development of approaches using recursive schemes, in particular,
based on the Newton-Euler formulation. Gosselin (Gosselin, 1996) proposed an approach
for the computation of the inverse dynamic model of planar and spatial parallel robots, in
which all the masses and inertias are taken into account. This proposed method is difficult
to generalize for all the parallel architectures. Dasgupda et al (Dasgupta & Choudhury, 1999)
applied this method to several parallel manipulators. Khan (Khan, 2005) has developed a
recursive algorithm for the inverse dynamics. This method is applied to a 3R planar parallel
robot. Bi et al (Bi & Lang, 2006) use the Newton-Euler recursive scheme for the computation of
the articular forces of a tripod system. Khalil et al (Khalil & Guegan, 2004) proposed a general
method for the inverse and direct dynamic model computation of parallel robots, which is
applied to several parallel manipulators (Khalil & Ibrahim, 2007).
Despite the large amount of contributions in this field, there is still a need for improving
the computational effeciency of the inverse kinematic and dynamic model clculation for
real-time control. In this paper, a parallel robot is considered as a multi robot system with
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k serial robots (the k parallel robot segments) moving a common load (the mobile platform).
The proposed approach uses the methodology developed by Khalil et al (Khalil & Guegan,
2004)(Khalil & Ibrahim, 2007).
In this paper, we first review the proposed approaches for computation of kinematics and
inverse dynamics of of a C5 joint parallel robot. One of the interesting aspects of the parallel
robots is that, unlike the serial robots, it is easy and efficient to directly compute the inverse
of Jacobian matrix: However, there seems to be no proposed approach for direct computation
of the Jacobian matrix. We propose a new method which allows the derivation of the Jacobian
matrix in a factored form, i.e., as a product of two highly sparse matrices. This factored form
enables a very fast computation and application of the Jacobian matrix, which is also needed
for the inverse dynamics computation. Another issue for inverse dynamics computation is
the determination of joint accelerations given the acceleration of the mobile platform. We
propose a new scheme that, by using projection matrices, enablse a fast and direct calculation
of the joint accelerations. Since this calculation is needed in any inverse dynamics formalism,
our proposed new method improves the efficiency of the computation. For calculation of the
inverse dynamics, we consider the formalism developped by Khalil et al (Khalil & Guegan,
2004)(Khalil & Ibrahim, 2007). In this approach, since the inverse of Jacobian is used, the
calculation of the joint forces would require a linear system solution. We show that, by using
our factorized form of the Jacobian, our proposed scheme not only eliminates the need for
linear system solution but it also does not require the explicit computation of either Jacobian
or its inverse. As a result, a significantly better efficiency in the computation can be achieved.
This paper is organized as follows. In Section 2, we present some preliminaries and the
notation used in our appraoches. The C5 parallel robot is presented in Section 3. The proposed
methodologies for computation of the inverse kinematics and the inverse Jacobian matrix are
reviewed in Sections 4 and 5. The new methodology for derivation of the Jacobian matrix
in a factored form is presented in Section 6. In Section 7, we present a fast and direct
scheme for calculation of joint accelerations, given the desired acceleration of the mobile
platform. The formalism for computation of the inverse dynamics, developed by Khalil et
al (Khalil & Guegan, 2004)(Khalil & Ibrahim, 2007), is discussed in Section 8 and it is shown
how the new scheme for calculation of joint accelerations as well as the use of factored form
of the Jacobian matrix can significantly improve the computational efficiency. A simulation
of the proposed scheme for computation of the inverse dynamics is provided in section 9
validating the proposed approach. Finally, some concluding remarks are presented in Section
10.

2. Preliminaries

In this section, the required notation for a serial chain are presented (see also Fig. 1).

2.1 System model and notations

2.1.1 Joint and link parameters

• Oj: Origin of frame j which is taken to be the center of jth joint

• Pj : position vector from Oj to Oj+1

• N: number of bodies

• Qj, Q̇j: position and velocity of the jth joint
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Kinematic and Inverse Dynamic Analysis of a C5 Joint Parallel Robot 3

2.1.2 Spatial quantities

• Hj: spatial-axis (map matrix) of joint j. For a joint with one rotational degree of freedom
(DOF) around z-axis, Hj is given by:

Hj =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

• Vj =

[
ωj

vj

]
∈ ℜ6: spatial velocity of point Oj

• Ij ∈ ℜ6×6 : spatial inertia of body j

The spatial inertia of body j about its center of mass,Gj, is denoted by IGj
and is given by:

IGj
=

[
JGj

0

0 mj U

]
∈ ℜ6×6

where JGj
is the second moment of mass of link j about its center of mass and mj is the

mass of link j. The spatial inertia Ij can be calculated by:

Ij = Ŝj IGj
Ŝt

j

Where sj represents the position vector from Oj to Gj

• VN+1 ∈ ℜ6: spatial velocity of the end effector

2.1.3 Global quantities

The following global quantities are defined for j = N to 1

• Q̇ = Col
(
Q̇j

)
: vector of joint velocity

• V = Col
(

Vj
)
∈ ℜ6N : global vector of spatial velocities

• H = Diag
(

Hj

)
∈ ℜ6N×N : global matrix of spatial axis.

• M : Symmetric positive definite (SPD) mass matrix

2.2 General notation

With any vector V =
[

Vx Vy Vz
]t

, a tensor Ṽ can be associated whose representation in any
frame is a skew symmetric matrix given by:

Ṽ =

⎡
⎣

0 −Vz Vy

Vz 0 −Vx

−Vy Vx 0

⎤
⎦

The tensor Ṽ has the property that Ṽ = −Ṽt and Ṽ1V2 = V1 × V2 i.e., it is the vector
cross-product operator. A matrix V̂ associated to the vector V is defined as:

341Kinematic and Inverse Dynamic Analysis of a C5 Joint Parallel Robot
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V̂ =

[
U Ṽ
0 U

]

where U and 0 stand for unit and zero matrices of appropriate size.
In our derivation, we also make use of global matrices and vectors which lead to a compact
representation of various factorizations. A bidiagonal block matrix P ∈ ℜ6N×6N is defined as:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

U
−P̂N−1 U 0

0 −P̂N−2 U
0 0
...

...
0 0 0 −P̂1 U

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The inverse of matrix P is a block triangular matrix given by:

P−1 =

⎡
⎢⎢⎢⎢⎢⎣

U 0 · · · 0
P̂N,N−1 U 0 · · · 0
P̂N,N−2 P̂N−1,N−2 U 0 0

...
...

...
...

...
P̂N,1 P̂N−1,1 · · · P̂2,1 U

⎤
⎥⎥⎥⎥⎥⎦

2.3 Equations of motion

In this section, we briefly review the equations of motion: velocity, force and acceleration
propagation, for a serial chain of interconnected bodies.

2.3.1 Velocity propagation

The velocity propagation for a serial chain of interconnected bodies, shown in Fig. (1), is given
by the following intrinsic equation:

Vj − P̂
t
j−1 Vj−1 = HjQ̇j (1)

By using the matrix P , Eq. (1) can be expressed in a global form as:

P t
V = HQ̇ (2)

thus:
V =

(
P t

)−1
HQ̇ (3)

The end effector spatial velocity VN+1 is obtained by the following relation:

VN+1 − P̂
t

N VN = 0 (4)

thus:
VN+1 = P̂ t

N VN (5)

Let β ∈ ℜ6×6N be the matrix defined by β =
[

P̂
t

N 0 · · · 0
]
, Eq. (5) becomes:

VN+1 = βV (6)
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Thus, inserting the expression of V from Eq. (3), we obtain:

VN+1 = β
(
P t

)−1
HQ̇ (7)

Thus:
J = β

(
P t

)−1
H (8)

2.3.2 Acceleration and force propagation

The propagation of accelerations and forces among the links of serial chain are given by:

V̇j = P̂ t
j−1 V̇j−1 + HjQ̈j (9)

Fj = Ij V̇j + P̂j Fj+1 (10)

Eqs. (9)-(10) represent the simplified N-E algorithm (with nonlinear terms being excluded) for
the serial chain (Luh et al., 1980).
The force Fj can be written, by using a rather unconventional decomposition of inter body
force of the form (see, for example (Fijany et al., 1995) (Fijany et al., 1997), as:

Fj = Hj FTj
+ Wj FSj

(11)

Where FSj
represents the constraint force.

Complement to the Degrees Of Freedom (DOF), Degrees Of Constraint (DOC) are introduced
(DOC = 6 − DOF).
The projection matrices Hj and Wj are taken to satisfy the following orthogonality conditions:

Ht
j Wj = Wt

j Hj = 0 (12)

Hj H
t
j + WjW

t
j = U (13)

Ht
j Hj = Wt

j Wj = U (14)

Fig. 1. Joint force and position vector of a serial chain.
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3. C5 parallel robot

The C5 joint parallel robot (Dafaoui et al., 1998) consists of a static and a mobile part connected
together by six actuated segments (Fig. 2 and 3). Each segment is connected to the static part
at point Ai and linked to the mobile part through a C5 passive joint (3DOF) in rotation and
2DOF in translation) at point Bi. Each C5 joint consists of a spherical joint tied to two crossed
sliding plates (Fig 4). Each segment is equipped with a ball and a screw linear actuator driven
by a DC motor.

Fig. 2. C5 joint parallel robot

Fig. 3. C5 parallel robot representation.

344 Robotic Systems – Applications, Control and Programming
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Kinematic and Inverse Dynamic Analysis of a C5 Joint Parallel Robot 7

Fig. 4. Details of the C5 joint.

Following notations are used in the description of the parallel robot:

• Rb is the absolute frame, attached to to the fixed base: Rb = (0, x, y, z).

• Rp is the mobile frame, attached to the mobile part: Rp =
(
C, xp , yp, zp

)
.

• O is the origin of the absolute coordinate system.

• C is the origin of the mobile coordinate system, whose coordinates in the absolute frame
are given by:

OC/Rb
=

[
xc yc zc

]t

• Ai is the center of the joint between the segment i and the fixed base:

OAi/Rb
=

[
ax

i a
y
i az

i

]t

• Bi is the center of the rotational joint between the segment i and the mobile part:

CBi/Rp
=

[
bx

i b
y
i bz

i

]t

• R is the rotation matrix, with elements rij (using the RPY formalism), expressing the
orientation of the Rp coordinate system with respect to the Rb coordinate system. The
expression for this matrix is given by:

R =

⎡
⎣

r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤
⎦ (15)

where:
r11 = cos β cos γ

r12 = − cos β sin γ
r13 = sin β
r21 = sin γ cos α + cos γ sin β sin α

r22 = cos α cos γ − sin α sin β sin γ

345Kinematic and Inverse Dynamic Analysis of a C5 Joint Parallel Robot
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r23 = − cos β sin α
r31 = sin γ sin α − cos γ sin β cos α
r32 = sin α cos γ + cos α sin β sin γ

r33 = cos β cos α

• The rotation angles, α, β and γ , also called Roll Pitch and Yaw (RPY), describe the rotation
of the mobile platform with respect to the fixed part. α is the rotation around x axis, β
around y axis and γ around z axis.

• X is the task coordinate vector.

X =
[

α β γ xc yc zc
]t

In the following, the parallel robot is considered as six serial robots (the six segments) moving
a common load (the mobile platform). According to our notation presented in the previous
section, we define the following quantities:

• i is the segment index

• j is the body index

• Oij is the jth joint center of the segment i

• Pij is the position vector from Oij to Oi,j+1

• Qij is the position of the jth joint of the segment i

• Qi =

[
Qi2

Qi1

]
∈ ℜ6 is the joint coordinate vector of the segment i

• Q̇i =

[
Q̇i2

Q̇i1

]
∈ ℜ6 is the joint velocity vector of the segment i

• Q̈i =

[
Q̈i2

Q̈i1

]
∈ ℜ6 is the joint acceleration vector of the segment i

• Hij is the spatial-axis of joint jth joint of the segment i. For the C5 joint robot the projection
matrices Hij and Wij, describe in the base frame, are given as:

H11 = H21 =
[

0 0 0 1 0 0
]t

H31 = H41 =
[

0 0 0 0 1 0
]t

H51 = H61 =
[

0 0 0 0 0 1
]t

H12 = H22 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0
0 1 0 0 0
1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

H32 = H42 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0
1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
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H52 = H62 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

W12 = W22 =
[

0 0 0 1 0 0
]t

W32 = W42 =
[

0 0 0 0 1 0
]t

W52 = W62 =
[

0 0 0 0 0 1
]t

• Vij =

[
ωij

vij

]
∈ ℜ6 is the spatial velocity of the link j for the segment i

• Iij ∈ ℜ6×6 : spatial inertia of body j for the segment i

• V i = Col
(

Vij
)
∈ ℜ12: global vector of spatial velocities for the segment i

• Hi = Diag
(

Hij

)
∈ ℜ12×6: global matrix of spatial axis for the leg i

• Mi : Symmetric positive definite (SPD) mass matrix of the segment i

Fig. 5. Force and position vectors.

4. Inverse kinematic model

In this section, we briefly review the methodology used for the inverse kinematic model
computation. More details can be found in (Dafaoui et al., 1998).
The inverse kinematic model relates the active joint variables Qa =[

Q61 Q51 Q41 Q31 Q21 Q11

]t
to the operational variables which define the position

and the orientation of the end effector (X). This relation is given by the following equation

347Kinematic and Inverse Dynamic Analysis of a C5 Joint Parallel Robot
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(Dafaoui et al., 1998):

Q11 = xc +
r31(zc−L)+r21yc

r11

Q21 = xc +
r31(zc+L)+r21yc

r11

Q31 = yc +
r12(xc−L)+r32zc

r22

Q41 = yc +
r12(xc+L)+r32zc

r22

Q51 = zc +
r23(yc−L)+r13xc

r33

Q61 = zc +
r23(yc+L)+r13xc

r33

(16)

where:

L = ‖AiAi+1‖
2 for i = 1, 3 and 5

For the C5 joint parallel robot, the actuators are equidistant from point O (Fig. 6).

Fig. 6. The spatial arrangement of the C5 joint parallel robot segments.

5. Determination of the inverse Jacobian matrix

For parallel robots, the inverse Jacobian matrix computation (J −1) is obtained by the
determination of the velocity of point Bi (Merlet, 2000)(Gosselin, 1996):

˙OBi = vN+1 +BiC ×ωN+1 (17)

By using the following:
Q̇i1 = ˙OBi ni (18)

where ni is the unit vector of the segment i, defined by:

ni =
AiBi

Qi1
(19)
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and inserting Eq. (17) into Eq. (18), we obtain the following expression:

Q̇i1 = nivN+1 +ωN+1 (ni ×BiC) (20)

The (6 − i)th row of the inverse Jacobian matrix is given as:

[
(ni ×BiC)t

nt
i

]
(21)

The inverse Jacobian matrix of the C5 parallel robot is then given by the following relation:

J −1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(n6 ×B6C)t
nt
6

(n5 ×B5C)t
nt
5

(n4 ×B4C)t
nt
4

(n3 ×B3C)t
nt
3

(n2 ×B2C)t
nt
2

(n1 ×B1C)t
nt
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

(n6 ×P62)
t
nt
6

...

(n1 ×P12)
t
nt
1

⎤
⎥⎥⎦ (22)

As stated before, for parallel robots, unlike the serial robots, the inverse of Jacobian matrix can
be directly and efficiently obtained. In fact, the cost of computation of J −1 from Eq. (22) is
(18m + 30a) where m and a denote the cost of multiplication and addition, respectively.

6. Factorized expression of the Jacobian matrix

6.1 General approach

The differential kinematic model of a manipulator is defined by the relationship between the
spatial velocity of the end effector and the vector of generalized coordinate velocities of the
robot: VN+1 = J Q̇a, where J is the Jacobian matrix.
For parallel robots, it seems more efficient to compute the Jacobian matrix J by inverting
the inverse Jacobian matrix J −1 (see for example (Khalil & Ibrahim, 2007)). In deriving the
forward kinematic model of the C5 parallel robot, an analytical expression of the Jacobian
matrix is presented in (Dafaoui et al., 1998). From a computational efficiency point of view,
such a classical method, which is only applicable to the C5 parallel robot, is not well suited
for real-time control.
Here, we present opur approach for direct and efficient computation of the Jacobian
matrix (Fried et al., 2006). In this approach, an analytical expression of the Jacobian matrix
is obtained in factorized form as a product of sparse matrices which achieves a much better
computational efficiency.
In our approach, the parallel robot is considered as a multi-robot system, composed of serial
robots (the segments) moving a common load (the mobile platform). A relationship between
the Jacobian matrix of the parallel robot (J ) to the Jacobian matrix of each segment (Ji) is first
derived.
The principle of this approach consists of first computing the Jacobian matrix for each leg
considered as an open serial chain. Secondly, the closing constraint is determined, allowing
the computation of the parallel robot Jacobian matrix.
The Jacobian matrix J of the parallel robot is obtained by the closing constraint determination
of the kinematic chain. This determination can be obtained by expressing the actuated joint
velocity Q̇a of the parallel robot in function of vectors Q̇i associated to each segment i. Let
the matrix Πi be defined as:

Q̇i = Πi Q̇a (23)

349Kinematic and Inverse Dynamic Analysis of a C5 Joint Parallel Robot
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Inserting Eq. (23) into Eq. (7), we obtain:

VN+1 = βi

(
P t

i

)−1
HiΠiQ̇a (24)

Therefore, a factorized expression of the parallel robot Jacobian matrix is obtained as:

J = βi

(
P t

i

)−1
HiΠi (25)

The matrices J and Ji are related by the following relationship:

J = Ji Πi (26)

The computation of matrix of Πi depends on the considered parallel robot’s structure. In the
following, we present the computation of this matrix for the C5 parallel robot.

6.2 Application to the C5 parallel robot

Let Pi2 =
[

xi yi zi

]t
denote the position vector from Bi to C:

Pi2 = BiC/Rb
= −Qi1 ni +AiO+OC (27)

The spatial arrangement of the segments (see Fig. 6) is as follows:

• The segments 1 and 2 are in the direction of the x-axis (ni =
[

1 0 0
]t

for i = 1, 2).

• The segments 3 and 4 are in the direction of the y-axis (ni =
[

0 1 0
]t

for i = 3, 4).

• The segments 5 and 6 are in the direction of the z-axis (ni =
[

0 0 1
]t

for i = 5, 6).

Thus, we deduce the following relations:

y1 = y2 = yc

z3 = z4 = zc

x5 = x6 = xc

(28)

The global vector of articular coordinate velocity of the leg i is given by:

Q̇i =
[

ẇpi
u̇pi

γ̇pi
β̇pi

α̇pi
Q̇i1

]t
(29)

where u̇pi
and ẇpi

are translation velocities due to the crossed sliding plates.

6.2.1 Determination of matrix Πi

The matrix Πi given in Eq. (23) is obtained as follows. We have:

⎡
⎢⎢⎢⎢⎢⎢⎣

ẇpi

u̇pi

γ̇pi

β̇pi

α̇pi

Q̇i1

⎤
⎥⎥⎥⎥⎥⎥⎦
= Πi

⎡
⎢⎢⎢⎢⎢⎢⎣

Q̇61

Q̇51

Q̇41

Q̇31

Q̇21

Q̇11

⎤
⎥⎥⎥⎥⎥⎥⎦

(30)

The elements iπjk of the matrix Πi are computed by using Eq. (7). This equation is true for
i = 1 to 6, thus:

βi

(
P t

i

)−1
HiQ̇i = βj

(
P t

j

)−1
HjQ̇j (31)
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for i and j = 1 to 6. From Eq. (31), we can show that for all i, j = 1, . . . , 6, we have the following
relations: ⎧

⎨
⎩

α̇pi
= α̇pj

β̇pi
= β̇pj

γ̇pi
= γ̇pj

(32)

After some manipulations on relation (31), we obtain:

• For i = 1 and j = 2
Q̇11 = (z2 − z1) β̇pi

+ (y1 − y2) γ̇pi
+ Q̇21 (33)

• For i = 3 and j = 4:
Q̇31 = (z3 − z4) α̇pi

+ (x4 − x3) γ̇pi
+ Q̇41 (34)

• For i = 5 and j = 6:
Q̇51 = (y6 − y5) α̇pi

+ (x5 − x6) β̇pi
+ Q̇61 (35)

• For i = 1 and j = 3:
u̇p1 = (z1 − z3) α̇pi

+ (x3 − x1) γ̇pi
+ Q̇31 (36)

• For i = 1 and j = 5:
ẇp1 = (y5 − y1) α̇pi

+ (x1 − x5) β̇pi
+ Q̇51 (37)

From Eq. (28), we have y1 = y2, z3 = z4 and x5 = x6. Thus, the Eqs. (33, 34, and 35) can be
written as:

Q̇11 = (z2 − z1) β̇pi
+ Q̇21

Q̇31 = (x4 − x3) γ̇pi
+ Q̇41

Q̇51 = (y6 − y5) α̇pi
+ Q̇61

(38)

From Eqs. (30), (36), (37) and (38), the matrix Π1 is computed as:

Π1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y5−y1

y5−y6

y6−y1

y6−y5
0 0 x1−x5

z1−z2

x1−x5
z2−z1

z1−z3
y5−y6

z1−z3
y6−y5

x3−x1
x3−x4

x4−x1
x4−x3

0 0

0 0 1
x3−x4

1
x4−x3

0 0

0 0 0 0 1
z1−z2

1
z2−z1

1
y5−y6

1
y6−y5

0 0 0 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(39)

The computational cost of explicit construction of the matrix Π1 is (17m + 28a) wherein the
cost of division has been taken to be the same as multiplication.
Considering the matrix Π1, the expression of the jacobian matrix is given by:

J = J1 Π1 (40)

With:

J1 = β1 P
−t
1 H1 =

[
P̂ t

12 0
] [

U P̂ t
11

0 U

] [
H12 0

0 H11

]

Thus:

J1 =
[
P̂ t

12 H12 P̂ t
12 P̂

t
11 H11

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 −y1 z1 0 1
0 1 x1 0 −z1 0
1 0 0 −x1 y1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(41)
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Note the highly sparse structure of the matrix J1. In fact, if the matrix Π1 is already computed
then the computation of the matrix J1 does not require any operation. However, if the explicit
computatiuon of J is needed it can be then computed as J = J1 Π1. Exploiting the sparse
structure of matrices J1 and Π1, this computation can be performed with a cost of 29m + 37a.

7. Computation of joint accelerations of the segments

The conventional approach to calculate Q̈i is based on time derivation of Eq. (7) as:

Q̈i = J −1
i V̇N+1 +

d

dt
J −1

i VN+1 (42)

Eq. (42) represents the second-order inverse kinematic model of the segment i.

In the following, we propose a new and more efficient approach for computation of Q̈i. From
the propagation of acceleration given in Eq. (9), we can derive the following relations:

V̇N+1 = P̂ t

i2 V̇i2 (43)

V̇i2 = Hi2Q̈i2 + P̂ t
i1V̇i1 +

d

dt
P̂ t

i1 Vi1 (44)

V̇i1 = Hi1Q̈i1 (45)

Considering the othogonality properties of the projection matrices Hij and Wij given in

Eq. (12), by multiplying both sides of Eq. (44) by Wt
i2 we get:

Wt
i2 V̇i2 = Wt

i2 Hi2Q̈i2︸ ︷︷ ︸
0

+Wt
i2 P̂

t
i1V̇i1 + Wt

i2
d

dt
P̂ t

i1 Hi1
︸ ︷︷ ︸

0

Q̇i1 = Wt
i2 P̂

t
i1V̇i1 (46)

Note that the above projection indeed eliminates the term Q̈i2 from the equation. From
Eqs. (45) and (46), we then obtain:

Q̈i1 =
(
Wt

i2 P̂
t
i1 Hi1

)−1
Wt

i2 V̇i2 (47)

Where the term defined by
(
Wt

i2 P̂
t
i1 Hi1

)−1
is a scalar.

Again, considering the properties given by Eq. (14), multiplying both sides of Eq. (44) by by
Ht

i2 we get:

Q̈i2 = Ht
i2 V̇i2 − Ht

i2 P̂
t
i1V̇i1 − Ht

i2

d

dt
P̂ t

i1 Hi1
︸ ︷︷ ︸

0

Q̇i1 = Ht
i2 V̇i2 − Ht

i2 P̂
t
i1V̇i1 (48)

Note that, Ht
i2

d
dt P̂

t
i1 Hi1 = 0 since d

dt P̂
t
i1 is along Hi1 and as can be seen from the description

of Hi1 and Hi2 in section 3, Ht
i2Hi1 = 0.

The joint accelerations of the segment i are then computed in four steps as follows:

1. Compute V̇i2 from Eq. (43)

2. Compute Q̈i1 from Eq. (47)

3. Compute V̇i1 from Eq. (45)

4. Compute Q̈i2 from Eq. (48)
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Exploiting the sparse structure of matrices Hi1, Hi2, and Wi2 as well as an appropriate scheme

for projection of the equations, the cost of computing Q̈i =

[
Q̈i2

Q̈i1

]
for each segment is of

(10m + 10a).

8. Inverse dynamic model

The inverse dynamic computation for the parallel robot consists of determination of the
required active joints torques to achieve a desired acceleration of the mobile platform, which
is needed for accurate control of the robot. In this section, we review the approch proposed
by Khalil et al in (Khalil & Guegan, 2004) (Khalil & Ibrahim, 2007).
Our contibution is to show that by using the factorized expression of the Jacobian matrix, and
the new formulation of acceleration joints, a significantly better computational efficiency can
be achieved for the inverse dynamic calculation.

8.1 Computation of inverse dynamic model

The dynamical equation of motion for each segment is given by:

Mi Q̈i +Ci +Gi + J t
Bi
Fi2 = Γi (49)

Where:

• Fi2 is the force exterted to the mobile platform by the segment i (Fig. 5).

• JBi
is the Jacobian matrix of the segment i, computed to the point Bi. The expression of

JBi
is given by:

JBi
= P̂−t

i2 Ji (50)

• Ci +Gi represents the contributation of the Coriolis, centrifugal, and gravitional terms.

• Γi represents the joint force vector of the segment i.

The contact forces exerted to the mobile platform by the segments, shown in Fig. 5, are
computed from Eq. (49) as:

Fi2 = −J −t
Bi

(
Mi Q̈i +Ci +Gi

)
+ J −t

Bi
Γi (51)

The dynamic behavior of the mobile platform is given by the following relation:

FN+1 = ΛC V̇N+1 + (GC +CC) (52)

Where:

• FN+1 is the spatial force applied at the point C, representing the contribution of the contact
forces FiN propagated to the point C:

FN+1 =

[
nN+1

fN+1

]
=

6

∑
i=1

P̂ t
i2 Fi2 (53)

• ΛC ∈ ℜ6×6 is the spatial inertia matrix of the mobile platform:

ΛC =

[
IC mC G̃C

−mC G̃C mC U

]
(54)
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• mC is the platform mass

• IC ∈ ℜ3×3 is the inertia tensor of the mobile platform expressed in the mobile platform
center of mass and projected in the fixed frame Rb:

IC = R IC/Rm
Rt (55)

• CC ∈ ℜ6 is the vector of Coriolis and centrifugal forces:

CC =

[
ω̃N+1 IC ωN+1

−mC ω̃N+1 G̃C ωN+1

]
(56)

• GC ∈ ℜ6 is the vector of gravitational forces:

GC =

[
−mC G̃C
−mC U

]
g (57)

• g being the acceleration vector of gravity

Substituting (51) in (53), we obtain:

FN+1 =
6

∑
i=1

P̂ t
i2

(
J −t

Bi
Γi −J −t

Bi

(
MiQ̈i +Ci +Gi

))
(58)

The active joint forces vector is given by:

Γ =
[

Γ61 Γ51 Γ41 Γ31 Γ21 Γ11

]t

We have ∑
6
i=1 P̂

t
i2 J

−t
Bi

Γi = J −1
Γ where J −1 is the inverse Jacobian matrix of the parallel

robot. Eq. (58) can be rewritten as:

FN+1 = J −t
Γ −

6

∑
i=1

P̂ t
i2 J

−t
Bi

(
MiQ̈i +Ci +Gi

)
(59)

The inverse dynamic model, given by Kahlil et al in (Khalil & Ibrahim, 2007) is then expressed
by:

Γ = J t

[
FN+1 +

6

∑
i=1

P̂ t
i2 J

−t
Bi

(
MiQ̈i +Ci +Gi

)
]

(60)

8.2 Computational complexity analysis

The inverse dynamic model, given in Eq. (60), is computed in six steps:

1. Computation of joint accelerations from Eq. (42)

2. Computation of the vector defined as Ti = MiQ̈i + Ci + Gi with the recursive
Newton-Euler algorithm (Cork, 1996).

3. Computation of the vector resulting from the propagation of forces exterted on the mobile
platform by all the segments as Φ = ∑

6
i=1 P̂

t
i2 Ti

4. Computation of FN+1 from Eq. (52)

5. Computation of the vector defined as K = FN+1 + Φ

354 Robotic Systems – Applications, Control and Programming

www.intechopen.com



Kinematic and Inverse Dynamic Analysis of a C5 Joint Parallel Robot 17

6. Computation of the vector Γ = J t K

The computation of the last step, as discussed by Khalil et al in (Khalil & Guegan,
2004) (Khalil & Ibrahim, 2007), is performed by first computing J −t from Eq. (22). As a result,
the computation of Γ requires solving a linear system of dimension 6 as:

J −t
Γ = K (61)

The computation cost for the derivation of J −1, from Eq. (22), is (18m + 30a). The cost of
solving the linear system of dimension 6 in Eq. (61) is of (116m + 95a) wherein the cost of
division and multiplication are taken to be the same. Therefore, the total cost of Step 6 is of
(134m + 125a)
Our contribution concerns the improvement of the efficiency of the inverse dynamic
computational by using the factorized expression of the Jacobian matrix and the new
formulation of the joint accelerations. Using these formulations, the computations can be
then performed as follows:
Step 1 is performed with a cost of (10m + 10a) for each segment by using the expression given
in Eqs. (47) and (48). This represents a much better efficiency than that of using Eq. (42).
Steps 2, 3, 4 and 5 are the same as in Khalil et al in (Khalil & Guegan, 2004) (Khalil & Ibrahim,
2007) .
For computation of Step 6, the factorized expression of J , given by Eq. (40) is used. To this
end, we have:

Γ = Π1
t J1

tK (62)

Note that, the above equation not only eliminates the need for solving a linear system but it
also does not require the explicit computation of neither J −1 nor J . By exploiting the sparse
structure of matrices Π1

t and J1, the cost of computation of the vector Γ from Eq. (62) is
of (65m + 67a), which represents a much better efficiency, almost half of the computations,
compared by using Eq. (40).

9. Simulation of the inverse dynamic model

To validate our inverse dynamic model of the C5 joint parallel robot, a simulation under
Matlab environment is presented in this section. The dynamic parameters used for the
simulation are given in appendix.
The trajectory profile used for this study is given as follows:

• Fig. 7 shows cartesian trajectory of the mobile platform for a constant orientation (α = 10o ,
β = 15o and γ = 20o).

• Fig. 8 and 9 show respectively the linear velocity and linear acceleration of the mobile
platform along the given trajectory.

• The active joint forces are computed using inverse dynamic model given by Eq. (60). Fig.
10 shows the active joint force evolution along the trajectory.

The simulation results show the feasibility of the proposed approach. The terms of Eq (60)
have been computed, and especially, the joint accelerations and the Jacobian matrix in its
factorized form, which represent our main contribution in this present paper.
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Fig. 7. Mobile platform cartesian trajectory.

Fig. 8. Mobile platform linear velocity profile.
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Fig. 9. Mobile platform linear acceleration profile.

Fig. 10. Active joint forces Γi along the trajectory.
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10. Conclusion

In this paper, we first presented a review of various proposed schemes for kinematics and
inverse dynamics computation of the C5 parallel robot. We presented a new and efficient
scheme for derivation of the Jacobian matrix in a factored form as a product two highly
sparse matrices. We also presented a new scheme for fast and direct computation of the
joint accelerations, given the desired acceleration of the mobile platform. We also reviewed
the proposed scheme by Khalil et al (Khalil & Guegan, 2004)(Khalil & Ibrahim, 2007) for
computation of the inverse dynamics of the C5 parallel robot. We showed that by using
our new scheme for computation of the joint acceleration as well as the use of Jacobian in
a factored form a much better efficiency in the computation can be achieved.
The proposed methodology by Khalil et al (Khalil & Guegan, 2004)(Khalil & Ibrahim, 2007)
for computation of the inverse dynamics is very systematic and indeed has been applied
to several parallel robots. However, we still believe that more efficient formulations can be
derived by a further exploitation of specific structures of the parallel robots. We are currently
investigating new approaches for the inverse dynamics computation of parallel robots. We
are also extending our derivation of the Jacobian matrix in the factored form to other parallel
robots.

11. Appendix: dynamic parameters

Body Mass Inertia

1 2 kg JGi1
=

⎡
⎣

0.0025 0 0

0 0.00125 + 0.1667 (Qi1)
2 0

0 0 0.00125 + 0.1667 (Qi1)
2

⎤
⎦

2 1.67 kg JGi2
=

⎡
⎣

0.00167 0 0
0 0.0084 0
0 0 0.0084

⎤
⎦

Table 1. Dynamic parameters of the segment i = 1 and 2

Body Mass Inertia

1 2 kg JGi1
=

⎡
⎣

0.00125 + 0.1667 (Qi1)
2 0 0

0 0.0025 0

0 0 0.00125 + 0.1667 (Qi1)
2

⎤
⎦

2 1.67 kg JGi2
=

⎡
⎣

0.0084 0 0
0 0.00167 0
0 0 0.0084

⎤
⎦

Table 2. Dynamic parameters of the segment i = 3 and 4
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Body Mass Inertia

1 2 kg JGi1
=

⎡
⎣

0.00125 + 0.1667 (Qi1)
2 0 0

0 0.00125 + 0.1667 (Qi1)
2 0

0 0 0.0025

⎤
⎦

2 1.67 kg JGi2
=

⎡
⎣

0.0084 0 0
0 0.0084 0
0 0 0.00167

⎤
⎦

Table 3. Dynamic parameters of the segment i = 5 and 6

Body Mass Inertia

Mobile platform 10 kg IC =

⎡
⎣

0.375 0 0
0 0.1875 0
0 0 0.1875

⎤
⎦

Table 4. Dynamic parameters of the mobile platform

12. References

Bi, Z. M. & Lang, S. Y. T. (2006). Kinematic and dynamic models of a tripod system with a
passive leg, IEEE/ASME Transactions on Mechatronics Vol. 11(No. 1): 108–112.

Cork, P. I. (1996). A robotics toolbox for matlab, IEEE Robotics and Automation Magazine Vol.
3: 24–32.

Dafaoui, M., Amirat, Y., François, C. & Pontnau, J. (1998). Analysis and design of a six dof
parallel robot. modeling, singular configurations and workspace, IEEE Trans. Robotics
and Automation Vol. 14(No. 1): 78–92.

Dasgupta, B. & Choudhury, P. (1999). A general strategy based on the newton-euler approach
for the dynamic formulation of parallel manipulators, Mech. Mach. Theory Vol.
4: 61–69.

Fichter, E. F. (1986). A stewart platform based manipulator: general theory and pratical
construction, International Journal of Robotics Research Vol. 5(No. 2): 157–182.

Fijany, A., Djouani, K., Fried, G. & J. Pontnau, J. (1997). New factorization techniques and fast
serial and parallel algorithms for operational space control of robot manipulators,
Proceedings of IFAC, 5thSymposium on Robot Control, Nantes, France, pp. 813–820.

Fijany, A., Sharf, I. & Eleuterio, G. M. T. (1995). Parallel o(logn) algorithms for computation
of manipulator forward dynamics, IEEE Trans. Robotics and Automation Vol. 11(No.
3): 389–400.

Fried, G., Djouani, K., Borojeni, D. & Iqbal, S. (2006). Jacobian matrix factorization
and singularity analysis of a parallel robot, WSEAS Transaction on Systems Vol.
5/6: 1482–1489.

Gosselin, C. M. (1996). Parallel computational algorithms for the kinematics and dynamics of
planar and spatial parallel manipulator, Journal of Dynamic System, Measurement and
Control Vol. 118: 22–28.

Khalil, W. & Guegan, S. (2004). Inverse and direct dynamic modeling of gough-stewart robots,
IEEE Transactions on Robotics Vol. 20(No. 4): 745–762.

359Kinematic and Inverse Dynamic Analysis of a C5 Joint Parallel Robot

www.intechopen.com



22 Will-be-set-by-IN-TECH

Khalil, W. & Ibrahim, O. (2007). General solution for the dynamic modeling of parallel robots,
Journal of Intelligent and Robotic Systems Vol. 49(No. 1): 19–37.

Khan, W. A. (2005). Recursive kinematics and inverse dynamics of a 3r planar
parallel manipulator, Journal of Dynamic System, Measurment and Control Vol. 4(No.
4): 529–536.

Leroy, N., Kokosy, A. M. & Perruquetti, W. (2003). Dynamic modeling of a parallel robot.
Application to a surgical simulator, Proceedings of IEEE International Conference on
Robotics and Automation, Taipei, Taiwan, pp. 4330–4335.

Luh, J. Y. S., Walker, W. & Paul, R. P. C. (1980). On line computational scheme for mechanical
manipulator, ASME Journal of Dynamic System, Meas Control Vol. 102: 69–76.

Merlet, J. P. (2000). Parallel Robots, Kluwer Academic Publishers.
Merlet, J. P. (2002). Optimal design for the micro parallel robot mips, Proceedings of IEEE

International Conference on Robotics and Automation, ICRA ’02, Washington DC, USA,
pp. 1149–1154.

Nakamura, Y. & Ghodoussi, M. (1989). Dynamic computation of closed link robot mechanism
with non redundant actuators, IEEE Journal of Robotics and Automation Vol. 5: 295–302.

Neugebauer, R., Schwaar, M. & F. Wieland, F. (1998). Accuracy of parallel structured of
machine tools, Proceedings of the International Seminar on Improving Tool Performance,
Spain, pp. 521–531.

Plitea, N., Pisla, D., Vaida, C., Gherman, B. & Pisla, A. (2008). Dynamic modeling of a parallel
robot used in minimally invasive surgery, Proceedings of EUCOMES 08, Cassino, Italy,
pp. 595–602.

Poignet, P., Gautier, M., Khalil, W. & Pham, M. T. (2002). Modeling, simulation and control
of high speed machine tools using robotics formalism, Journal of Mechatronics Vol.
12: 461–487.

Reboulet, C. (1988). Robots parallèles, Eds Hermès, Paris.
Stewart, D. (1965). A plaform with 6 degrees of freedom, Proceedings of the institute of mechanical

engineers, pp. 371–386.
Tsai, L. W. (2000). Solving the inverse dynamics of a gough-stewart manipulator by the

principle of virtual work, Journal of Mechanism Design Vol. 122: 3–9.
Zhu, Z., Li, J., Gan, Z. & Zhang, H. (2005). Kinematic and dynamic modelling for real-time

control of tau parallel robot, Journal of Mechanism and Machine Theory Vol. 40(No.
9): 1051–1067.

360 Robotic Systems – Applications, Control and Programming

www.intechopen.com



Robotic Systems - Applications, Control and Programming

Edited by Dr. Ashish Dutta

ISBN 978-953-307-941-7

Hard cover, 628 pages

Publisher InTech

Published online 03, February, 2012

Published in print edition February, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book brings together some of the latest research in robot applications, control, modeling, sensors and

algorithms. Consisting of three main sections, the first section of the book has a focus on robotic surgery,

rehabilitation, self-assembly, while the second section offers an insight into the area of control with discussions

on exoskeleton control and robot learning among others. The third section is on vision and ultrasonic sensors

which is followed by a series of chapters which include a focus on the programming of intelligent service robots

and systems adaptations.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Georges Fried, Karim Djouani and Amir Fijany (2012). Kinematic and Inverse Dynamic Analysis of a C5 Joint

Parallel Robot, Robotic Systems - Applications, Control and Programming, Dr. Ashish Dutta (Ed.), ISBN: 978-

953-307-941-7, InTech, Available from: http://www.intechopen.com/books/robotic-systems-applications-

control-and-programming/kinematic-and-inverse-dynamic-analysis-of-a-c5-joint-parallel-robot



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


