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1. Introduction 

In cloth making industry, the need for high flexibility in automation is really imperative due 
to the extensive style and material variation of the products and the fast fashion changes. 
The automated handling of fabric materials is one of the most challenging problems in the 
field of robotics, since it contains a vast potential for high productivity and cost reduction. 
The main difficulty to get full use of this potential is the fact that it is rather impossible to 
predict the behaviour of fabrics towards handling due to their low bending rigidity. 
Moreover, it is difficult to be modelled due to their unpredictable, non-linear and complex 
mechanical behaviour.  
Sewing is the most important joining technology in garments and textiles manufacturing. The 
fact that sewing fabrics is a “sensitive” operation due to the erratic behaviour of fabrics poses 
barriers in the development of automated sewing systems. A solution to manipulation tasks 
that are afflicted with uncertainty, subjectivity, ambiguity and vagueness is an intelligent 
control approach. The development of intelligent control systems with vision feedback enables 
robots to perform skilful tasks in more realistic environments and make the research efforts for 
flexibility and automation really promising. Thus, industrial robots supported by machine 
vision and sensors can contribute towards advanced automation in apparel manufacturing.  
On the other hand, sewing fabrics with the exclusive use of robots, without human 
intervention, is a complicated task. The stitching process is special in the sense that the error 
cannot be corrected after a part of the cloth has been stitched, implying that the stitching 
process is not reversible. This limitation implies that clothes that do not conform to the 
specifications are defective and should be withdrawn from the production. This imposes a 
great demand on precision during the sewing process. In practice, there is a predefined 
tolerance considered to be acceptable, as errors resulting from robot accuracy and camera 
resolution cannot be eliminated. 
The main focus of this work lies on the design of an innovative intelligent robot controller 
based on visual servoing that aims to enable robots to handle flexible fabric sheets towards 
sewing. A great challenge is the design of a robot controller showing robustness against 
deformations that are likely to appear on the fabric towards robot handling. Special 
emphasis is given on robot handling fabrics comprised of curved edges with arbitrary 
curvature. This task is even harder, because up-todate industrial robots present limitations 
in their movement, owing to the fact that they can only be programmed to make straight or 
circular motions. 
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2. Literature review on automated sewing systems 

To the best of my knowledge, the published research work on robot handling fabrics with 
curved edges towards sewing is limited to few papers. A first approach to automating fabric 
manipulation was introduced by (Torgerson & Paul, 1988) including robotic motion control 
of various fabric shapes. The determination of robot motion paths is based on visual 
information defining the location of the fabric edges in world coordinates. However, no 
visual feedback was employed during the robot motion, making the method less accurate. 
The vision system detects the workpiece edge, extracts the boundary points, determines the 
parameters defining the geometry of the interior points, and computes the coordinates of 
the robot path points along subsequent linear and circular path segments. The error 
deviations between the desired seam line and the actual path line ranged between 3 and 5 mm. 
However, the flexibility of the method is limited owing to the fact that the path determination 
algorithms require a geometrical relationship between the robot end-effector and the 
workpiece to extract the edge parameters that are necessary for determining the robot motion. 
The FIGARO system (Gershon and Porat, 1988, 1986) performed handling and assembling 
operations using two superimposed servo control systems. The first system maintains a 
small tension moving the robot forward with the cloth and the second one rotates the cloth 
about the sewing needle to produce a seam parallel to the edges. The system performed best 
with shirting and worsted woven fabrics, which have a reasonable resistance in buckling. 
Robotic manipulation strategies have been investigated (Gershon, 1993) for handling limp 
materials proposing a parallel process decomposition of the robot sewing task (Gershon, 
1990). A robot arm manipulates the fabric, modeled as a mass-spring-damper system, to 
modify its orientation and control the fabric tension during the sewing process, which was 
decomposed into four concurrent processes within a superposition parallel architecture. 
After FIGARO system, an automated sewing system including two robots handling the 
fabric on the table was developed (Kudo et al., 2000). The nominal trajectories for both 
robots are defined through the definition of the points and are necessary for the 
programming of the robots. Visual information was used to improve tracking accuracy. 
Sewing along a curved line is achieved by translating the fabric in the sewing direction 
using the internal command for straight-line motion and simultaneously rotating about the 
needle according to the visual feedback information. The rotation angle is computed making 
use of the tangent of the cloth panel based on the method in reference (Gershon & Porat, 
1988). The trajectory error was within the range of ±0.5mm. 
A position-based visual servoing system for edge trimming of fabric embroideries by laser 
was proposed by (Amin-Nejad et al.). A tracking controller, decomposed into a feedforward 
controller in the tangential direction of the seam and a feedback controller in the normal 
direction, was implemented. The aim of the controller is to move the cutting beam along the 
seam with constant velocity and with a constant offset from it as a cutting tolerance. In the 
experimental results, three types of seam pattern, straight line, sinusoidal, and circular, were 
chosen for edge trimming. The accuracy achieved with this method was within ±0.5mm. 

3. Sewing fabrics with straight edges 

The present work is part of a project for the development of a robotic workcell for sewing 
fabrics. The project includes handling tasks (ply separation, translation, placement, folding, 
feeding and orientation), tension control and quality control of fabrics and stitches 
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(Koustoumpardis & Aspragathos, 2003; Koustoumpardis et al., 2006; Moulianitis et al., 1999; 
Zoumponos & Aspragathos, 2008). After the fabric has been placed at a random location on 
the working table, a number of sub-tasks should be performed before the sewing process 
starts. These preliminary sub-tasks are: the recognition of the fabric’s shape, the extraction of 
the ‘seam line’, the detection of the edges targeted for sewing, planning of the stitching 
process and the location of the end-effector on the fabric (Koustoumparis et al., 2007). After 
the preprocess planning, the robot sewing process is considered and divided into three sub-
tasks: the manipulation of the fabric towards the needle, the sewing of the seam segment 
and the rotation around the needle.  
Concerning visual servoing, the developed vision system is a combination of image-based 
and position-based control system. The image-based analysis is used for the identification of 
the fabric’s shape. After the image acquisition of the fabric, the features (vertices of the 
edges), the needle-point and the sewing line’s orientation are derived from the image 
analysis. Besides, the position of the needle is also known in the robot coordinate system. 
The end-effector’s position is unknown in the image coordinate system; however, the robot 
system gives feedback to the control system of the current end-effector’s position in the 
robot base coordinate system. Moreover, the relation between the robot- and the image- 
coordinate system is known from the calibration of the camera. This approach makes the 
system more flexible and limits the calibration errors.  

3.1 The sewing process 
Initially, the fabric lies free of wrinkles at a random location on the work table. The camera 
captures the image of the fabric without the gripper on it in order to obtain the shape of the 
fabric and use it as the reference shape towards handling. The stitching process is performed 
on the seam line situated parallel to the specified fabric edges. The distance between the 
outer edge and the seam line, called seam allowance, depends on the cloth part and is defined 
by the apparel manufacturer. In practice, it usually ranges between 1/4 inch and 5/8 inch. 
After the seam edges of the fabric (dashed-line in Fig. 1) have been determined, the sewing 
process is ready to start. The sewing line is determined by the feeding mechanism. The 
sewing process can be decomposed in three separate tasks: transfer, stitching and rotation.  
The movement towards the needle. After the robot touches the fabric at a proper location, 
the features, namely the vertices of the fabric, are extracted from the image taken from the 
camera. After the starting seam edge is identified, the vision system captures the distance (r) 
between the starting seam vertex and the sewing needle and the orientation angle (θ) 
formed by the starting seam segment and the sewing line (Fig. 1 (a)). The linear (u) and 
angular velocity (ω) of the robot end-effector are derived through the designed fuzzy 
decision system, described in Section 3.2. Given the time step dt and the angle φ, i.e. the 
orientation of r in the image coordinate system, the new position and orientation of the end-
effector is computed by: 

 

( )

( )

′

′

′

x = x + u×cos φ ×dt

y = y + u×sin φ ×dt

θ = θ -ω×dt

 (1) 

Therefore, the robot end-effector moves along the direction of r (defined by φ) and 
simultaneously rotates around the end-effector’s z-axis, which is vertical to the table, until 

the angle becomes ′θ  (Zacharia et al., 2005). The fabric is transferred to a new position with 
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new orientation as a result of the movement and rotation of the end-effector, which is stuck 
on the fabric to avoid slipping between the gripper and the fabric. This motion stops when 
the seam segment reaches the needle with the desired orientation within an acceptable 
tolerance. 
 

θ

needle

r
φ

sewing line

x-axis 

y-axis 

(a) 

r
φ

θ

Needle 

sewing line 

x-axis

y-axis 

(b) 

Fig. 1. Scene of the fabric lying on the work table (a) without deformations (b) with 
deformations 

The stitching process. During sewing, the fabric is guided along the sewing line with a 
constant velocity, which should be the same with the velocity of the sewing machine, so that 
good seam quality is ensured. When the end-effector’s velocity is higher than the sewing 
velocity, puckering will appear, whereas in the case where it is lower, low seam quality will 
be produced due to the tension increase. At each time step, the current image of the fabric is 
captured in order that the orientation error is determined. The orientation error is fed back 
to be corrected by rotating the fabric around the needle, while simultaneously the robot 
moves the fabric towards the direction of the sewing line. To circumvent the problem of 
uncertainty due to the distortions of the fabric’s shape, fuzzy logic control is necessary. The 
inputs are the orientation error and its rate and the output is the rotation angle around the 
needle.  
The rotation around the needle. When the seam segment coincides with the sewing line, the 
robot rotates the fabric around the needle until the next seam segment is aligned to the 
sewing line. It is worth noting that the end-effector is enforced to make a circular motion 
around the needle, since it has penetrated into the fabric. The orientation error (eθ) of the 
next seam segment in relation to the sewing line and its time rate are the inputs to the fuzzy 
system that controls the rotation of the fabric around the needle, whereas the output is the 
angular velocity (ω) of the end-effector’s motion around an axis perpendicular to the table at 
the needle-point.  

3.2 The fuzzy robot control system 

Since modeling the mechanical behavior of fabrics for real-time applications is rather 

difficult due to their low bending rigidity, an approach based on a fuzzy logic controller 

(FLC) is developed (Zacharia et al., 2009) considering the robustness and the fast response 

requirements. The block diagram for the control system is shown in Fig. 2, where the 

symbols in parentheses stand for the fuzzy system that controls the orientation of the end-
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effector. The controller inputs are the position error (er) and the orientation error (eθ), which 

are computed on the image, and their time rates ( ′re ) and ( ′θe ). The linear (u) and angular 

velocity (ω) of the end-effector around z-axis are the outputs. 
 

 

u, (ω) Fuzzy 
controller

Robot 
& 

Fabric 

 

Camera 

r, (θ)

er, (eθ)rd, (θd) 

image 

er΄, (eθ΄)

Features 
extraction

dt

d

 

Fig. 2. The block diagram of the fuzzy logic control 

The membership functions for the two inputs (Fig. 3 (a) and (b)) and the output of the 
system that controls the translation of the fabric towards the needle (Fig. 3 (c)) are 
experimentally tuned with various fabrics. Expert knowledge, often afflicted with 
uncertainty, is summarized in the proposition: The larger the distance/angle and the smaller its 
change rate is, the faster the fabric should move/rotate. The fuzzy associative memory (FAM) of 
the system that controls the translation of the fabric (Table 1) is derived after studying the 
behavior of the human workers towards sewing. For the rule evaluation, the “min” operator 
is used and for the aggregation mechanism the “max” operation is used. The centroid 
defuzzification method is used to determine the linear and angular velocity. Owing to space 
limitation, only the study for the system that controls the translation is presented. 

 

position error 
rate

position error 

SMALL MEDIUM LARGE 

SMALL Very Small Medium Very Large

MEDIUM Very Small Medium Very Large

LARGE Very Small Small Large 

Table 1. Fuzzy Associative Memory (FAM) of the sewing system 

An analytical model of the robot and the fabric is not necessary, since no geometrical 
characteristics are taken into account and there is no need for special mathematical 
computations for different fabrics. The proposed technique is feature-based, since only the 
features, r and u, are necessary for handling the fabric and can cope with the uncertainties 
that arise due to deformations. The proposed controller can handle possible deformations 
without changes in its structure achieving the desired accuracy on condition that the seam 
segment targeted for sewing is undistorted. Fig. 1 (b) shows the fabric of Fig. 1 (a), which 
has been deformed except for the seam segment targeted for sewing. It is clear from Fig. 1 
(b) that the presence of deformations does not affect the control system, despite the fact that 
the shape of the fabric has significantly changed.  

www.intechopen.com



 
Robotic Systems – Applications, Control and Programming 

 

66

(a) (b) 

(c) 

Fig. 3. The membership functions of (a) the position error (b) the position error rate (c) the 
linear velocity after manual tuning  

4. Sewing fabrics with curved edges through a Genetic-based approach 

Real fabric pieces used for cloth making consist of edges with arbitrary curvature. This fact 
gave an impetus to tackle the problem of robot-handling fabrics with curved edges. To 
robot-sew fabrics of different shapes and materials is a rather difficult task that requires 
system flexibility and good quality of the final product. To compensate for ensuing high 
machine-hour rates, a high throughput is vital if product costs are to be kept low. To 
enhance system flexibility and its efficiency to handle various fabrics, fuzzy logic and visual 
servoing control has been employed.  
Curved edges pose additional difficulties in robot handling compared to straight edges, 
owing to the fact that up-to-date robots present limitations in their movements. The current 
industrial robots can only be programmed to perform straight or circular motions using 
internal commands. Sewing a fabric with arbitrary curvatures is a complicated task and can 
only be performed by approximating the curve with movements along straight-line 
segments (Zacharia et al., 2006). The robot makes a straight-line motion along the sewing 
line and a rotation around the needle-point simultaneously. This motion results in a smooth 
stitch that resembles the stitch produced by human operators. 
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4.1 Related work 
In the field of pattern recognition, considerable research work has been done on the 
polygonal approximation of digital contours. Two main families of technique concerning the 
polygonal approximation of digital curves have been published: those that try to obtain an 
error-bounded polygonal approximation and those that search for a set of dominant points 
as vertices of the approximating polygon.  
In the first family of methods, the main idea is to approximate a given curve with a minimal 
number of line segments such that the approximation error between the original curve and 
the corresponding line segments is less than a pre-specified tolerance. Several methods have 
been used for polygonal approximation, but most of them have the disadvantage that the 
results are dependent on the selection of the initial points and the arbitrary initial solution. 
To circumvent these drawbacks, nature-inspired algorithms have been proposed for 
polygonal approximation. 
In the genetic algorithm presented in reference (Zhang & Guo, 2001), each chromosome is a 
binary string of fixed length. The chromosome represents a subset of the curve points, 
Where the i-th bit denoting the ith original curve point is ‘1’ if the corresponding curve point 
is taken as a vertex of the approximation polygon and ‘0’ otherwise. The algorithm is 
improved based on Pareto optimal solution, and the results show that it is efficient and 
achieves less processing time compared to dynamic programming algorithms.  
In reference (Yin, 2003), an ant colony search (ACS) algorithm for optimal polygonal 
approximation is developed. To apply the ACS, the underlying problem should be 
represented in terms of a graph. Apparently, for the polygonal approximation problem, each 
point on the curve should be represented as a node of the graph. A number of artificial ants are 
distributed on the graph and communicate with one another through the pheromone trails 
that are a form of the long-term memory guiding the future exploration of the graph. The 
authors compared the performance of the proposed method to those of genetic-based and 
tabu-search-based methods, and concluded that the numerical results are very encouraging.  
A polygonal approximation approach of digital curves based on the particle swarm 
optimization (PSO) algorithm was presented by (Yin, 2004). In PSO – which belongs to the 
class of natural algorithms – each particle is presented as a binary vector corresponding to a 
candidate solution to the polygonal approximation problem. A swarm of particles are initiated 
and fly through the solution space for targeting the optimal solution. The experimental results 
manifest that their devised PSO algorithm is comparable to the genetic algorithm (GA), and it 
also outperforms other PSO versions in the literature for polygonal approximation. 
In the second family of methods, the approximation does not depend on the starting point 
and is insensitive to changes of orientation and scale. A representative technique is the 
dominant point approach (Teh & Chin, 1989). This method focused on the determination of 
the region of support of every point of the curve, which is the region used in the calculation 
of each point’s curvature. Thus, the method overcomes the problem of various scales in the 
curve’s features. However, the Teh–Chin approach is not robust in the presence of noise. For 
the noise compensation, Wu proposed a modification of the method based on a dynamic 
determination of the region of support (Wu, 2002).  

4.2 Sewing using polygonal approximation 
The apparel manufacturer’s requirements focus on time minimization for the 
accomplishment of the sewing process and satisfactory quality of seam, which is mainly 
based on stitch accuracy and smoothness. To fulfil these requirements, an algorithm based 
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on the polygonal approximation of the curved edges of the fabric is developed for robot 
handling fabrics towards the sewing process.  
During the stitching process the robot’s end-effector is commanded to make two motions 
simultaneously: a straight motion with constant speed (equal to the sewing machine’s speed 
to ensure good seam quality) in the direction of the sewing line, and a rotation around the 
needle-point. Therefore, the final stitch is not a straight line, but a line that is yielded as a 
result of the combined end-effector’s motion. After all the straight-line segments have been 
stitched, the deviation error is computed. Then, a new image is taken and the process is 
iterated. The stitching process stops when the whole curve has been sewn, i.e. when the last 
point reaches the needle. 
The problem is formulated as follows: The curve section of the fabric is defined by N data 
points acquired by the vision system in the form of pixel coordinates in clockwise order, and 
can be described by a sequence of these points: G={p1, p2, . . ., pN}. Given the N data-points, 
find the optimal polygon that approximates the curve satisfying two criteria: the criterion 
for sewing time minimization and the criterion for acceptable accuracy. In this case, the time 
minimization is translated to the requirement for minimal length of the approximating 
polygon. Initially, a local search technique is developed to extract the dominant points and 
then a global search technique is applied taking the dominant points as inputs (Zacharia et 
al., 2008). The idea behind this is to filter out the initial curve points in an attempt to speed 
up the convergence of the algorithm. The proposed approach combines two algorithms to 
benefit from the advantages of each one. 
The contribution of the work addressed in this Section is twofold. Firstly, a strategy for 
handling fabrics with curved edges towards the sewing process using a visual servoing 
controller is developed based on polygonal approximation. Secondly, the algorithms are 
further extended based on polygonal approximation that exhibited superiority in many 
other applications, and a new algorithm is proposed based on the dominant point detection 
approach and the genetic algorithm. 

4.3 The proposed genetic-based approach 
Genetic algorithms (GAs) (Michalewitz, 1996) have attracted attention in solving 
combinatorial optimization problems of high complexity because of their intrinsic 
parallelism and their effectiveness. The contribution of the proposed GA is a variable-length 
chromosome encoding scheme to reduce the computational time and memory requirement 
and the use of micro-GAs (Krishnakumar, 1989) as an approach for shortening the 
computational time. The traditional fixed length chromosomes could also be used to solve 
this problem, but it would lead to computational time increase, as the length of the 
chromosome would be too large to incorporate all the points comprising the curve. On the 
other hand, micro-GAs are ideally suited to optimization problems, where the emphasis is 
on quickly identifying a near-optimal region. In contrast to the traditional GA, the 
population size is small, yielding a much quicker convergence. Moreover, the micro-GA 
uses elitism and convergence checking with re-initialization to obtain the near-optimal 
solution. As a consequence, the proposed micro-GA with variable-length chromosomes can 
be used in a real-time application. 
The evaluation mechanism: Given a maximum acceptable error ε0, find the polygonal 
approximation with the minimal number of vertices (corresponding to the minimum total 
length of the polygon), such that the polygon is distant from the curve by no more than ε0. It 
is worth noting that the algorithm searches in a set of Ns points that are the dominant points 
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defined by the dominant point detection approach. Consequently, the input for the micro-
GA is the output of the dominant point detection approach. 
Let  G**={P1, P2,…, Pm} be a subset of G*={P1, P2,…, PNs }, G**⊆ G*, where ( )sm m < N  is the 

number of the vertices Pi=(xi, yi) of the polygon that approximate the curve section captured 

in the current image. The function expressing the total length of a polygon with m vertices 

can be written as: 

 
m-1

total ii=1
L = L  (2) 

and iL  is the length of the thi  edge of the polygon given by: 

 
2

i i+1 iL = P - P  (3) 

The constraint that should be satisfied is expressed as the maximum deviation between the 

curve section and the approximating polygon section. For two points ( )i i iP = x , y  and 

( )i+1 i+1 i+1P = x , y  defining an edge of the polygon and a data point ( )j j jp = x ,y  between iP  

and i+1P , the perpendicular distance of the arc point jp  to the chord i i+1P P  is computed by  

 
( ) ( )i+1 i i j

j

i+1 i

P - P × P - p
ε =

P - P
 (4) 

Consequently, the maximum deviation ε is found by: 

 ( )1 2 j qε = max ε ,ε ,...,ε ,...,ε  (5) 

where q  is the number of the data points between iP  and i+1P . 
The fitness function is given by: 

 
0

total

1
,   if ε ε  

Lfitness =

   0    ,   otherwise


≤





 (6) 

where totalL  is given by Eq.(2). 

The representation mechanism: In this algorithm, variable-length chromosomes are defined 

to represent a polygon with m  vertices approximating the curve. The maximum number of 

polygon vertices, defined by the user, is equal to  , which is the maximum possible length 

of the chromosome. The encoding mechanism maps each approximating polygon to a string 

composed of integers is in the following form: 

s

m numbers

1  10  24  49  67  92  104 ... i ... N  

where s1 i N≤ ≤ , sN  is the number of the integer-coordinate data-points of curve section 

captured by the camera and m , where m ≤  , is the length of the chromosome representing 

the number of vertices of the approximated polygon. The integers i represent the rows of the 

matrix consisting of all the points Pi=(xi, yi) in ascending order. Consequently, the genes of 

www.intechopen.com



 
Robotic Systems – Applications, Control and Programming 

 

70

the chromosome represent the curve data-points used to construct the polygon, i.e. the 

vertices of the polygon. It should also be mentioned that the first (1) and the last (m) row of 

the matrix are fixed for each chromosome. 
Crossover: Crossover is a recombination operator and follows the reproduction. The 
individuals are randomly selected according to a predefined probability (crossover rate). 
The one-point crossover is modified, so that the produced offspring are feasible 
chromosomes. The cut-point lies between the first and the last gene of the parent 
chromosome with the minimum length. Next, the numbers at each string are reordered in 
order to appear in ascending order, so that the polygonal section is created by joining the 
successive points.  
Population size: The population size depends on the nature and the complexity of the 
current problem. In this work, the proposed algorithm was tested for various small 
population sizes, so that both quick convergence and near-optimum solution are achieved. 
Finally, the selected population size is equal to 20. 

5. Sewing fabrics with curved edges through ANFIS 

One of the difficulties when applying the fuzzy approach of Section 4 is to obtain the fuzzy 
rules and the membership functions. In this Section, a neuro-fuzzy approach is introduced 
with the purpose of extracting fuzzy rules and the membership functions automatically. The 
proposed neuro-fuzzy approach combines the main components of soft computing (fuzzy 
logic, neural networks and genetic algorithms) that have shown great ability in solving 
complex control problems to benefit from the advantages of each one. 

5.1 ANFIS framework 
Fuzzy systems have the capability of translating the expert knowledge into linguistic rules 
inside a robust mathematical framework in order to draw conclusions and generate 
responses. However, a fuzzy model consisting of large number of if-then rules to map 
inputs to outputs is not desired due to the phenomenon of overfitting. Thus, the Takagi–
Sugeno–Kang type fuzzy models (Sugeno & Kang, 1988; Takagi & Sugeno, 1985), known as 
TSK models, are widely used for control and modeling because of their high accuracy and 
relatively small models (Delgado et al., 2001; Männle, 2001).  
When the system complexity is high, fuzzy modeling from input/output data is a useful 
way of creating FIS models. Because it is a more compact and computationally efficient 
representation than a Mamdani system, the Sugeno system using cluster information lends 
itself to the use of adaptive techniques for constructing fuzzy models with a minimum 
number of rules. Thus, data clustering algorithms were elaborated in order to construct FIS 
models from data, since they partition a collection of data into clusters based on similarity 
between data. 
An adaptive neuro-fuzzy inference system, ANFIS, has been proposed in (Jang, 1993) to 
effectively deal with multivariable complex systems. ANFIS uses techniques like least 
squares or back propagation algorithms to determine the membership functions for a given 
input/output data set. These adaptive techniques can be used to customize the membership 
functions so that the fuzzy system best models the data. The effectiveness of using ANFIS 
for control and modeling has been pointed in (Jang et al., 1997; Rizzi et al., 1999). 
This Section proposes an innovative approach for robot handling pieces of fabrics with 
curved edges towards sewing, which is based on learning. The fact that adaptive neuro-
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fuzzy approaches have been successfully used for other applications in robotics (Marichal et 
al., 2001; Rusu et al., 2003; Hui et al., 2006) gave rise to the idea of using it for robot sewing 
fabrics of curved edges. The main purpose is to overcome difficulties arising from the fact 
that the fabric pieces have curved edges with arbitrary curvatures; thus, a learning 
technique is used. The proposed ANFIS based on genetic-oriented clustering combines the 
concepts of fuzzy logic and neural networks to form a hybrid intelligent system that 
enhances the ability to automatically learn and adapt. The system learns from the 
information obtained from the fabrics used for training and is able to respond to new 
fabrics, which had not been included in the training process. 

5.2 Sewing tracking approach 
The main scope of this Section is to provide a control system capable of dealing with 
different curvatures and thus, flexible to changes in fabrics’ shape. To enhance system’s 
flexibility and its efficiency to handle fabric edges with various curvatures, Artificial 
Intelligent techniques and visual servoing control are employed. Since there is no 
standardization for curved edges, a method is necessary for estimating the curve. However, 
searching for the equation that approximates the curve is a time-consuming procedure. In 
addition, such an approach would require curve estimation for each one curved edge for 
different fabrics.  
The proposed system does not need any geometrical computations for estimating the 
curves, which would lead to computational burden and would, therefore, be prohibitive for 
using it in an on-line process. The developed control scheme is able to learn from the existed 
knowledge and respond to new curved edges.  
Now, assume a piece of fabric with a curved edge of arbitrary curvature, as the one depicted 
in Fig. 4, which is guided for sewing. The camera captures an image that covers a small area 
in the vicinity of the sewing needle. The curved section captured in the image is 
approximated by an edge (AB) that joins the two endings of the curved section. Then, the 
distance d and the angle φ are extracted from the image. The feature d is the minimum 
distance between the needle-point and the straight edge that approximates the curved 

section. If the seam allowance is α, then the distance D, where D=d-α, is the minimum 
distance between the seam line and the needle. The angle φ is defined by the straight edge 
that approximates the curve section and the sewing line (Zacharia, 2010).  
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Fig. 4. Features extracted from the camera image 
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The position error is defined as eD=D-D0, where the desired distance is D0=0 and the 
orientation error is defined as eφ=φ-φ0, where the desired angle is φ0=0. To compensate for 
the seam errors (eD and eφ), the robot should be assigned to rotate around the needle with an 
angular velocity (ω) around z-axis. The angular velocity (ω) of the robot’s end-effector is 
derived through a Sugeno-type fuzzy decision system, which takes as inputs the position 
error eD and the orientation error eφ. 
The end-effector guides the fabric towards the sewing direction and the camera monitors the 
fabric to compensate for the seam error. The fuzzy controller, which is tuned through 
ANFIS, inputs the position and orientation error (eD and eφ) of the new fabric piece and 
outputs the predicted angular velocity (ω) of the robot’s end-effector. Next, the robot is 
commanded to make a circular motion around the sewing needle by an angle θ and a 
translational motion in the sewing direction. The angle θ is derived by the relationship 
θ≈ω·Δt, where Δt is the sampling period.  

5.3 Training using the modified ANFIS 
The basic idea behind using neuro-adaptive learning techniques is that it is very simple and 
allows implementation of multi-input–single-output first order Sugeno-type FIS. This 
technique provides a method for the fuzzy modeling procedure to learn information about a 
data set, in order to compute the membership function parameters that best allow the 
associated fuzzy inference system to track the given input/output data. This learning 
approach takes place prior to the operation of the control system. The ANFIS methodology 
can be decomposed into four steps: 
Data acquisition (Step 1): A number of different fabric pieces of various arbitrary 
curvatures are selected for experimental tests. During the sewing process, the position and 
orientation error in the image, as well as the end-effector’s angular velocity are measured. 
As a result, a number of data sets, each one consisting of 3 attributes (eD, eφ and ω) obtained 
from the robot sewing process. These data sets are divided into training and checking data 
sets. It is worth noting that the position error (eD), which is derived from the image, is 
computed in pixels and not in millimetres. 
Genetic-oriented Clustering (Step 2): Clustering is used to generate a Sugeno-type fuzzy 
inference system that best models the data behavior using a minimum number of rules. The 
rules partition themselves according to the fuzzy qualities associated with each of the data 
clusters. The initial Sugeno-type FIS models are built by means of a genetic-oriented 
clustering approach using the training data set. In this approach, a Genetic Algorithm using 
variable-length chromosomes is applied to find the optimum number of cluster centers as 
well as the partitioning of the data. A comprehensive description of this algorithm can be 
found in (Zacharia & Aspragathos, 2008). This technique has the advantage over other 
clustering algorithms that the selection of the cluster centers is not limited to the data points 
and that it is able to escape from local optima, which is an inherent ability of Genetic 
Algorithms (GAs). Another advantage is the ability of automatically evolving the number of 
clusters due to the use of variable-length chromosomes in GA’s structure. After applying the 
genetic-oriented clustering approach, the training data is partitioned into groups, called 
clusters, and as a result, simpler optimized FIS models with the minimum number of rules 
are obtained. 
ANFIS architecture (Step 3): The purpose of this step is to optimize the initial FIS created by 
using the genetic-oriented clustering technique. A network-type structure similar to that of a 
neural network, which maps inputs through input membership functions and associated 
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parameters, and then through output membership functions and associated parameters to 
outputs can be used to interpret the input–output map. Considering a first-order Sugeno 
fuzzy model with two inputs x and y and one output f, a typical rule set with two fuzzy if–
then rules can be expressed as 
 

• Rule 1: If (x is A1) and (y is B1) then (f1 = p1x + q1y + r1) 

• Rule 2: If (x is A2) and (y is B2) then (f2 = p2x + q2y + r2) 
 

where x, y are inputs, Ai, Bi are membership functions and pi, qi, ri are consequent 
parameters and i is the node number. The entire system architecture consists of five layers, 
namely, the fuzzy layer (Layer 1), product layer (Layer 2), normalized layer (Layer 3), 
consequence layer (Layer 4) and total output layer (Layer 5).  
Model Validation (Step 4): The validation process is used to evaluate the model 
generalization capability. One problem with model validation is selecting a data set that is 
both representative of the data the trained model is intended to emulate, yet sufficiently 
distinct from the training data set so as not to render the validation process trivial. 
Especially in noisy measurements, it is possible that the training data set does not include all 
the representative features needed for the model. The idea behind using a checking data set 
for model validation is that after a certain point in the training, the model begins overfitting 
the training data set. Overfitting can be detected when the checking error starts increasing 
while the training error is still decreasing. In practice, the experimental data is divided into 
training data and checking data. The training data is used in both genetic-oriented 
clustering process and ANFIS training. The checking data is only used in ANFIS training to 
prevent the model from overfitting. 

6. Experimental results 

The experiments were carried out using a robotic manipulator with 6 rotational degrees of 
freedom (RV4A) and controlled by a PC. The robot is programmed in Melfa-Basic language 
in Cosirop environment, while the analysis of the visual information is performed with 
Matlab 7.1. The vision system consists of a Pulnix analog video camera at 768×576 pixels 
resolution RGB and a analog camera of the same resolution, which are fixed above the 
working table in a vertical position (Fig. 5). The vision is transferred to the second camera 

when the position error becomes less than 10 pixels (≈ 12.3 mm) and the orientation error is 

less than 5°. Using the second camera, the accepted position and orientation error are set 

equal to 10 pixels (≈ 1.389 mm) and 1°, respectively. A simple gripper has been designed, so 
that the arm of the robot is distant from the fabric, as shown in Fig. 5. The fabric is stuck on 
the gripper to avoid slipping; however, the placement of the gripper onto the fabric is out of 
the reach of this work. 
In this work, buckling modes during robot handling are supportable on the condition that it 
does not appear in the segment to be sewed. However, it still remains a problem that should 
be avoided. Thus, the position where the gripper touches the fabric is estimated in terms of 
reducing the possibilities for deformation appearance, taking into account the properties of 
the fabric (Koustoumpardis & Aspragathos, 2003). It is worth noting that the intent of this 
work deals with buckling in context of achieving a successful seam tracking and not the 
correction strategy against folding or wrinkling problems. The experimental tests also 
showed that deformations are likely to appear close to the gripper position on the fabric, 
and not on the edge. 
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Fig. 5. The experimental stage 

Since there is no standardization for deformations, it is difficult to be quantified. However, 
the greater deformation observed in buckling is about 30 mm, which is the height between 
the highest and the lowest point of the fabric. In some cases, fabrics were ‘partially folded’. 
In other cases, the wrinkles induced the fabric to fold due to its own weight forming a loop 
at one side of the fabric. In some experiments, the fabric presented simultaneously both 
wrinkles, and folds.  
 

  
 (a)  (b) 

Fig. 6. Fabric A with curved edge of small curvature (a) Fabric B with curved edge of large 
curvature  

In the experiments, a considerable number of fabric pieces of different materials, shape and 
colour have been used. Both simulation and experimental tests are conducted to verify the 
efficiency of the proposed approach. A fabric piece is indicatively presented to show the 
results for both simulation and experimental tests. The shape of this fabric consists of two 
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straight-line segments and an arbitrary curve, its colour is red and it has medium bending 
rigidity (Fig. 6 (a)). 
Initially, simulation tests were carried out in order to approve the effectiveness of the 
proposed polygonal approximation based on a micro-Genetic Algorithm (micro-GA). A 
number of points along a section of the curved edge are captured by the camera that focuses 
on the area of the needle-point. The array that contains the curve data-points has 

dimensions 185×2 and is the input to the micro-GA. The maximum length of the 
chromosomes is set to 6 and the maximum acceptable deviation is arbitrarily set to 8 pixels 

(≈1 mm).  
Fig. 7 (a) shows the optimum polygon section resulted from the micro-GA, which 
approximates the given data-points of the curved edge. The curve section is approximated 
by a polygon section consisted of three sides and each of them deviates from the 
corresponding arc section 6.87, 5.55 and 7.07 pixels. Increasing the maximum acceptable 
deviation from 8 pixels to 12 pixels, the arc section is approximated by a polygon section 
with three sides, as shown in Fig. 7 (b), where the maximum deviation errors between the 
curve and each polygon side are 4.48, 5.88 and 10.37 pixels, respectively. Decreasing the 
maximum acceptable deviation to 4 pixels, the arc is approximated by a polygon section 
with six sides, as shown in Fig. 7 (c), where the maximum deviation errors are 3.37, 2.52, 
2.32, 0.88, 3.15 and 3.08 pixels. Fig. 7 (d) zooms in the first two sides of the polygon shown in 
Fig. 7 (c). 
 

   
                                   (a)                     (b) 

   
                                   (c)                     (d)  

Fig. 7. Polygonal approximation with (a) ε=8 pixels (b) ε=12 pixels (c) ε=4 pixels (d) detail of 
the approximation with ε=4 pixels 
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These simulation tests demonstrate that the polygon approximation of the curve serves as a 
trade-off between rapidity and smoothness affected by the tolerance for imprecision. The 
results show that the approximation leads to a satisfactory seam approximation, while 
simultaneously the time for the entire process is minimized. 
In practice, the sewing process is repeated many times and the deviation errors are collected 
and processed. The maximum acceptable deviation error for all tested cases is set to 8 pixels 

(≈1 mm). Fig. 8 (a) shows the deviation errors for Fabric A, a fabric piece with small 
curvature (Fig. 6 (a)) and Fig. 8 (b) shows the deviation errors for Fabric B, a fabric piece 
with small curvature (Fig. 6 (b)).  
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(a)      (b) 

 

Fig. 8. Deviation between real and desired path using the micro-GA for (a) fabric A (b) fabric B 

Fabric A: The proposed micro-GA is experimentally tested using the dominant points as 
input. The maximum deviation (in pixels) between the needle-point and polygon 
approximation is computed from the image captured. The sewing process for the curved 
edge is accomplished after 15 steps and the results are shown in Fig. 8 (a). The maximum 

deviation is 6.63 pixels (≈0.83 mm) and is lower than the maximum acceptable limit of 8 

pixels. The average value for the deviation is 2.75 pixels (≈0.34 mm), which is really 
satisfactory. The steps 6-10 correspond to the part of the curve with high curvature. 
Fabric B: Using the dominant points as input, the micro-GA terminates with 9 steps and the 

average value for the deviation is 4.14 pixels (≈0.52 mm). The maximum deviation for each 
method is depicted in Fig. 8 (b). The deviation error for this fabric piece is greater compared 
to the previous one, which is reasonable, since the curvature is higher.  
More fabric pieces are used to test the proposed approach, but detailed results are not 
presented due to the space limit. Table 2 shows indicatively the total steps, as well as the 
average and maximum deviations for some of the tested fabrics. The task is accomplished in 
less steps (corresponding to lower total time) when the micro Genetic-based approach that 
uses the dominant points as input is applied, satisfying the predefined the boundary of 1 mm.  
In apparel industry, the maximum allowable deviation, which is empirically evaluated, lies 
in the range between 0.5-5 mm. For all tested cases, the proposed algorithm is proved to be 
quite robust and efficient, since the achieved deviation, which is the maximum predefined 
deviation set by the user, is less than 1 mm. Bearing in mind that the robot accuracy is 

within ± 0.03 mm, the deviations resulting from the vision- and the robot position errors are 
very satisfactory. 
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Fabric type/color Steps Maximum deviation (mm) Average deviation (mm) 

fleece/red 15 0.83 0.34 

cotton/green 9 1.00 0.52 

jeans/blue 10 0.99 0.65 

baize/green 10 0.79 0.34 

tweed 10 0.96 0.58 

Table 2. Experimental results for the tested fabrics 

 

 
           (a)               (b)  

Fig. 9. (a) Robot-camera-sewing machine system (b) zoom in the camera 

 

 

Fig. 10. Identification of a curved section 

To test the ANFIS system, the robot-camera-sewing system is restructured to achieve even 
better accuracy (Fig. 9). Now, the vision system consists of a web camera at 480×640 pixels 
resolution RGB, which is mounted on the sewing machine, so that the area in the vicinity of 
the sewing needle is in the field of view of the web camera. The area captured by the web 
camera is about 40×55 mm, but the seam errors (eD and eφ) are computed in a smaller area 
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40×25 mm for a better approximation. Fig. 10 presents indicatively a curved section of a 
fabric, which is identified and approximated by a straight edge. 
The proposed seam control strategy is tested using real fabric pieces of different materials, 

shapes and colours. Fig. 11 shows four fabric pieces with curved edges that were used for 

training and Fig. 12 shows three fabric pieces that were used for testing. Several 

experimental tests are conducted to verify the efficiency and approve the effectiveness of the 

proposed adaptive neuro-fuzzy approach for robot sewing fabrics of curved edges.  

 

 
  (a)    (b)   (c)  (d) 

Fig. 11. (a) jacket’s sleeve (b) shirt’s sleeve (c) trouser’s leg (d) short sleeve 

 

 
   (a)   (b)   (c)  

Fig. 12. (a) skirt’s piece (b) pocket (c) hood 

Using the fabric pieces shown in Fig. 11, a total of 350 data sets are obtained. A total of 300 

data sets are selected for the purpose of training in ANFIS and the rest 50 data sets are 

selected for testing purposes after the training is completed in order to verify the accuracy of 

the predicted values.  

Next, the genetic-oriented clustering method is applied to the training data set. Fig. 13 

shows the training data sets and the resulting cluster centers obtained after applying the 

genetic-oriented clustering method. The cluster centers determine the number of the fuzzy 

sets and the parameters (mean values) μ of the Gaussian membership functions of the 

antecedent part, as well as the number of fuzzy rules of the Sugeno-type FIS. The number of 

the resulted clusters for ra=0.4  is seven. As a result, each input variable is characterized by 

seven fuzzy sets with the linguistic values {Extremely Small (ES), Very Small (VS), Small (S), 

Medium (M), Large (L), Very Large (VL), Extremely Large (EL)}. The consequent parameters 

of each rule of the Sugeno-type FIS are determined by using the linear least-squares 

algorithm. The membership functions for the two inputs resulting from these cluster centers 
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are shown in Fig. 14 (a). The rule base obtained through the genetic-oriented clustering 

approach consists of 7 rules, shown in Table 3. 

 

1. If (eD is Small) and (eφ is Extremely Small) then (ω is Extremely Small) (1) 

2. If (eD is Very Small) and (eφ is Small) then (ω is Very Small) (1) 

3. If (eD is Extremely Small) and (eφ is Extremely Large) then (ω is Small) (1) 

4. If (eD is Large) and (eφ is Very Small) then (ω is Medium) (1) 

5. If (eD is Medium) and (eφ is Large) then (ω is Large) (1) 

6. If (eD is Very Large) and (eφ is Medium) then (ω is Very Large) (1) 

7. If (eD is Extremely Large) and (eφ is Very Large) then (ω is Extremely Large) (1) 

Table 3. Fuzzy rule base 

 

 

Fig. 13. Cluster centers resulting from the genetic-oriented clustering method 

 

  
 (a)   (b) 

Fig. 14. The membership functions for inputs using (a) genetic-based clustering (b) ANFIS 
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The next step is the training process that aims at tuning the fuzzy inference system. Fig. 14 
(b) shows the final Gaussian membership functions derived after training the system. In 
contrast to the first input, there is a considerable change in the final membership functions 
concerning the second input, since the supports of all fuzzy sets are broadened. The root 
mean squared errors of the output over 100 training epochs, which are obtained by using 
300 training datasets and 50 checking data sets, are plotted in Fig. 15. It is obvious that both 
training and checking error gradually decrease versus the number of epochs.  
 

 

Fig. 15. ANFIS training process 

 

 

Fig. 16. Comparisons between measured & predicted angular velocity 

After 50 checking data sets are entered in ANFIS, an output value can be obtained from the 
calculation results. This output value is the predicted value for the angular velocity of the 
end-effector. Fig. 16 shows measured and predicted angular velocity for the checking data, 
as well as the prediction error expressed as the absolute value of the percentage error 
between the measured and predicted angular velocity. These two diagrams demonstrate 
that the predicted values are close to the experimentally measured values, as many of the 
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data points fall very close to the predicted points, indicating good correlation. The average 
error of the prediction of the angular velocity is around 2.57%, which means that the 
accuracy is as high as 97.43%. 
An interesting and important conclusion established from the results is that the proposed 
approach is capable of well estimating data points outside the training space using the 
advantages of fuzzy logic, neural networks and genetic algorithms. This conclusion reflects 
the model’s ability to predict the output based on the input data used for training. In 
practice, this implies that the method is effective in robot handling fabrics with curved 
edges, which have not been used in the training process. 
The strategy for robot-sewing fabrics with curved edges described above has the advantage 
of performing well regardless of the fabric’s deformations. This advantage is of major 
importance, as fabrics are limp materials that have a tendency to distort and change their 
shape when handled on a work table. The fact that this approach is based on the 
information taken from the image that captures the fabric in the neighbourhood of the 
needle amplifies the system’s robustness against deformations. Therefore, deformations that 
may appear on the fabric during robot handling do not affect the effectiveness of the 
stitching process.  

7. Conclusion 

The main focus of this work lies on the design of an innovative visual servoing manipulator 
controller based on Fuzzy Logic that aims to enable robots to handle flexible fabric sheets 
lying on a work table. Visual servoing and fuzzy logic are used in robot motion control 
increases the intelligence of robots and the flexibility of the system. The designed visual 
servoing control system can deal with a variety of fabrics that are likely to deform and can 
cope with possible deformations due to buckling (wrinkling, folding) towards handling 
without degrading its performance, on condition that the seam segment to be sewed is 
undistorted. The desired accuracy is achieved in approaching the needle even in cases 
where deformations appeared.  
This work focuses on the difficult case, where fabrics consist of edges with arbitrary 
curvatures. The need for approximating the curved edges through straight lines arises from 
the fact that current industrial robots can only be programmed to make straight or circular 
motions. From the standpoint of apparel industry manufacturing, it is important to assure 
that the fabric is sewn in the minimum time, while simultaneously satisfactory accuracy and 
smoothness are achieved.  
In our approach, the curve is approximated through small straight segments applying a 
micro-GA approach that uses the dominant point detection method as input. The proposed 
approach aims at the minimization of the execution time satisfying a predefined maximum 
tolerance. Based on the results, some consideration is made concerning the trade-offs 
between running times and the quality of the final approximation. 
To alleviate the computational burden of geometrical computations, an innovative method 
for robot handling fabrics with curved edges towards sewing has been proposed, which is 
based on a novel genetic-oriented clustering method and an adaptive neuro-fuzzy inference 
system. This work presents the design and tune of an ANFIS network with the minimum 
number of fuzzy rules for modelling the complex process of robot sewing fabrics.  The 
proposed adaptive neuro-fuzzy inference system benefits from the advantages of fuzzy 
logic, neural networks and genetic algorithms. This feature makes this approach a powerful 
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tool to deal with uncertainty embedded in the curved edges of real cloth parts and to cope 
with new fabric pieces that have not been used for the training process. 
The experimental results show that the proposed  control scheme is effective and efficient in 
guiding the fabric towards the sewing needle, sewing it and rotating it around the needle. 
After extensive experimentation, it has been proved to be rather simple, flexible and robust 
due to its capability to respond to any position and orientation error for a variety of fabrics 
that are likely to present deformations. The experimental data were obtained using the 
robot-camera-sewing machine system and real parts of cloths. The proposed method 
presented good results when applied to fabrics with curved edges of unknown curvatures, 
which manifest the validity of proposed approach. This method is applicable to any piece of 
fabric with edges of arbitrary curvature, since it has been proved to be efficient in estimating 
the appropriate angular velocity of fabrics that were not included in the training process. 
Although no direct comparison with human stitching is possible, as the equipment 
deployed attained differ, the achieved accuracy is really promising for future use in 
industrial applications. 
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