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1. Introduction

In this chapter, the prediction algorithm Predictive Sequence Learning (PSL) is presented and
evaluated in a robot Learning from Demonstration (LFD) setting. PSL generates hypotheses from
a sequence of sensory-motor events. Generated hypotheses can be used as a semi-reactive
controller for robots. PSL has previously been used as a method for LFD (Billing et al., 2010;
2011) but suffered from combinatorial explosion when applied to data with many dimensions,
such as high dimensional sensor and motor data. A new version of PSL, referred to as
Fuzzy Predictive Sequence Learning (FPSL), is presented and evaluated in this chapter. FPSL
is implemented as a Fuzzy Logic rule base and works on a continuous state space, in contrast
to the discrete state space used in the original design of PSL. The evaluation of FPSL shows a
significant performance improvement in comparison to the discrete version of the algorithm.
Applied to an LFD task in a simulated apartment environment, the robot is able to learn to
navigate to a specific location, starting from an unknown position in the apartment.

Learning from Demonstration is a well-established technique for teaching robots new
behaviors. One of the greatest challenges in LFD is to implement a learning algorithm
that allows the robot pupil to generalize a sequence of actions demonstrated by the teacher
such that the robot is able to perform the desired behavior in a dynamic environment. A
behavior may be any complex sequence of actions executed in relation to sensor data (Billing
& Hellstrom, 2010).

The LFD problem is often formulated as four questions, what-to-imitate, how-to-imitate,
when-to-imitate and who-to-imitate which leads up to the larger problem of how to evaluate
an imitation (Alissandrakis et al., 2002). Large parts of the literature approach the learning
problem by trying to find the common features within a set of demonstrations of the same
behavior. A skill is generalized by exploiting statistical regularities among the demonstrations
(e.g. Calinon, 2009). This is reflected in the what-to-imitate question, originally introduced in a
classical work by Nehaniv & Dautenhahn (2000) and is in a longer form described as:

An action or sequence of actions is a successful component of imitation of a
particular action if it achieves the same subgoal as that action. An entire sequence
of actions is successful if it successively achieves each of a sequence of abstracted
subgoals.

The problem is difficult since a certain behavior can be imitated on many different abstraction
levels. Byrne & Russon (1998) identified two levels; the action-level imitation copying the
surface of the behavior and a program-level imitation copying the structure of the behavior. A
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third level, the effect-level imitation, was introduced by Nehaniv & Dautenhahn (2001) in order
to better describe imitation between agents with dissimilar body structures. Demiris & Hayes
(1997) proposed three slightly different levels: 1) basic imitation with strong similarities to
the notion of action-level imitation, 2) functional imitation that best corresponds to effect-level
imitation and 3) abstract imitation that represents coordination based on the presumed internal
state of the agent rather than the observed behavior. Demiris and Hayes give the example of
making a sad face when someone is crying.

The necessity to consider the level of imitation in LFD becomes apparent when considering
two demonstrations that look very different considered as sequences of data, but that we as
humans still interpret as examples of the same behavior since they achieve similar results on
an abstract level. This would correspond to a functional or program-level imitation. In these
situations it is very difficult to find similarities between the demonstrations without providing
high level knowledge about the behavior, often leading to specialized systems directed to LDF
in limited domains.

A related problem is that two demonstrations of the same behavior may not have the same
length. If one demonstration takes longer time than another, they can not be directly compared
in order to find common features. Researchers have therefore used techniques to determine
the temporal alignment of demonstrations. One common technique is dynamic time warping
(Myers & Rabiner, 1981), that can be used to compensate for temporal differences in the data.
Behaviors can be demonstrated to a robot in many different ways. Argall et al. (2009)
outline four types of demonstrations: A direct recording of sensor stimuli, joint angles, etc.,
is referred to as an identity record mapping. In this case, the robot is often used during the
demonstration and controlled via teleoperation or by physically moving the robot’s limbs
(kinestetic teaching). An external observation, e.g. a video recording of the teacher, is called
a non-identity record mapping. This type of demonstrations poses a difficult sensing problem
of detecting how the teacher has moved, but also allows much more flexible demonstration
setting. The teacher may have a body identical to that of the pupil (identity embodiment) or a
body with a different structure (non-identity embodiment). In the latter case, the demonstration
has to be transformed into corresponding actions using the body of the pupil, a difficult
problem known as the correspondence problem (Nehaniv & Dautenhahn, 2001). In this work
we focus on LFD via teleoperation. Sensor data and motor commands are in this setting
recorded while a human teacher demonstrates the desired behavior by tele-operating the
robot, producing demonstrations with identity in both record mapping and embodiment.

1.1 Metric of imitation

Successful imitation requires that relevant features of the demonstration are selected at a
suitable imitation level and processed into a generalized representation of the behavior. The
process is difficult to implement in a robot since it is often far from obvious which imitation
level that is optimal in a specific situation, and the relevance of features may consequently
vary significantly from one learning situation to another. This problem has been formalized
as a metric of imitation, defined as a weighted sum over all strategy-dependent metrics on all
imitation levels (Billard et al., 2003).

The metric of imitation was originally demonstrated on a manipulation task with a humanoid
robot (Billard et al., 2003). With focus on the correspondence problem, Alissandrakis et al.
(2005) propose a similar approach to imitation of manipulation tasks. The what-to-imitate
problem is approached by maximizing trajectory agreements of manipulated objects, using
several different metrics. Some metrics encoded absolute trajectories while other metrics
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encoded relative object displacement and the relevant aspects of the behavior were in this way
extracted as the common features in the demonstration set. Calinon et al. (2007) developed
this approach by encoding the demonstration set using a mixture of Gaussian/Bernoulli
distributions. The Gaussian Mixture Model approach is attractive since the behavior is
divided into several distributions with different covariance, and different metrics can in this
way be selected for different parts of the demonstrated behavior. More recently, similar
encoding strategies have been evaluated for learning of a robot navigation task (de Rengervé
et al., 2010).

1.2 Behavior primitives as a basis for imitation

Another common approach to LFD is to map the demonstration onto a set of pre-programmed
or previously learned primitives controllers (Billing & Hellstrom, 2010). The approach
has strong connections to behavior-based architectures (Arkin, 1998; Matari¢, 1997; Matari¢ &
Marjanovic, 1993) and earlier reactive approaches (e.g. Brooks, 1986; 1991). When introducing
behavior primitives, the LFD process can be divided into three tasks (Billing & Hellstrom,
2010):

1. Behavior segmentation where a demonstration is divided into smaller segments.
2. Behavior recognition where each segment is associated with a primitive controller.

3. Behavior coordination, referring to identification of rules or switching conditions for how the
primitives are to be combined.

Behavior segmentation and recognition can be seen as one way to approach the
what-to-imitate problem, whereas behavior coordination is part of how-to-imitate. The
approach represents one way of introducing good bias in learning and solve the generalization
problem by relying on previous behavioral knowledge. While there are many domain specific
solutions to these three subproblems, they appear very difficult to solve in the general case.
Specifically, behavior recognition poses the problem of mapping a sequence of observations
to a set of controllers to which the input is unknown. Again, the need to introduce a metric of
imitation appears.

Part of the problem to find a general solution to these problems may lie in a vague definition
of behavior (Matari¢, 1997). The notion of behavior is strongly connected to the purpose of
executed actions and a definition of goal. Nicolescu (2003) identified two major types of goals:

Maintenance goals: A specific condition has to be maintained for a time interval.
Achievement goals: A specific condition has to be reached.

The use of behavior primitives as a basis for imitation has many connections to biology
(e.g. Matari¢, 2002) and specifically the mirror system (Brass et al., 2000; Gallese et al., 1996;
Rizzolatti et al., 1988; Rizzolatti & Craighero, 2004). While the role of the mirror system
is still highly debated, several groups of researchers propose computational models where
perception and action are tightly interweaved. Among the most prominent examples are
the HAMMER architecture (Demiris & Hayes, 2002; Demiris, 1999; Demiris & Johnson, 2003)
and the MOSAIC architecture (Haruno et al., 2001; Wolpert & Kawato, 1998). Both these
architectures implement a set of modules, where each module is an inverse model (controller)
paired with a forward model (predictor). The inverse and forward models are trained together
such that the forward model can predict sensor data in response to the actions produced by
the inverse model. The inverse model is tuned to execute a certain behavior when the forward
model produces good predictions. The prediction error is used to compute a bottom-up
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signal for each module. Based on the bottom-up signal, a top-down responsibility signal or
confidence value is computed and propagated to each module. The output of the system is
a combination of the actions produced by each inverse model, proportional to their current
responsibility. The responsibility signal also controls the learning rate of each module, such
that modules are only updated when their responsibility is high. In this way, modules are
tuned to a specific behavior or parts of a behavior. Since the prediction error of the forward
model is used as a measure of how well the specific module fits present circumstances, it can
be seen as a metric of imitation that is learnt together with the controller. The architecture
can be composed into a hierarchical system where modules are organized in layers, with the
lowest layer interacting with sensors and actuators. The bottom-up signal constitutes sensor
input for the layer above and actions produced by higher levels constitutes the top-down
responsibility signal.

One motivation for this architecture lies in an efficient division of labor between different
parts of the system. Each module can be said to operate with a specific temporal resolution.
Modules at the bottom layer are given the highest resolution while modules higher up in the
hierarchy have decreasing temporal resolution. State variables that change slowly compared
to a specific module’s resolution are ignored by that module and are instead handled by
modules higher up in the hierarchy. Slowly changing states that lead to high responsibility for
the module is referred to as the module’s context. In a similar fashion, variables that change
fast in comparison to the temporal resolution are handled lower in the hierarchy. This allows
each module to implement a controller where the behavior depends on relatively recent states.
Long temporal dependencies are modeled by switching between modules, which removes
the requirement for each model to capture these dependencies. Furthermore, updates of a
single behavior or parts of a behavior will only require updates of a few modules and will
not propagate changes to other modules. See Billing (2009) for a longer discussion on these
aspects of hierarchical architectures.

The HAMMER and MOSAIC architectures make few restrictions on what kind of controllers
each module should implement. We argue however, that modules should be semi-reactive,
meaning that action selection and predictions of sensor events should be based on recent
sensor and motor events. Strictly reactive modules are not desirable since each module must
be able to model any dependency shorter than the temporal resolution of modules in the layer
directly above.

The division of behavior into modules is however also producing a number of drawbacks.
The possibility for the system to share knowledge between behaviors is limited. Moreover,
the system has to combine actions produced by different modules, which may be difficult in
cases when more than one module receives high responsibility.

One architecture with similarities to HAMMER and MOSAIC able to share knowledge
between different behaviors is RNNPB (Tani et al., 2004). RNNPB is a recurrent neural network
with parametric bias (PB). Both input and output layer of the network contains sensor and
motor nodes as well as nodes with recurrent connections. In addition, the input layer is given
a set of extra nodes, representing the PB vector. The network is trained to minimize prediction
error, both by back-propagation and by changing the PB vector. The PB vector is however
updated slowly, such that it organizes into what could be seen as a context layer for the rest
of the network. In addition to giving the network the ability to represent different behaviors
that share knowledge, the PB vector can be used for behavior recognition.

Another architecture known as Brain Emulating Cognition and Control Architecture (BECCA)
(Rohrer & Hulet, 2006) heavily influenced our early work on the PSL algorithm. The focus
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of BECCA is to capture the discrete episodic nature of many types of human motor behavior,
without introducing a priori knowledge into the system. BECCA was presented as a very
general reinforcement learning system, applicable to many types of learning and control
problems. One of the core elements of BECCA is the temporal difference (TD) algorithm
Sequence Learning (SL) (Rohrer, 2007). SL builds sequences of passed events which is used
to predict future events, and can in contrast to other TD algorithms base its predictions on
many previous states.

Inspired by BECCA and specifically SL, we developed the PSL algorithm as a method for LFD
(Billing et al., 2010; 2011). PSL has many interesting properties seen as a learning algorithm
for robots. It is model free, meaning that it introduces very few assumptions into learning and
does not need any task specific configuration. PSL can be seen as a variable-order Markov
model. Starting out from a reactive (first order) model, PSL estimates transition probabilities
between discrete sensor and motor states. For states that do not show Markov property, the
order is increased and PSL models the transition probability based on several passed events.
In this way, PSL will progressively gain memory for parts of the behavior that cannot be
modeled in a reactive way. In theory, there is no limitation to the order of the state and hence
the length of the memory, but PSL is in practice unable to capture long temporal dependencies
due to combinatorial explosion.

PSL has been evaluated both as a controller (Billing et al., 2011) and as a method for
behavior recognition (Billing et al., 2010). Even though the evaluation overall generated
good results, PSL is subject to combinatorial explosion both when the number of sensors
and actuators increase, and when the demonstrated behavior requires modeling of long
temporal dependencies. PSL can however efficiently model short temporal dependencies in a
semi-reactive way and should thus be a good platform for implementing a hierarchical system
similar to the HAMMER and MOSAIC architectures.

In this chapter, we present and evaluate a new version of PSL based on Fuzzy Logic. While
keeping the core idea of the original PSL algorithm, the new version can handle continuous
and multi dimensional data in a better way. To distinguish between the two, the new
fuzzy version of the algorithm is denoted FPSL, whereas the previous discrete version is
denoted DPSL. A detailed description of FPSL is given in Section 2. An evaluation with
comparisons between the two algorithms is presented in Section 3, followed by a discussion
and conclusions in section 4.

2. Predictive Sequence Learning

FPSL builds fuzzy rules, referred to as hypotheses h, describing temporal
dependencies between a sensory-motor event e;;; and a sequence of passed events

<et—|h|+1/ € |h[4+2s -7 et), defined up until current time ¢.

. . . C —
h: (Yt—|h|+1 is E|hh|71 AR FIANE R C E‘hh|72 ANWAN Eé’) = Yyq i E" (1)

Y; is the event variable and E" (e) is a fuzzy membership function returning a membership
value for a specific e. The right hand side E" is a membership function comprising expected
events at time ¢ + 1. |l1| denotes the length of 4, i.e., the number of left-hand-side conditions
of the rule. Both E and E are implemented as standard cone membership functions with base
width ¢ (e.g. Klir & Yuan, 1995).

A set of hypotheses can be used to compute a prediction &, given a sequence of passed
sensory-motor events 77, defined up to the current time ¢:

www.intechopen.com



240 Robotic Systems — Applications, Control and Programming

n= (61162/--'181’) (2)
The process of matching hypothesis to data is described in Section 2.1. The PSL learning

process, where hypotheses are generated from a sequence of data, is described in Section 2.2.
Finally, a discussion about parameters and configuration is found in Section 2.3.

2.1 Matching hypotheses
Given a sequence of sensory-motor events #§ = (e1,e,...,¢), a match a; (1) of the rule is
given by:

|h| =1

w () N\ El (o) ©
i=0

where A is implemented as a min-function.
Hypotheses are grouped in fuzzy sets C whose membership value C (h) describes the
confidence of / at time ¢:

Zt:h“k (h) E" (e 1)
C(h) =" ()
Y ax (h)

k=th

t! is the creation time of / or 1 if h existed prior to training. Each C represents a context and can
be used to implement a specific behavior or part of a behavior. The responsibility signal Ay (C)
is used to control which behavior that is active at a specific time. The combined confidence
value C; (h) is a weighted sum over all C:

YC (1) A (C)
C

YA (C) ©)
C

Ce (h) =

Ct can be seen as a fuzzy set representing the active context at time t. Hypotheses contribute
to a prediction in proportion to their membership in C and the match set M. M is defined in
three steps. First, the best matching hypotheses for each E is selected:

M= {h | (h) > a (i) forall {h’ |EF = Eh}} ©6)

The longest h € M for each RHS is selected:

M:{h||h|z\h’\forall {h/eMth’:Eh}} %)
Finally, the match set M is defined as:

8)

N a (h) C (h) he M
0 otherwise

The aggregated prediction E (e, 1) is computed using the Larsen method (e.g. Fullér, 1995):
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A

E(ery1) = \VEp (ery1) M (h) 9)
h

E is converted to crisp values using a squared center of sum defuzzification:

YeE (e)®
A e
LE (e)®
e
The amount of entropy in M also bears information about how reliable a specific prediction
is, referred to as the trust ¢:

0 -

. M=0
é M - ~ ~ 11
(M) exp {ZM (h)log, (M (h))} otherwise =

h

The trust is important since it allows a controller to evaluate when to rely on PSL, and when
to choose an alternate control method. The proportion of time steps in 7 for which ¢ > 0 and
PSL is able to produce a prediction is referred to as the coverage ¢ ():

£{1 & >0
i=1

0 otherwise

9 (n) = t (12)

2.2 Generating hypotheses

Hypotheses can be generated from a sequence of sensory-motor events 7. During training,
PSL continuously makes predictions and creates new hypotheses when no matching
hypothesis produces the correct prediction E. The exact training procedure is described in
Algorithm 0.1.

For example, consider the event sequence 7 = abccabccabee. Let t = 1. PSL will search for
a hypothesis with a body matching a. Initially, the context set C is empty and consequently
PSL will create a new hypothesis (a) = b which is added to C with confidence 1, denoted
C(a=1b) = 1. The same procedure will be executed at t = 2 and ¢+ = 3 such that
C((b)=>c) = 1land C((c)=c) = 1. Att = 4, PSL will find a matching hypothesis
(c) = c producing the wrong prediction c. Consequently, a new hypothesis (c) = a is
created and confidences are updated such that C ((¢) = c¢) = 0.5 and C((c) = a) = 1. The
new hypothesis receives a higher confidence since confidence values are calculated from the
creation time of the hypothesis (Equation 4). The predictions at t = 5 and ¢ = 6 will be correct
and no new hypotheses are created. Att = 7, both (¢) = a and (c) = ¢ will contribute
to the prediction E. Since the confidence of (c) = a is higher than that of (c) = ¢, E will
defuzzify towards a, producing the wrong prediction (Equation 10). As a result, PSL creates
a new hypothesis (b,c) = c. Similarly, (c¢,c¢) = a will be created at t = 8. PSL is now able to
predict all elements in the sequence perfectly and no new hypotheses are created.

Source code from the implementation used in the present work is available online (Billing,
2011).
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Algorithm 0.1 Predictive Sequence Learning (PSL)

Require: ¢ = (e, ep,...,er) where T denotes the length of the training set
Require: & as the precision constant, see text

lett <1

lety = (e, e2,...,6t)

letC <+ @

let £ as Eq. 9

if £ (e;,1) < & then
let hyep = CreateHypothesis (17, C) as defined by Algorithm 0.2
C (hpew) <1

end if

Update confidences C () as defined by Equation 4

sett=1t+1

: if t<T then

goto 2

: end if

O XN PR

O
XN P2

Algorithm 0.2 CreateHypothesis

Require: 7 = (e1,ep,...,¢t)

Require: C:h — [0,1]

Require: « as defined by Eq. 3
1: let M (h) as Eq. 8
2: let M = {h | E" (e141) > &AM (h) > O} where & is the precision constant, see Section 2.3
3: if M = @ then

4:  let E* be a new membership function with center e; and base e

5. return hyey : (Yris E*) = Y, 1 is E

6: else

7. lethe M

8: if C(h) =1then

9: return null
10:  else
11: let E* be a new membership function with center e, 1| and base ¢
12: return M0y : (th is E*’Yt*|}_‘|+1 is Elrﬁ|—1""’Yt is ES’) = Y; 1 is E
13:  endif
14: end if
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2.3 Parameters and task specific configuration

A clear description of parameters is important for any learning algorithm. Parameters always
introduce the risk that the learning algorithm is tuned towards the evaluated task, producing
better results than it would in the general case. We have therefore strived towards limiting the
number of parameters of PSL. The original design of PSL was completely parameter free, with
the exception that continuous data was discretized using some discretization method. The
version of PSL proposed here can be seen as a generalization of the original algorithm (Billing
et al., 2011) where the width & of the membership function E determines the discretization
resolution. In addition, a second parameter is introduced, referred to as the precision constant
&. & is in fuzzy logic terminology an a-cut, i.e., thresholds over the fuzzy membership function
in the interval [0, 1] (Klir & Yuan, 1995).

e controls how generously FPSL matches hypotheses. A high ¢ makes the algorithm crisp
but typically increases the precision of predictions when a match is found. Contrary, a low
¢ reduces the risk that FPSL reaches unobserved states at the cost of a decreased prediction
performance. The high value of & can be compared to a fine resolution data discretization for
the previous version of PSL.

& is only used during learning, controlling how exact a specific E has to be before a new
hypothesis with a different E is created. A large & reduces prediction error but typically results
in more hypotheses being created during learning.

Both € and & controls the tolerance to random variations in the data and can be decided based
on how exact we desire that FPSL should model the data. Small € in combination with large &
will result in a model that closely fits the training data, typically producing small prediction
errors but also a low coverage.

3. Evaluation

Two tests were performed to evaluate the performance of FPSL and compare it to the previous
version. A simulated Robosoft Kompai robot (Robosoft, 2011) was used in the Microsoft RDS
simulation environment (Microsoft, 2011). The 270 degree laser scanner of the Kompai was
used as sensor data and the robot was controlled by setting linear and angular speeds.
Demonstrations were performed via tele-operation using a joypad, while sensor and motor
data were recorded with a temporal resolution of 20 Hz. The dimensionality of the laser
scanner was reduced to 20 dimensions using an average filter. Angular and linear speeds
were however fed directly into PSL.

The first test (Section 3.1) was designed to compare FPSL and DPSL as prediction algorithms,
using sensor data from the simulated robot. The second test (Section 3.2) demonstrates the
use of FPSL as a method for LFD.

3.1 Sensor prediction

The two versions of PSL were compared using a series of tests of prediction performance.
Even though DPSL and FPSL are similar in many ways, a comparison is not trivial since DPSL
works on discrete data whereas FPSL uses continuous data. Prediction performance of DPSL
will hence depend on how the data is discretized while the performance of FPSL depends on
the parameters ¢ and &.

To capture the prediction performance of the two algorithms using different configurations,
a series of tests were designed. 10 discretization levels were chosen, ranging from a fine
resolution where DPSL could only produce predictions on a few samples in the test set, to
a low resolution where DPSL rarely met unobserved states. Laser readings were discretized
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Microsoft Robtics Developer Studio

Fig. 1. Simulation Environment (Microsoft, 2011) used for evaluations. Blue stars and yellow
dots represent starting positions used for demonstrations and test runs, respectively. The
green area marked with a G represents the target position. The white area under star 10 is the
robot.

over 0.8 m for the finest resolution, up to 8 m for the lowest resolution. Motor data was
discretized over 0.06m/s for the finest resolution up to 0.6 m/s for the lowest resolution.
Similarly, 10 e values were chosen, corresponding to a cone base ranging from 0.8 m to 8 m
for laser data, and 0.06 m/s up to 0.6 m/s for motor data. & was given a constant value of 0.9,
corresponding to a error tolerance of 10% of e.

10 data files were used, each containing a demonstration where the teacher directed the robot
from a position in the apartment to the TV, see Figure 1. A rotating comparison was used,
where PSL was tested on one demonstration at a time and the other nine demonstrations
were used as training data. Prediction performance was measured in meters on laser range
data.

3.1.1 Results

The results from the evaluation are illustrated in Figure 2. While the ¢ value of FPSL cannot
directly be compared to the discretization level used for DPSL, the two parameters have
similar effect on coverage. Prediction error is only calculated on the proportion of the data for
which prediction are produced, and consequently, prediction error increases with coverage.
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Fig. 2. Results from the prediction evaluation (Section 3.1). Upper plot shows prediction
errors for FPSL (solid line) and DPSL (dashed line). Lower plot shows coverage, i.e. the
proportion of samples for which the algorithm generated predictions, see Equation 12.
Vertical bars represent standard deviation.

3.2 Target reaching

This evaluation can be seen as a continuation of previous tests with DPSL using a Khepera
robot (Billing et al., 2011). The evaluation is here performed in a more complex environment,
using a robot with much larger sensor dimensionality. Initial tests showed that DPSL has
sever problems to handle the increased sensor dimensionality when used as a controller.
A discretization resolution of about 2 m appeared necessary in order to produce satisfying
discrimination ability. Even with this relatively low resolution, the 20 dimensional data
produced a very large state space causing DPSL to frequently reach unrecognized states.
DPSL could control the robot after intense training in parts of the test environment, but could
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not compete with FPSL in a more realistic setting. We therefore chose to not make a direct
controller comparison, but rather show the behavior of FPSL in an applied and reproducible
setting.

FPSL was trained on 10 demonstrations showing how to get to the TV from various places in
the apartment, see Figure 1. The performance of FPSL as a method for LFD was evaluated
by testing how often the robot reached the target position in front of the TV starting out
from 10 different positions than the ones used during training. FPSL controlled the robot
by continuously predicting the next sensory-motor event based on the sequence of passed
events. The motor part of the predicted element was sent to the robot controller. A standard
reactive obstacle avoidance controller was used as fallback in cases where FPSL did not find
any match with observed data. The task was considered successfully executed if the target
position was reached without hitting any walls or obstacles. The experiment was repeated ten
times, producing a total of 100 test runs.

3.2.1 Results

FPSL successfully reached the target position in front of the TV (the green area in Figure 1) in
79% of the test runs. In 68 runs, it stopped in front of the TV as demonstrated, but in 11 runs it
failed to stop even though it reached the target position. The distribution over the 10 starting
positions illustrated in Figure 3.

4. Discussion

Applied as a robot controller, PSL is a semi-reactive generative model that produces both
actions and expected observations, based on recent sensory-motor events. We believe that this
approach to robot learning has great potential since the behavior can be learnt progressively
and previous knowledge contributes to the interpretation of new events. It is also general
in the sense that very little domain specific knowledge is introduced. Memories are stored
as sequences of sensory-motor events that in principle can represent any behavior. While
PSL efficiently can represent behaviors with short temporal dependencies, it is subject to
combinatorial explosion when the behavior requires representations over longer time spans.
We argue that the gradually extending memory of PSL, from being purely reactive to
containing representations over longer time when needed, provides a good bias in learning.
It will however make learning of behaviors that do require long temporal dependencies slow.
The fuzzy version of PSL presented in this work does not directly provide a solution to this
problem, but is one step towards integrating PSL in a hierarchical structure as discussed in
Section 1.2.

The seeds to FPSL came from the observation that a lot of training was required in order
to cover the state space of DPSL with satisfying resolution. A better tradeoff between high
precision in prediction and coverage would make PSL a more competitive alternative for real
world LFD scenarios. Without sacrificing the strong attributes of the original PSL algorithm,
such as the model free design, few parameters and progressively growing representations,
FPSL was designed.

Expressing PSL with Fuzzy Logic is in many ways a natural extension and generalization
of the discrete algorithm. By using a discrete uniform membership function E and a max
operator for defuzzification, FPSL becomes very similar to DPSL. Even though the processing
of continuous values does add significant processing requirements in comparison to DPSL,
FPSL can still be efficiently implemented as a fuzzy rule controller.
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Fig. 3. Results from test runs in simulated environment (Section 3.2). Each bar corresponds to
one starting position, see Figure 1. The green part of the bar represents number of successful
runs where the robot reached and stopped at the target position in front of the TV. The
yellow part represents runs when the robot successfully reached the target, but did not stop.
The test was executed 10 times from each starting position.

The evaluation shows that FPSL produces significantly smaller prediction errors in relation to
the coverage than DPSL (Section 3.1). This was expected since FPSL can be trained to produce
small prediction errors by keeping a high precision constant &, while the coverage is still kept
high by using a large e. In contrast, when using DPSL, one must choose between a small
prediction error with low coverage or a high coverage at the price of an increased prediction
error. As can be seen in Figure 2, FPSL is also affected by the precision/coverage tradeoff, but
not nearly as much as DPSL. Furthermore, the number of generated hypotheses will increase
with &, which also has a positive effect on coverage for multidimensional data.

While FPSL performs much better than DPSL on large and multidimensional state spaces, it
should not be seen as a general solution to the dimensionality problem. The increased number
of hypotheses results in increased processing and memory requirements. Furthermore, FPSL
is still not able to ignore uncorrelated dimensions in data, making it subject to the curse
of dimensionality. One potential solution is to modify the size of membership functions in
relation to the information content of the dimension. However, initial tests did not produce
satisfying results and further experiments in this direction were postponed to future work.
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We found the results from the controller evaluation very promising (Section 3.2). The
application environment has been scaled up significantly in comparison to previous work
(Billing et al., 2011) and we are now able to perform learning in a fairly realistic setting.
When observing these results one should remember that PSL does not solve a spatial task.
There is no position sensor or internal map of the environment and the robot is still able to
navigate from almost any position in the environment, to a specific target location. The goal
is better described as an attractor in a dynamic system, where the robot in interaction with the
environment finally reaches a stable state in front of the TV (Figure 1).

An interesting observation is that it is often difficult to predict how well PSL will be able
to handle a specific situation. For example, starting position 6 was not passed during any
demonstration, but PSL still managed to control the robot such that it reached the target in 7
out of 10 test runs. On the other hand, position 5 and 10 produced worse results than expected.
Even though these starting positions were spatially close to several positions passed during
the demonstrations, the directions at which the robot reached these positions were different,
producing different laser scans, and PSL could consequently not find a suitable match. In
some of the cases, inappropriate matches were found and the robot turned in the wrong
direction. In other cases, no match at all was found causing the robot to fall back on the
reactive controller for a longer period and usually getting stuck in a corner.

The amount of training data used in this evaluation was fairly small. Only one demonstration
from each starting position was performed. One reason why FPSL is able to solve the task
despite the small amount of training is that all data potentially contribute to every action
selection, independently of where in the demonstration it originally took place. Techniques
that represent the whole behavior as a sequence with variations, typically require more
training since information from the beginning of the demonstration does not contribute to
action selection in other parts of the behavior. PSL does not relies on common features within
a set of demonstrations and consequently does not require that demonstrations are compared
or temporally aligned, see Section 1. In its current design, PSL is of course unable to perform
a program-level imitation since it always rely on sensory-motor events, but it does not suffer
from a large diversity in the demonstration set as long as the recent sensory-motor events bear
necessary information to select a suitable action.

4.1 Conclusions and future work

In this chapter, we show that PSL can be used as a method for LFD, in a fairly realistic
setting. The move from a discrete state space used in previous work to the continuous state
space appears to have a positive effect on generalization ability and prediction performance,
especially on multi-dimensional data. The next step is to conduct experiments with the
physical Kompai robot (Robosoft, 2010) in an attempt to verify the results in the real world.
The fuzzy version of PSL proposed here, and specifically the introduction of context sets C,
should be seen as one step towards integrating PSL in a hierarchical architecture. The higher
level controller may be another instance of PSL working on a lower temporal resolution, or a
completely different control system interacting with PSL by changing the responsibility A; (C)
for each context (Equation 5). For an actual interaction to take place, PSL also has to feed
information upwards, to higher level controllers. In previous work on behavior recognition
(Billing et al., 2010), we have shown that PSL can be used to compute a bottom-up signal
providing information about how well each context corresponds to present circumstances.
While this has not been the focus of this chapter, we intend to evaluate these aspects of PSL in
future work.
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