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1. Introduction 

An autonomous anthropomorphic robotic arm has been designed and fabricated to 
automatically monitor plant tissue growth in a modified clonal micro-propagation system 
which is being developed for the New Zealand Institute for Plant & Food Research Limited. 
The custom-fabricated robotic arm uses a vertical linear ball shaft and high speed stepper 
motors to provide the movements of the various joints, with the arm able to swivel 180 
degrees horizontally. Sensors located at the end of the arm monitor plant growth and the 
ambient growing environment. These include a compact colour zoom camera mounted on a 
pan and tilt mechanism to capture high resolution images, RGB (red, green and blue) colour 
sensors to monitor leaf colour as well as sensors to measure ambient atmospheric 
temperature, relative humidity and carbon dioxide.  The robotic arm can reach anywhere 
over multiple trays (600mm x 600mm) of plantlets. Captured plant tissue images are 
processed using innovative algorithms to determine tissue, or whole plant, growth rates 
over specified time periods. Leaf colour sensors provide information on the health status of 
tissue by comparing the output with predetermined optimum values. Custom software has 
been developed to fully automate the operation of the robotic arm and capture data, 
allowing the arm to return to specified sites (i.e. individual plantlets) at set time intervals to 
identify subtle changes in growth rates and leaf colour. This will allow plant nutrient levels 
and the immediate environment to be routinely adjusted in response to this continuous 
sensing, resulting in optimised rapid growth of the plant with minimal human input.  
These low cost colour sensors can be incorporated into a continuous automated system for 

monitoring leaf colour of growing plants. Subtle colour changes can be an early indication of 

stress from less than optimum nutrient concentrations. In this chapter we also detail the 

calibration technique for a RGB sensor and compare it with a high end spectrophotometer. 

2. Robotic systems in agriculture 

Robotic and automated systems are becoming increasingly common in all economic sectors. 

In the past decade there has been a push towards more automation in the horticulture 
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industry, and it is only now, as robots become more sophisticated and reliable, that we are 

beginning to see them used to undertake routine, often repetitive tasks, which are expensive 

to do using a highly paid labour force. With rapid strides in technological advancement, 

more and more applications have become possible. These include the development of a 

robotic system for weed control (Slaughter, et al., 2008), a system for automatic harvesting of 

numerous agri-science products such as cutting flowers grown in greenhouses (Kawollek & 

Rath, 2008) and automating cucumber harvesting in greenhouses (van Henten, et al., 2002). 

Advances in electronics have empowered engineers to build robots that are capable of 

operating in unstructured environments (Garcia, et al., 2009). Camera-in-hand robotic 

systems are becoming increasingly popular, wherein a camera is mounted on the robot, 

usually at the hand, to provide an image of the objects located in the robot’s workspace 

(Kelly, et al., 2000). Increasingly, robots are being used to sort, grade, pack and even pick 

fruits. Fruits can be identified and classified on a continuously moving conveyer belt (Reyes 

& Chiang, 2009). An autonomous wheeled robot has been developed to pick kiwifruit from 

orchard vines (Scarfe, et al., 2009). Robotic techniques for production of seedlings have been 

developed, identifying a need to add a machine vision system to detect irregularities in seed 

trays and to provide supplementary sowing using a 5-arm robot (HonYong, et al., 1999).  
Automation of micro propagation for the rapid multiplication of plants has been described 
for the micro propagation of a grass species that replaces the costly and tedious manual 
process (Otte, et al., 1996). A system has also been developed that combines plant 
recognition and chemical micro-dosing using autonomous robotics (Sogaard & Lund, 2007). 
Colour as a means of assessing quality is also gaining popularity amongst researchers. These 

include evaluating bakery products using colour-based machine vision (Abdullah, et al., 

2000), monitoring tea during fermentation (Borah & Bhuyan, 2005), grading specific fruits 

and vegetables (Kang & Sabarez, 2009; Miranda, et al., 2007; Omar & MatJafri, 2009) and in 

the health sector to determine blood glucose concentrations (Raja & Sankaranarayanan, 

2006). Near infrared (NIR) sensors are also gaining popularity as non-destructive means of 

assessing fruit and plant material, including the measurements of plant nutrient status 

(Menesatti, et al., 2010) as well as testing of fruit quality (Hu, et al., 2005; Nicola¨ı, et al., 

2007; Paz, et al., 2009). 

Investigation into non-destructive methods to measure the health status of plants is a 

relatively new area of research. Subtle leaf colour changes can be used as a measure of plant 

health. Although limited work has been carried out in real time, a recent micro-propagation 

based system used potato tissue images captured via a digital camera, to identify the colour 

of selected pixels (Yadav, et al., 2010). Spectral reflectance, using a range of spectral bands, 

has been used as a non-destructive measure of leaf chlorophyll content in a range of species 

(Gitelson, et al., 2003).  Alternative methods make use of spectroscopic systems using a fixed 

light source to record colour reflectance of multiple samples (Yam & Papadakis, 2004). 

The introduction of machine vision as a means of investigating the environment allows for 

very complex systems to be developed. Over the years the conventional “robotic design 

types” have remained more or less the same; however modified designs are increasingly 

being employed for specific tasks. Designs of robotic arms have made huge progress in 

recent years, as motor controllers, sensors and computers have become more sophisticated. 

It is envisaged that as more sensors, such as NIR (near infra-red) and colour sensors, become 

readily available, these will be integrated in the robotic arm. One such integrated system, 

which is unique and different from off-the-shelf robots, is detailed in this chapter. 
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3. Overview of the robotic system 

The reported robotic system has been developed to work in a specific environment using 
specific sensors – it is meant to monitor growth of plant tissues in a laboratory. The plantlets 
are growing in multiple trays (600mm x 600mm) which are arranged contiguously on a shelf 
and there are multiple shelves one above the other. The robot should thus be able to extend 
its reach vertically and monitor plants in each shelf and be capable of reaching each tray. 
The robotic system designed is based on a SCARA (Selective Compliant 
Assembly/Articulated Robot Arm) robot. However, SCARA robots are rigid in the Z-axis 
and pliable in the XY-axes only. This rigidity in the Z-axis is a serious limitation of a SCARA 
robot for the given scenario. In the proposed system the entire arm is able to move in the Z-
axis, as opposed to just the end-effector. 
Another point of difference between the proposed system and conventional off-the-shelf 
industrial robot is the mechanism to house the sensors. To monitor the growth of plants, 
colour camera and RGB sensors are used. To enable the robot to position itself at a desired 
distance from the plant surface, proximity sensors are also required. The sensors need to be 
housed in an enclosure at the end of the robotic arm. In order to capture images and take RGB 
sensor readings from any angle it should be possible to pan and tilt the sensor housing 
structure. Such a mechanism is not a standard part of a conventional off-the-shelf industrial 
robot. In general, the costs of industrial robotic systems are far greater than the proposed 
system, often a lot more bulky and it is hard to integrate additional components (i.e. Sensors). 
Two prototypes of the camera-in-hand robotic system were designed and built. The initial 
prototype made use of servo motors, designed as a simple experiment to test the viability of 
the system and its control mechanism. The colour camera was incorporated in this 
prototype and its control was implemented. The captured images were stored in a database 
for subsequent retrieval and processing. The prototype also helped to experiment with the 
wireless remote control of the robotic arm and the remote setting of camera features such as 
zoom, gain and exposure. Having established the ‘proof-of-concept’, the second prototype was 
designed and built to industrial specifications. This version of the prototype made use of high-
torque stepper motors and greatly improved the performance of the robotic arm. Additionally, 
this prototype incorporated low-cost RGB colour sensors for monitoring plant health together 
with a proximity sensor. Sensors to monitor the ambient atmosphere were also incorporated to 
measure temperature, humidity and CO2 levels. Section 3.1 gives a concise overview of the 
first prototype and section 3.2 details the second prototype in greater depth. 

3.1 Robotic arm using servo motors 
The basic concept of this robotic system, from human input to the control of the arm and 
camera, is outlined in the functional block diagram shown in figure 1. A system engineering 
approach was employed to take the robotic arm from concept to reality, making use of 
standard components and integrating them together to make the final product. The robotic 
arm was designed using 5 servo motors and implemented a pan and tilt mechanism for the 
camera. 
The operator uses a joystick to control the movement of the robotic arm. This joystick 
connects to the PC via a USB interface. Movements of the joystick, made by the operator, 
vary the slide bars on the Graphical User Interface (GUI) running on the PC and at the same 
time control the movement of the joints of the arm. Serial data is then sent via the USB to the 
wireless transmitter (Zigbee Pro) module which transmits the data to the wireless receiver 
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module. The received data is then sent to the camera and the servo controller board. The 
user interface is shown in figure 2 and the completed robotic system, with plant trays, is 
shown in figure 3. 
 

 

Fig. 1. Functional block diagram of the camera-in-hand robotic system 

 

 

Fig. 2. The Graphical User Interface (GUI) of the robot control system 
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Fig. 3. The completed robotic arm with camera, joystick and plant trays 

3.1.1 Control of servo motor based robotic arm 
Using a modular approach the system was built and tested in parts. The sub-systems that 
had to be programmed, such as the servo-controller, joystick and camera, were tested 
separately. The testing setup and procedures are explained in this section. The servo 
controller board can take two types of serial mode signals – USB and 5V TTL UART. The 
controller board, together with the joystick, was tested using the connection diagram shown 
in figure 4. 
 

 

Fig. 4. Block diagram showing connection between PC, servo controller board and joystick 

In the first instance a simple program was written in Visual Basic, allowing each servo 
motor to be controlled separately by clicking buttons. The motor parameters such as 
stepping rate and acceleration interval could be entered through the program’s user 
interface. The user interface of the test program is shown in figure 5. This program sent the 
corresponding commands to the servo motor controller board. The next step was to control 
the servo motor by implementing a slide bar (figure 2). This allowed the operator to slide 
the bar, which incremented or decremented the position value, allowing simple movements 
based on the position byte. On successfully implementing controls for one servo motor, 
multiple servo motors could then be controlled in the same manner.  
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Fig. 5. User interface of the test program to control individual motors 

3.2 Robotic arm using stepper motors 
The second design of the robot was extensively influenced by the knowledge and insight 
gained from the servo motor based design of the robotic arm. The robotic arm was designed 
to move the end-effector over trays of plant material located on different levels of shelving 
units to capture images and the colour of the plant material and to use this information as a 
non-destructive measurement of plant health. To achieve this, a compact colour camera 
("Sony Professional," 2010), proximity and colour sensor ("Parallax Home," 2010) are housed 
in the end-effector. Each tray measures approximately 600mm x 600mm, with each shelf 
located approximately 300mm above the previous shelf, with the top shelf approximately 
1000mm high. The system is designed to move the arm into the trays, capture the required 
information and then move up to the next shelf and repeat the process on the next tray.  

3.2.1 Mechanical design of the robotic arm 
To allow the robotic arm to move vertically, a ball screw and shaft assembly is incorporated, 
converting rotational motion into vertical movement. The conceptual design is shown in figure 
6. The arm contains a pan and tilt system at its distal end, which houses the camera, colour and 
proximity sensors. The operation of the arm is completely automated, continually gathering 
information from the sensors and capturing images for assessment and analysis. 
The design is based on a modified SCARA robotic arm. Designed in the 3D CAD package, 
Solidworks, all components where machined in-house using a CNC machine. The arm itself 
has been through a number of design iterations to overcome unforeseen problems and to 
improve the efficiency of operation.  
The robotic arm went through a number of design phases, with each design an 
improvement over the previous design iteration. In the initial concept it was intended to  
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Fig. 6. SolidWorks rendered design of the robotic arm 

 

     

Fig. 7. The system in various stages of development and integration 

 

   

Fig. 8. (a) Completed robotic arm using stepper motors (b) Camera housing and RGB colour 
Sensors 
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make the links of the robotic arm extendable so that the robot can be flexible and adapted to 
operate in various workspaces. To ensure the motor torque ratings were not exceeded, a 
gearing system was investigated, which made use of spur gears to increase torque ratios. 
However, once constructed, a number of issues arose, including excessive weight (with the 
links extended) and slippage between gears. To overcome these issues a rethink of the arm 
design removed the ability to extend the link lengths, and a belt and pulley system was 
integrated to alleviate slippage within the gears. However, each design iteration maintained 
the overall original design concept. Figure 7 shows an initial version of the robotic arm in 
various stages of assembly and figure 8 shows the final design, with the various aluminium 
parts anodized. The completed robotic arm is shown in figure 8 (a). The close up view of the 
camera housing mechanism and the RGB colour sensors is shown in figure 8(b). 

3.2.2 Actuation and control of the robotic arm joints using stepper motors 
To allow the various joints to move, the arm uses bipolar, high torque stepper motors, which 
have varying amounts of torque, depending on the joint. The robotic arm uses five stepper 
motors that are controlled through a motor controller (KTA-190) and micro-step driver 
(M542) ("OceanControls," 2010). All the five motors have a step angle of 1.8 degrees and 
make use of a micro step driver that allows the user to select an even finer resolution (i.e. 
increasing the number of steps per revolution). Both a pulse signal and a direction signal are 
required for connecting a 4-wire stepper motor to the driver, with speed and torque 
depending on the winding inductance. 
The KTA-190 motor controllers provide an interface between the computer and up to 4 
stepper motors as well as the ability to control each motor independently or collectively. 
Utilizing a RS-232 9600, 8N1 ASCII serial communication protocol, up to 4 controller boards 
can be linked, giving control of up to 16 stepper motors (figure 9). A motor is controlled by a 
simple address, followed by the appropriate ASCII commands. The controller has as 
interface to allow limit switches to be used to prevent the motors from travelling out of 
range. With a total of 17 commands it is possible to tailor the operation and move the 
motors. Commands include: setting the position of the motors, returning the current 
positions of the motors, moving the motors by a relative or absolute amount and 
acceleration settings. A status command returns a 12-bit binary representation on the status 
of the controller board at any given time, providing information on the movement, direction 
and status of the limit switch respectively. 
 

 

Fig. 9. Block diagram showing control of the 5 stepper motors 

The angle each motor is required to move is calculated via an inverse kinematic algorithm. 
The user simply enters the desired tray that is required to be monitored, along with the 
number (and frequency) of readings within the tray. The software then calculates the 
required motor positions to enable the camera and sensors to capture the required 
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information. A proximity sensor has been integrated into the system to ensure that the 
colour readings are taken at a fixed height of 20mm above the plant material. 

4. Sensors 

Sensors provide information on the surroundings, which vary depending on their intended 

applications. A number of sensors have been integrated into the system to provide 

information in a non-destructive method on plant growth, with the intention of using low 

cost sensors which are easily amendable into the system. The use of a camera provides 

information on how fast the plant is growing, by identifying the quantity of plant material 

from a 2D view. Colour sensors provide information on the colour of an object. When colour 

sensors are used to monitor plant leaves, subtle changes can be detected before the human 

eye can identify them. This allows for media and nutrient levels to be adjusted accordingly. 

A proximity sensor ensures colour readings are taken at a fixed height, while temperature, 

humidity and CO2 sensors provide information on the ambient environment. 

We detail the camera control and testing in section 4.1. Colour sensor selection, along with 

calibration techniques and results, are presented in detail in section 4.2. 

4.1 Camera 
A Sony colour camera (model: FCB-IX11AP) was used. It features a ¼″ CCD (charge coupled 

device) image sensor using PAL (Phase Alternating Line) encoding system. The camera has 

a 40x zoom ratio (10x optical, 4x digital) that is controllable from a PC via Sony’s VISCA 

(Video System Control Architecture) command protocol. Over 38,000 different command 

combinations are possible for controlling the cameras features. The camera’s macro 

capability allows it to capture images as close as 10mm from the subject and it can operate in 

light conditions as low as 1.5 Lux. The electronic shutter speed is controllable from 1/10 to 

1/10000 of a second allowing for clarity in photographs. In order for the camera’s functions 

to be controlled, hexadecimal commands (as serial data) are sent to the camera. These serial 

commands require 8 data bits, 1 start bit, 1 (or 2) stop bit and no parity. They have a 

communication speed of 9.6, 19.2 or 38.4 kbps. The camera can be programmed and 

controlled using a TTL or RS232C signal level serial interface. To test the camera features, it 

was directly wired to the PC using the RS232C interface via a USB-to-RS232 converter as 

shown in figure 10. The video output signal from the camera was fed to a frame 

grabber/digitizer which is interfaced to the PC using USB. The image captured is displayed 

on the application’s GUI (figure 12). 

 

 

Fig. 10. Block diagram showing wired connection of PC to camera’s RS232 inputs 
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To familiarize with the VISCA command structure and to test the various camera functions, 

especially the programming commands for controlling the zoom, a standard communication 

program (Terminal v1.9b) was used to send commands to the camera. To test the TTL 

interface, the system shown in figure 11 was employed. IC ST232 was used to convert the 

RS232 level signals to 5V TTL. 

 

 

Fig. 11. Block diagram showing wired connection of PC to camera’s TTL inputs 

In the final design of the robotic system the camera was connected using the original RS-232 

interface, with custom software created to control the features of the camera. Figure 12 

shows the user interface which allows camera zoom, iris, gain, exposure settings and shutter 

features to be manually controlled. It also displays the image captured by the camera. Figure 

13 shows the test program depicting the magnified image of the object under observation, 

with the camera set to 8x zoom. 

Each of the controllable settings for the camera is controlled by sending arrays of 

hexadecimal commands to the camera, making use of Sony’s VISCA protocol. Custom 

created software allows the user to control a number of settings to customize the camera to 

the user’s desire.  

 

 

Fig. 12. User interface of the camera control program 

www.intechopen.com



Autonomous Anthropomorphic Robotic System  
with Low-Cost Colour Sensors to Monitor Plant Growth in a Laboratory 

 

149 

 

Fig. 13. Graphical User Interface (GUI) of the remote control application (camera zoom 8x) 

4.2 RGB colour sensors 
Currently there are a number of colour sensors on the market, with prices ranging from low 
cost light-to-frequency chips to sophisticated and very expensive spectrophotometers. 
Parallax (Parallax Inc, CA, USA) has two colour sensors that integrate seamlessly with their 
Basic Stamp microcontroller. Both the ColorPAL and TCS 3200 colour sensors are provided 
with some source code, making them amenable to integrating with our customised system.  
 

 

Fig. 14. Parallax ColorPAL colour sensor 

The ColorPAL sensor (figure 14) illuminates a sample using in-built red, green and blue 
LED light sources (one colour at a time) and records the quantity of light reflected back from 
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the object. The ColorPAL makes use of a TAOS (Texas Advanced Optoelectronic Solutions) 
light-to-voltage chip. When light is reflected, the voltage, which is proportional to the light 
reflected, is used to determine the sample’s R, G and B colour contents. The ColorPAL 
requires the sample to be illuminated using each of the red, green and blue LEDs, with a 
‘snorkel’ to shield possible interference from external light sources. This requires the 
ColorPAL to be in direct contact with the object for an optimum reading without 
interference. 
 

 

Fig. 15. Parallax TCS3200 colour sensor 

The TCS3200 Colour sensor (figure 15) makes use of a TAOS TCS3200 RGB light-to-
frequency chip. The TCS3200 colour sensor operates by illuminating the object with two 
white LEDs, while an array of photo detectors (each with a red, green, blue and clear filter) 
interpret the colour being reflected by means of a square wave output whose frequency is 
proportional to the light reflected. The TSC3200 Colour sensor has a 5.6-mm lens, which is 
positioned to allow an area of 3.5 mm2 to be viewed. 
A USB4000 spectrometer (Ocean Optics Inc., FL, USA) was used to find the height at which 
the greatest intensity of light occurred when the RGB sensor was placed above a sample. As 
the two white LEDs are directed down at an angle, there is a point where the light intensity 
is the greatest. This position was 20 mm above the surface of the sample, as shown in figure 
16. 
 

 

Fig. 16. Light absorbed from TCS3200 across the white LED light spectrum when the sensor 
is positioned at 6 different heights 
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Since the TCS3200 is mounted 20 mm above the sample, and therefore not in direct contact 
with the sample, it was more suited for our application than the full contact required by the 
ColorPAL sensor. A Konica Minolta CM-700D Spectrophotometer (Konica Minolta Sensing 
Americas, Inc., NJ, USA) was used to validate and calibrate the RGB sensors. For accurate 
measurements, the CM-700D was calibrated by taking both white and black readings by 
sampling a supplied white and black object respectively.  
The CM-700D gives colour in the XYZ colour space, as well as L*a*b*, L*C*h, Hunter Lab, 
Yxy and Munsell. A linear transformation matrix was required to transform data from the 
XYZ colour space to the RGB colour space to enable comparisons and calibrations to the 
Parallax sensor.  The linear transformation equation to be solved (Juckett, 2010) is: 

 

X R

Y M G

Z B

   
   = ×      
   

 (1) 

 
X

x
X Y Z

=
+ +

 (2) 

 
Y

y
X Y Z

=
+ +

 (3) 

 
Z

z
X Y Z

=
+ +

 (4) 

Equations (2 – 4) combined with the standard 1931 xy chromaticity diagram provided the 
foundation for the linear transformation (Eq. 1). This transformation converted the XYZ data 
initially to sRGB colour. The chromaticity values of x, y and z are shown in Table 1 
(Lindbloom, 2010). 
 

Colour x y z 

Red 0.64 0.33 0.212656 

Green 0.30 0.60 0.715158 

Blue 0.15 0.06 0.072186 

Table 1. x, y,  and z chromaticity values of red, green and blue converting xyz to sRGB  

From the x, y and z chromaticity values (Table 1), the transformation matrix, M, is calculated 
(Eq. 5) 

 

0.721144 0.063298 0.166008

0.303556 0.643443 0.052999

0.000076 0.064689 1.024294

M

 
 

≈  
 
 

 (5) 

To calculate the R, G and B values the inverse is taken (Eq. 6 - 7). 

 1

R X

G M Y

B Z

−

   
   = ×      
   

 (6) 
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 1

1.436603 -0.118534 -0.226698

-0.681279 1.618476 0.026671

0.042919 -0.102206 0.974614

M−

 
 

≈  
 
 

 (7) 

 

Colour x y z 

Red 0.7350 0.2650 0.176204 

Green 0.2740 0.7170 0.812985 

Blue 0.1670 0.0090 0.010811 

Table 2. x, y,  and z chromaticity values of red, green and blue converting xyz to CIE RGB  

The x, y and z chromaticity values shown in Table 2, are again used to solve the 
transformation matrix, M (Eq. 8) 
Testing showed that the TCS3200 produced light in the CIE RGB colour space, and although 
results would later show the colour sensor could be calibrated to the sRGB colour space, 
results from the calibration would be incorrect. Therefore a colour transformation to a CIE 
RGB colour space was more appropriate than the sRGB colour space; consequently a new 
linear transformation was required.  

 

0.4887180 0.3106803 0.2006017

0.1762044 0.8129847 0.0108109

0.0000000 0.0102048 0.9897952

M

 
 

≈  
 
 

 (8) 

Again calculating the R, G and B values the inverse is taken (Eq. 6). 

 1

2.3706743 0.9000405 0.4706338

0.5138850 1.4253036 0.0885814

0.0052982 0.0052982 1.0093968

M−

− − 
 

≈ − 
 
 

 (9) 

4.2.1 Colour sensor calibration and results 
In order to validate the TCS3200 colour sensor, it was necessary to calibrate and test it using 

the CM-700D Spectrophotometer. This involved taking 200 RGB readings with the TCS3200 

using fifteen different coloured samples from the Royal Horticulture Society (RHS) colour 

charts and averaging them. The same samples were measured, each 20 times, with the CM-

700D and again averaged. These tests were all completed in a constant temperature dark 

room. As the CM-700D uses the XYZ colour space, the linear transformation matrix was 

used to convert the XYZ values to a CIE RGB colour space (Eq. 9). 
The TCS3200 was firstly calibrated through software by modifying the integration time, to 
allow the white object (used to calibrate the CMD-700) to have a RGB value as close as 
possible to 255,255,255 followed by scaling each of the RGB values, to ensure the white 
reading was that of the CMD-700. 
In order to calculate a calibration factor the following equation was used: 

 '
N NR R γ=  (10) 

www.intechopen.com



Autonomous Anthropomorphic Robotic System  
with Low-Cost Colour Sensors to Monitor Plant Growth in a Laboratory 

 

153 

where:  '
NR  = CM-700D (desired RGB value) 

    NR  = TCS3200 RGB (Un-calibrated sensor data) 

             γ  = Gamma (required calibration factor) 

First the TCS3200 sensor data were scaled to ensure all values are offset, thus ensuring that 
the white reading is that of the CMD-700 for each of R, G and B reading (Eq. 11)  

 
' ' '

max max max

, ,N N N
N N N

R G B
R R G G B B

R G B
= × = × = ×  (11) 

where max max max, ,R G B  represent the maximum R, G and B value of a white object from the 

TCS3200. 
 

ID 

TCS-3200 CMD-700 Output 
Calibrated Gain Adjusted White Adjusted RGB Equivalent (CIE) 

RGB)
 R G B R G B R G B R G B 

123A 99 148 167 88 152 144 62 155 152 85 158 143 

127C 38 79 75 34 81 65 17 89 69 31 89 64 

129C 99 152 137 88 156 118 71 166 123 85 162 117 

131C 25 41 35 22 42 30 10 43 27 20 49 29 

133C 62 88 85 55 90 73 47 93 80 52 98 72 

135C 42 51 35 37 52 30 36 78 39 35 60 29 

137C 42 51 35 37 52 30 40 54 30 35 60 29 

139C 68 82 58 61 84 50 63 88 48 57 92 49 

141C 57 80 45 51 82 39 55 87 35 48 90 38 

143C 71 88 48 63 90 41 72 91 32 60 98 41 

145C 171 168 122 152 172 105 169 185 101 149 178 104 

147C 84 86 62 75 88 53 84 91 51 71 96 53 

149C 174 183 114 155 187 98 170 206 86 152 192 97 

155D 255 249 258 227 255 222 227 255 222 226 255 222 

202A 17 17 20 15 17 17 10 13 13 14 22 17 

Table 3. Results obtained comparing the TCS3200 colour sensor (calibrated and un-
calibrated) with the CM-700D spectrophotometer over a range of 15 RHS colours 

Table 3 shows the data recorded from the colour sensors along with the equivalent results 

from the CMD-700 (using the CIE RGB transformation matrix) and the calibrated TCS3200 

results. Table 4, shows the errors associated with the Table 3. 

The calibration factors (γ) for each colour were calculated using normalized data. (Eq. 12) 

 
' ' 'log( / 255) log( / 255) log( / 255)

, ,
log( / 255) log( / 255) log( / 255)

N N N
R G B

N N N

R G B

R G B
γ γ γ= = =  (12) 

For each colour sample measured, the calibration factor was calculated and averaged using 

a geometric mean (as opposed to the more general arithmetic mean function (Fleming & 
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Wallace, 1986), thus providing the γ factor for R, G and B individually. The (desired) 

calibrated values were then obtained using equation 13.  

 '
( ) ( / 255) 255N calibrated NR R γ= ×  (13) 

For a range of fifteen colours, measurements were taken using the TCS3200 RGB sensor and 
the CM-700D Spectrophotometer (Table 3). The gamma calibration factors calculated were: 

 ( ) ( ) ( )R G BRed  1.05,  Green  0.92,  Blue  1.00λ λ λ= = =  (14) 

 

 TCS3200 (un-calibrated) TCS3200 (calibrated) 

Colour R G B R G B 

Error 9.691 6.806 5.107 10.161 6.162 4.966 

Error % 3.8 2.669 2.003 3.985 2.416 1.947 

S.D 7.423 7.298 3.485 6.631 4.757 3.699 

Table 4. Average Error (0-255), percentage error and standard deviation for red, green and 
blue measurements of the TCS3200 colour sensor, calibrated and un-calibrated, compared 
with CM-700D spectrophotometer results across a range of colours 
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Fig. 17. TCS3200 sensor RGB readings, calibrated and un-calibrated, compared with the CM-
700D readings of: Red (A); Green (B); Blue (C) using a CIE RGB colour transformation. 
(Colour samples are as given in Table 3)  

An example of a green colour interpreted by the CM-700D and TCS3200 colour sensor 

before and after calibration is shown in figure 18. 

 

TCS3200 (un-calibrated) TCS3200 (calibrated) CM-700D 
Spectrophotometer 

RGB = 63,90,41 RGB = 60,98,41 RGB = 72,91,32 

   

Fig. 18. Graphical representation of the colour differences between, calibrated and un-
calibrated TCS3200 colour sensor 

Results showed when calibrating the CM-700D XYZ values to CIE RGB instead of sRGB, the 

calibration results improved, as shown in Table 5, to have a much smaller error for R, G and 

B. A colour representation can be seen in Figure 19. 

 

 CIE RGB sRGB 

Colour R G B R G B 

Error 10.289 6.117 5.683 14.777 7.055 9.564 

Error % 4.035 2.399 2.229 5.795 2.767 3.751 

S.D 6.562 4.739 3.357 12.314 7.54 5.772 

Table 5. Comparisons between CIE RGB and sRGB transformation matrix, showing the CIE 
RGB results to be more accurate than the sRGB 
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TCS3200 (raw reading) CM-700D 
Spectrophotometer 

(sRGB) 

CM-700D  
Spectrophotometer 

(CIE RGB) 

RGB 71,88,48 RGB = 149,166,81 RGB = 72,91,31 

  

 

 

Fig. 19. An example of a green colour interpreted by the TCS3200 colour sensor with no 
calibration compared with the CM-700D with both a sRGB and CIE RGB 

5. Conclusion 

An anthropomorphic robotic arm has been designed, fabricated and fully tested to meet 

the requirements set out by The New Zealand Institute for Plant & Food Research 

Limited. The robotic system is able to reach and monitor plantlets growing in trays on a 

multi-level shelving unit. Custom software has been developed to fully automate the 

control of the robotic arm. The position of the robotic arm can be controlled with great 

precision using the microstepper controller to allow micro-motion of the stepper motors. 

The robot can be programmed to autonomously position itself and take readings at 

regular intervals. 

Several sensors have been integrated in the robotic system, namely a high-end colour 

camera for capturing high resolution images of plantlets; proximity sensor to position the 

arm at a predetermined distance from the plant surface for taking measurements; 

temperature, humidity and CO2 sensors to monitor the ambient atmospheric conditions and 

a low-cost RGB sensor to measure the colour of plant leaves.  

Two different RGB sensors have been evaluated. Experimental results show that the 

Parallax TCS3200 RGB sensor is a useful low cost colour sensor, which when calibrated to an 

industry standard spectrophotometer, can provide accurate RGB readings. It is therefore a 

useful component for integrating into an automated system such as a robotic arm, with 

various other sensors, for monitoring plants growing in a modified plant micro-propagation 

system. 

The system has the potential for not only monitoring plant material in a laboratory 

environment but other applications as well where non-destructive measurements of colour 

are required. 
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