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1. Introduction 

The high bandwidth and low attenuation provided by optical fibers has turned them into 

the most extensively deployed transmission medium in communication systems world-

wide. This is especially the case for systems that utilize bit rates ranging from hundreds of 

Mbits/s to several Tb/s and whose span extends from a few tens of kilometers to 

intercontinental scales. In fact, global networking with the present speed and quality could 

hardly exist without fibers, which transport more information than all the other 

transmission media commercially used today combined (Ramaswamy, 2010).  

The interest in optical fibers goes far beyond their valuable characteristics for signal 

propagation. In particular, fiber nonlinearities have been widely considered for the 

implementation of several all-optical devices. For example, wavelength converters based on 

cross-phase modulation (XPM) (Olsson et al., 2000) and fiber four-wave mixing (FWM) 

(Inoue & Toba, 1992) have been investigated. Dispersion compensators and all-optical 

regenerators FWM have also been implemented (Chavez Boggio et al., 2004a), as well as 

wide-band tunable amplifiers, known as fiber optic parametric amplifiers (FOPA), relying 

on third-order parametric processes with one (Hansryd & Andrekson, 2001) and two high-

power pumps have been demonstrated (Chavez Boggio et al., 2005b). Recent work 

(Jamshidifar et al., 2010) shows that fiber tunable filters and demultiplexers can be achieved 

through parametric interaction in specially designed optical fibers.  

Fiber-based nonlinear devices may also be used for all-optical signal processing. In this area, 

there is a special interest on techniques that provide conversion between different 

modulation formats. In fact, recent works deal with this subject and propose ways of 

performing analog to digital (Brzozowski & Sargent, 2001), digital to analog (Oda & Maruta, 

2006), non-return-to-zero (NRZ) to return-to-zero (RZ) (Mishina et al., 2007), multilevel to  
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binary (Fagotto & Abbade, 2010) and binary to multilevel conversions (Zhou et al., 2006; Lu 
& Miyazaki, 1997), among others. 

A strong motivation for pursuing such research is that different kinds of optical networks 
(long-haul, optical packet switching, access and so on) may coexist and need to exchange 
information with one another (Mishina et al., 2007). Since each of them may present 
different physical and logical characteristics, signals within the boundaries of each optical 
network are subject to different types of impairments. Therefore, a modulation format used 
to minimize the bit error rate (BER) of signals within a given network domain may not be 
appropriate for other domains. Consequently, all-optical devices that provide modulation 
format conversion capabilities may be highly attractive to play a major role at the interface 
between different optical networks. 

In this chapter, we focus on four techniques that use fiber nonlinear effects to perform optical 
amplitude multiplexing (OAM) of binary signals into multi-amplitude ones. We begin by 
reviewing the fundamentals of FWM and parametric amplification (PA) in Section 2. Then, in 
Section 3, we discuss two techniques that use FWM (Abbade et al., 2005; Abbade et al., 2006a; 
Abbade et al., 2006b) and PA (Abbade et al., 2010a; Abbade et al., 2010b; Marconi et al., 2011) 
to convert two 2-ASK signals into a quaternary amplitude-shift keying (4-ASK) one; named, 
respectively, OAM-4F and OAM-4P. In Section 4, utilization of FWM and PA (Abbade et al., 
2011) to convert two binary signals into a ternary amplitude-shift keying (3-ASK) is 
approached. Such techniques are, respectively, termed OAM-3F and OAM-3P. It should be 
noted that OAM-3F is an innovation, presented for the first time in this work. Advantages of 
multi-amplitude modulation formats encompass higher tolerance to degradations caused by 
chromatic dispersion and the possibility of transmitting simultaneously two signals within the 
same optical bandwidth. Applications and a detailed comparison among the four techniques 
are presented in Section 5. Finally, conclusions are drawn in Section 6. 

2. Theory of parametric interactions in optical fibers 

An external electric field E  applied to an optical fiber will cause an induced polarization P  
in the medium that will depend on its electrical susceptibility  . However, such a 
dependence will not only rely on the first-order susceptibility (1) , but also on higher-order 
terms. Processes relying on (2) and (3) are known, respectively, as second- and third-
order parametric processes. 

For an isotropic medium, the second order susceptibility (2) is equal to zero (in dipole 
approximation), which means that the term proportional to 

2
E vanishes. Therefore, only  the 

contribution from the third order susceptibility (3), proportional to 
3

E will remain. Thus, 
the polarization can be expressed as,  

 
3(1) (3)

0( )P E E    , (1) 

where 0  is the vacuum electric permittivity.  

At this point it is important to comment on two aspects of Eq. (1). First, the notation 
3

E  is 
used as a simple way of writing the triple external product E E E  , which results in a 
third rank tensor with 27 elements. Second, the third order susceptibility (3) is a fourth rank 
tensor which contains 81 independent elements, but it should be noted that the inner 
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product of the (3) tensor and the E E E   tensor leads a simple vector. Furthermore, 
considering that silica glass is an isotropic material, the number of independent elements of 
the (3) tensor is reduced to three independent elements by symmetry (Buck, 2005; Butcher & 
Cotter, 1990). In addition, if the operating frequency range is far from resonances, then the 
number of independent elements is finally reduced to one (Buck, 2005). The “cubic” term of 
Eq. (1) is responsible for several nonlinear effects in optical fibers such as self-phase 
modulation (SPM), XPM, and FWM. It will be seen that, under proper conditions, FWM can 
be used to amplify a weak signal that propagates through an optical fiber along with a 
strong signal. To show that, let us start with the wave equation (Buck, 2005) for silica, a non-
magnetic material without free charges and currents,  

 
2 2

2
0 0 0 2 2

H E P
E

t t t
  

   
        

. (2) 

where 0 is the vacuum magnetic permeability, and H  is the magnetic field (Jackson, 1998) 

that is related with the magnetic induction field B as 0B H (then 0B H   ). 

Assuming that /J P t   , then the total polarization can be written as a sum of two terms, 

the linear and the nonlinear polarizations: L NLP P P  . Therefore, Eq. (2) can be written as 

 

 
22 2

2
02 2 2

NLPn
E

c t t


  
      

,  (3) 

where (n/c)2 = (00(1 + (1))), being n the refractive index and c the speed of light in 
vacuum. In the case of single mode fibers that are used in parametric devices, we have that 

= (ncore – ncladding)/ncladding << 1, where ncore and ncladding are the refractive indexes of the 
core and the cladding, respectively (Agrawal, 2001).  

Considering a typical value ~ 0.003, for weakly guiding fibers (Gloge, 1971), the 

longitudinal components of the electric fields are of the order of 1/2, which means that they 
are ~20 times smaller than the transversal components; therefore, they can be neglected in 
most practical applications. Then, considering that the fiber propagation is along the z-axis, 
the fields can be written as:  

 ( ( ) )1
ˆ ( , ) [ ( ) . .]

2
L Li z t

L LE x x y A z e c c      ,  (4) 

where c.c. stands for the complex conjugate of the previous term, AL(z) is the complex 

amplitude of the electric field, (L) is the propagation constant for the  angular frequency 

L, and (x,y) is the transverse distribution of the electric field:  

 

0

0

( )
( , )

( )
T

T

A J a
x y

B K a

  


  


   , (5) 

where A = [J0 (Ta)]-1 and B = [K0 (Ta)]-1, 2 2 2
0T coren k   , 2 2 2

0T claddingn k   , 0 2 /k   , 

a is the core radius, and 2 2 2x y   . Here J0 and K0 are the Bessel functions corresponding 

to the fundamental mode (called HE11 or LP01) which is the only one propagating in 

singlemode fibers.  
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As previously mentioned, the nonlinear process responsible for parametric amplification is 
the FWM. To show this let us assume that the refractive index can be written as the sum of a 
linear term and a nonlinear contribution, 0 2n n I n  , where n0 is the linear part of the 
refractive index and n2 is the nonlinear refractive index (Boyd, 2008). The nonlinear 
contribution is proportional to the optical irradiance I (in the SI units system) (Boyd, 2008). 
Then, when two waves at angular frequencies 1 and 2 are launched together into an 
optical fiber, the refractive index will be modulated with a frequency (2 - 1). Now, if a 
third wave at frequency 3 is coupled along, a new wave at frequency 4 = 3 ± (2 - 1) will 
be generated. This new wave is called idler. The relation 4 = 3 ± (2 - 1) means that 4 + 
1 = 3 + 2 and that 4 + 2 = 3 + 1.  

It is important to mention that when three waves are launched into the same fiber, a total of 
nine new frequencies can be in fact generated if all the combinations are taken into account 
(Hansryd et al., 2002). For instance, frequencies such as 4 = 22 - 3 or 4 = 3 - 2 + 1 are 
also possible. However, not all these frequencies are generated with the same efficiency. 
Generally calculations reckon only highly efficient processes and neglect the others. For 
instance, if we consider the case where 1 < 3 = 2, we have that 22 = 4 + 1; this process 

is a degenerate case of FWM that brings about parametric amplification when the wave at 2 
is a strong pump-signal and 1 is a weak signal to be amplified. As a result, a new wave, an 
amplified copy of the signal at 1, will be generated at 4.  

In order to standardize the notation, we shall denote the angular frequencies for the pump, 

the signal and the idler as P, S and id, respectively. Following this notation, the total 
electric field can be written as  

 

( ( ) )

( ( ) )

( ( ) )

1
ˆ ( , ) [ ( )

2

( )

( ) ] . .

P P

S S

id id

i z t
P S id P

i z t
S

i z t
id

E E E E x x y A z e

A z e

A z e c c

  

  

  

  

 

 

    

 

 

, (6) 

where all the waves are supposed to have the same mode profile Ǚ(x,y) and the same  
polarization on the x-axis. When this total electric field is included in Eq. (3), the Laplacian 
leads to the following electric fields (pump, signal, and idler)  

 

 

2 2
( ( ) )

2 2

( ( ) )

( ( ) )2

( )1
ˆ ( , ) [

2

( )
2 ( )

( ) ] . .

j j

j j

j j

i z tj j

i z tj
j

i z t
j j

E A z
x x y e

z z
A z

i e
z

A z e c c

  

  

  



 

 

 

 

 

 
 

 

 


 

 (7)  

where j = P, S or id.  

The slowly varying envelope approximation is introduced at this point, and is given by  

 

2

2

j j
j

A A

zz


 



, (8) 
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or, considering that  j = ( )j   2/j, with j = 2c/j, 

 
j j

j

A A

z z z


  
     

, (9) 

which means that the slopes of the envelope fields do not vary significantly along a 
wavelength distance (j) as compared to the envelope magnitude (Buck, 2005). Using this 
approximation, valid for most practical cases, the term with the second derivative of z can 
be neglected.  

Considering all these conditions and neglecting fiber attenuation, it is possible to obtain a 
set of three coupled equations for the three electric field amplitudes,  

 
2 22 *[( 2( )) 2 exp( )]P

P S id P S id P
dA

i A A A A A A A i z
dz

      , (10) 

 
2 2 2 * 2[( 2( )) exp( )]S

S id P S id P
dA

i A A A A A A i z
dz

       , (11) 

 
2 2 2 * 2[( 2( )) exp( )]id

id S P id S P
dA

i A A A A A A i z
dz

       , (12) 

where the symbol (*) stands for the complex conjugate,  is the linear phase mismatch 
( ) ( ) 2 ( )s id P          , and 2 / effn cA   is the fiber nonlinear coefficient. Here n2 is 

the nonlinear refractive index which is related to (3)  as (3) 2
2 0 03 / 4n cn  , and effA  is the 

effective area (Agrawal, 2001). Note that the right-hand side of Eqs. (11)-(13) includes the 
terms of SPM, XPM and FWM. 

The exact solutions of Eqs. (10)-(12) involve Jacobian elliptical functions as shown in (Chen, 
1989). Here we follow an approximate solution that allows us to obtain a simple expression 
for the parametric gain. This approximation considers that the intensity of the pump is 
much higher than that of the signal and the idler. Therefore, the energy transferred from the 
pump to the signal (and the idler) can be considered negligible. For instance, if the ratio 
between the pump power and the signal power at the fiber input is ~ 104 -105, and the signal 
gain is ~20-25 dB at the fiber output, the signal (idler) power is still less than 1% of the pump 
power, which justifies the approximation.  

Under such conditions Eqs.(10)-(12) may be written as,  

  P
p P

dA
i P A

dz
 , (13) 

 * 2[2 exp( )]S
p S id P

dA
i P A A A i z

dz
     , (14)  

 * 2[2 exp( )]id
p id S id

dA
i P A A A i z

dz
     , (15) 
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where PP = 
2

PA is the pump power. These equations, which are valid for an ideal fiber 
with attenuation coefficient  = 0, have an analytical solution for the signal gain and for the 
idler conversion efficiencies as,  

 
2

0 sinh( )
1

(0)
S

S

P x x

P x

    
 

, (16) 

 
2

0 sinh( )

(0)
id

S

P x x

P x

   
 

, (17) 

where PS  = 
2

SA is the signal power at the fiber output, PS (0) is the signal power at the fiber 

input, Pid = 
2

idA is the idler power at the fiber output, L is the fiber length, 0 Px P L , 

2
0 1 ( / 2 )T Px x P    , and 2T PP      . 

It should be noted that even when  ≠ 0, previous equations are good approximations if the 

pump power PP is replaced by  
0

1
( ) (0) 1 /

L
L

P P PP P z dz P e L
L

    . The phase mismatch 

 can be calculated by expanding () in Taylor series around an arbitrary frequency t as 
follows: 

2
2

2

1
( ) ( ) ( ) ( )

2
t

t

t t t
   

        
  

                
 

 
3 4

3 4
3 4

1 1
( ) ( ) ..........

6 24
t t

t t

   

    
  

    
              

 (18) 

Keeping terms up to the fourth order and taking t = P then,  

 2 44
2

( )
( ) ( )( ) ( )

12
P

P P P
             . (19) 

Within the spectral region where the parameter x is real, the parametric gain is maximum 

when T = 0 (x = x0), and its value is Gmax = 1 + sinh2(x0). On the other hand, the gain has a 

local minimum (within the region of interest) when  = 0, and its value is Gmin = 1 + 2
0x  

(Chavez Boggio et al., 2005a). In other words, the parametric gain will be high if T is small. 
This means that the pump must be tuned at some frequency within the fiber anomalous 

dispersion region, that is, P < 0, with 0 = 2πc/0, 0 the fiber zero dispersion wavelength 

and c is the vacuum light speed. If the approximation 4 ~ 0 is valid, then the gain 

bandwidth can be roughly written as 22 /P PP     . 

In the extreme case of Pp <<  and PP ~ PS >> Pid, Eq. (17) gives the mixing condition 
without amplification (Stolen & Bjorkholm, 1982). Here we change our notation and 
designate, the pump, the signal, and the idler powers as P1, P2, and P−,+ , and the angular 
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frequencies change from P, S, and id to 1, 2, and ,+, respectively. The extreme case 

just considered implies that , x  i L , and then sinh( ) 2 sinx i L  . Introducing 

all these results in Eq.(17) we have that  

 

2
2 2 2

, 1,2 2,1
sin( )

4
L

P P P L
L


 

 
   

. (20) 

The notation P−,+ refers to the power of the two principal FWM processes that generate 
waves at frequencies ,+ = 2 1,2 – 2,1. 

3. All-optical generation of quaternary amplitude-shift keying signals 

This section presents two all-optical techniques for multiplexing two binary ASK signals 
(ASK-2), traveling at different carrier wavelengths, in a single 4-ASK signal. In the first case, 
OAM-4F, the four levels of the quaternary pattern are obtained when the two binary signals, 
which have similar optical power, interact through FWM. The theoretical calculations that 
allow estimation of the power of the quaternary levels are developed from Eq. (27). The 
second approach, OAM-4P, used to generate the single 4-ASK signal from two binary ASK 
signals is based on PA. In this case, one of the signals is a strong optical signal that acts as a 
pump, with the unusual characteristic of being modulated by binary information. OAM-4F 
is presented in Section 3.1 and OAM-4P is approached in Section 3.2. 

3.1 Optical amplitude multiplexing through fiber four-wave mixing 

3.1.1 Theory 

The diagram shown in Fig. 1 illustrates the principle of OAM-4F. Two co-polarized input 

signals at 1 and 2 are coupled into a fiber, where they co-propagate through a medium 

that favors the occurrence of FWM. When the fiber attenuation coefficient  ≠ 0, Eq. (20) can 
be rewritten as: 

     2
2 2

, 1,2 2,1

1 exp
exp

L
P P P L


 

 
   

   
 

, (21) 

where P1, P2, P-, and P+ are the respective optical powers of the channels at frequencies 1, 

2, − , and +, L is the fiber length,  is the fiber nonlinear coefficient, and  is the 
wavelength and intensity-dependent FWM generation efficiency, well described in the 
literature (Mussot et al., 2007), which is given by:  

 

2
2 sin( )

4
L

L
L




 
   

. (22) 

If the channels at 1 and 2 are codified with ideal on-off keying (OOK) modulation, then  
P-,+ is null whenever one of these input channels transmits a 0-bit. Here, however, we 
assume that these channels are codified by a binary amplitude-shift keying (2-ASK) scheme, 
where the 0-bit powers of are intentionally offset. In this case, the extinction ratios (ER) 

corresponding to the channels at 1 and 2 are: 
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Fig. 1. Scheme illustrating the principle of operation of OAM-4F. 

    1 0
1 1 10 / 0r P P  (23a) 

    1 0
2 2 20 / 0r P P  (23b) 

where,  0j
iP  designates the power of bit j (j= 0 or 1)  at the channel at i (i= 1 or 2). Eq. (21) 

indicates that the signals filtered at + may assume four different power levels given by:  

    00 0 0 2
1 20 0

out
P k P P

       (24a) 

    01 0 1 2
1 20 0

out
P k P P

       (24b) 

    10 1 0 2
1 20 0

out
P k P P

       (24c) 

    11 1 1 2
1 20 0

out
P k P P

       (24d) 

where 
out

mnP


is the power of the signal envelope at + when the signal at 1 transmits a bit m 

(m= 0 or 1) and the signal at 2 carries a bit n (n= 0 or 1), and 

     2
2 1 exp

exp
L

k L


 


   
   

 
 (25) 

Eqs. (24) clearly show that the signal formed at the fiber output, and selected by the optical 
band-pass filter (OBPF) centered at +, is a quaternary amplitude-shift keying (4-ASK) one. 

It should be noted that 00
out

P


is always the lowest power whereas 11
out

P


is always the highest  
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one. On the other hand, 01
out

P


may be lower or higher than 10
out

P


 depending, respectively, on 

whether        
2 20 1 1 0

1 2 1 20 0 0 0P P P P        or        
2 20 1 1 0

1 2 1 20 0 0 0P P P P       . In case 

       
2 20 1 1 0

1 2 1 20 0 0 0P P P P        , the quaternary signal degenerates into a ternary one. 

The four-levels of quaternary signals give rise to an eye-diagram structure that comprises 

three eyes. We identify the eye made up of the two lowest power levels with the subscript 

“low”; analogously the subscripts “int” and “up” are utilized for the eyes that involve the 

two intermediate and the two higher power levels, respectively. For OAM-F4, it is possible 

to find the relative extinction ratios (RER) of such eyes, rlow, rint, and rup, by substituting (32) 

in (33). When        
2 20 1 1 0

1 2 1 20 0 0 0P P P P       : 

 01 00 2
2out outlowr P P r

 
   (26a) 

 10 01 2
int 1 2out out

r P P r r
 

   (26b) 

 11 10 2
2out outupr P P r

 
   (26c) 

Similarly, if        
2 20 1 1 0

1 2 1 20 0 0 0P P P P       : 

 10 00 2
1out outlowr P P r

 
   (27a) 

 01 10 2
int 2 1out out

r P P r r
 

   (27b) 

 11 01 2
1out outupr P P r

 
   (27c) 

Eqs. (24), (26) and (27) reveal some important properties of the generated 4-ASK signal. 
First, its powers do not depend on the phase of the input signals. Second, the power level 
distribution depends solely on the ERs of the two input signals. Finally, such power level 
distribution cannot be arbitrarily chosen. For instance, in the case where Eq. (26) hold, if one 
increases r2, both rlow and rup are enhanced; however, rint is simultaneously decreased. 

The analysis above can be repeated for the signal at -. In this case, Eqs. (24)- (27) would be 
modified, but the general properties of the generated 4-ASK signal would not change. Such 
analysis is left for the interested reader.  

It is important to understand how information of the input binary signals may be recovered 
from the quaternary-amplitude one. To achieve this goal, it is assumed that the 4-ASK signal 
is photodetected by a circuit such as the one illustrated in Fig. 2.  

Initially the signal is optically amplified and filtered at +; then, it is photo-detected by a 
PIN photo-diode with responsivity RS, low-pass filtered and submitted to an electronic  
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EDFA

OBPF
Electronic 

Decision 

Circuit

RS

LPF

 

Fig. 2. Multiamplitude signal detector. 

decision circuit (EDC), whose purpose is to indicate which bits were transmitted by the 

signals at 1 and 2. It is assumed that noise at EDC obeys a Gaussian distribution. 

There are then two possibilities. The first one occurs when        
2 20 1 1 0

1 2 1 20 0 0 0P P P P        

and it is illustrated in the left part of the inset of Fig. 1. A simple inspection of this figure 

indicates the following two detection rules should be utilized by the EDC: a) 1 transmitted 

a bit 0 (1) whenever the two lower (upper) levels are detected; and b) 2 transmitted a bit 0 
(1) whenever the lower and third (second and fourth) power levels are detected. 

These detection rules may be used to estimate the BERs of the binary signals extracted from 
the 4-ASK signals. To accomplish this goal, we first consider that the noise fluctuations 
between consecutive levels are much larger than the ones between non-consecutive levels.  
This hypothesis must hold for practical situations where even the noise fluctuations between 
adjacent levels must be low to keep the BERs at acceptable levels. Then, we observe from 

rule (a) and the left part of the inset of Fig. 1, that the BER for the signal at 1, BER1, is 
equivalent to the one of a binary signal with threshold level between the second and third 
levels. In this way: 

 10 01
1

10 01

i i
BER Q

 
 

  
 

 (28a) 

where,     2 /21 2 y

x
Q x e dy

    is the complementary error function, ixy= RS
out

xyP


 is the 

average electronic current associated with power level 
out

xyP


, and xy is the ixy standard 

deviation. From rule (b) and the left part of the inset of Fig. 2, it is observed that the BER for 

the signal at 2, BER2, is equivalent to the average BER of three binary signals with decision 
thresholds between the first (lower) and second; the second and third; and the third and 
fourth (highest) levels: 

 01 00 10 01 11 10
2

01 00 10 01 11 10

1

3

i i i i i i
BER Q Q Q

     
        

        
         

 (28b) 

The second possibility occurs when        
2 20 1 1 0

1 2 1 20 0 0 0P P P P        and it is illustrated in 

the right part of the inset of Fig. 1. Following a procedure similar to the one described above 

and inspecting this figure, it is easy to verify that the detection rules are: c) 1 transmitted a 
bit 0 (1) whenever the lower and third (second and fourth) power levels are detected and d) 
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2 transmitted a bit 0 (1) whenever the two lower (upper) levels are detected. In this way, 
BER1 is now the average BER of the three eyes of the quaternary signal whereas BER2 may 
be estimated from the BER of the intermediate eye:  

 10 00 01 10 11 01
1

10 00 01 10 11 01

1

3

i i i i i i
BER Q Q Q

     
        

        
         

 (29a) 

 01 10
2

01 10

i i
BER Q

 
 

  
 

 (29b) 

We note that other reports suggest that the input binary signal may also be optically 
recovered from the 4-ASK signal with the use of transfer functions generated by self-phase 
modulation (Oda & Maruta, 2006)  or FWM (Fagotto & Abbade, 2010) effects. However, a 
discussion concerning such all-optical approaches is beyond the scope of this chapter. 

3.1.2 Results and discussion 

Fig. 3 illustrates the experimental setup used to perform amplitude multiplexing through 

FWM. Two 1 Gb/s 212-1 pseudorandom bit sequences (PRBS) directly modulate the optical 

carriers at f1= 193.00 and f2= 193.15 THz, where fi= 2i (i= 1, 2). Previous to being coupled, 

these signals are co-polarized and then amplified by an Erbium-doped fiber amplifier 

(EDFA), EDFA1, up to an average peak power of 12 dBm. In the sequence, they are 

launched into a dispersion-shifted fiber (DSF) with = 0.20 dB/km, 0= 1550 nm, dispersion 

slope S0= 0.074 ps/(nm.km), = 2.0 (W.km)-1, and L= 25.0 km. Since the powers at the fiber 

input are relatively low, it is not necessary to use any mechanism to prevent Brillouin 

backscattering.  

DSF OBPF1

G

OBPF2EDFA2 DSA
PRBS1   TLS1

PRBS2  TLS2

G

EDFA1

PC

 

Fig. 3. Experimental setup for all-optical multiplexing.  

Actually, since both signals are modulated, the Brillouin backscattering threshold should 

be a few dB higher than in the case of continuous-wave (cw) operation. Fiber FWM 
generates two sidebands, one at f-= 192.85 THz and other at f+= 193.30 THz. The latter is 

filtered by OBPF1, amplified by EDFA2, and then filtered again by OBPF2. Next, the 
signal is received by a digital signal analyzer (DSA). The double filtering is required 

because the first filter OBPF1 is not enough to eliminate effectively the input signals. 
Therefore, the OBPF1 output needs to be amplified and then filtered again by OBPF2 

before being inputted to the DSA. 
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The signal power spectra at (a) EDFA1 input, (b) DSF output, and (c) OBPF2 output are 

plotted in Fig. 4. An optical signal-to-noise ratio (OSNR) of 27 dB is achieved at the output 

of the second optical filter.  

Wavelength (nm)

P
o

w
e

r
(d

B
m

)

 

Fig. 4. Power Spectra. 

Fig. 5 exhibits two unsynchronized PRBSs used to modulate the signals (a) at f1 with r1= 4.0 
dB and (b) at f2 with r2= 1.7 dB, and the (c) quaternary signal obtained at f+. In this situation, 

r1> r22 (which is equivalent to        
2 20 1 1 0

1 2 1 20 0 0 0P P P P       ) and the quaternary signal is 

governed by (26). 

 

Fig. 5. (a) Binary input sequence at f1 and  (b) at f2 and (c) quaternary output signal. 

Fig. 6a shows the eye diagrams for r2= 2.6 dB, and r1= 2.6 dB. In this case, again r12> r2 

(        
2 20 1 1 0

1 2 1 20 0 0 0P P P P       ) and so the two intermediate powers, in increasing 
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magnitude of power, represent levels 01 and 10 (where, as before, level ij stands for the bit i 

transmitted by the channel at 1 and for the bit j transmitted by the channel at 2). When r1 
is increased to 4.8 dB, rint in (26b) becomes close to unity and the two intermediate eyes get 
very close; this is shown in Fig. 6b. If r1 is further increased to 7.7 dB, then r12< r2  

 

Fig. 6. Eye-diagrams for r2=2.6 dB and (a) r1=2.6 dB, (b) r1=4.8 dB, and (c) r1=7.7 dB. 

(        
2 20 1 1 0

1 2 1 20 0 0 0P P P P       ) and the position between levels 01 and 10 is exchanged; 

Fig 6(c) shows the eye diagrams for such situation. 

To complete such analysis, graphs of (a) rup, (b) rint, and (c) rlow as a function of r1 are plotted 
in Fig. 7 for experimental data and theoretical curves, for r2= 2.6 dB. The agreement between 
such results is quite good. As predicted by (27), increasing r1, initially causes rint to decrease.  

 

Fig. 7. Theoretical (line) and experimental (dots) ERs for the quaternary signal. When r1≈ r22, 
rint achieves a minimum value; this is the point where the quaternary signal degenerates into 
a ternary-amplitude one and where levels 10 and 01 exchange their positions. As r1 is further 
increased, (27) is no longer valid and (26) needs to be applied; in this region rint increases 
again. It is also observed that rup≈ rlow for any value of r1. As r1 is increased, rup and rlow 
initially also increase, in agreement with (27). Then, for r1≥ r22, rup and rlow remain at a 
constant and maximum value in agreement with (26).  
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It should be noted that the FWM equations presented in Section 2 assume that the involved 

signals are in cw regime. The accordance between theoretical results and experimental data 

observed in this subsection suggest that such FWM equations are also valid when the 

involved signals are modulated.  

We reckon that the first experimental results concerning this technique were reported in (Xu 

et al., 2005). There, two 10 Gb/s signals were multiplexed in a 20 Gb/s 4-ASK one, which 

was then transmitted through a 160 km single mode fiber (SMF) link; after such propagation 

distance, chromatic dispersion was compensated. The eye-penalties experienced by the 

quaternary signal were relatively small. In another experiment (Abbade et al, 2006), a 2 

Gb/s 4-ASK was generated and propagated through a 20-km long SMF link in a field-trial 

network (FAPESP, n.d.). Eqs. (28) and (29) were utilized to estimate the BERs for signals 

with different values of r1 and r2. Although chromatic dispersion was not compensated and 

no special care concerning the bandwidth of filters was taken into account, BER1< 10-9 and 

BER2< 10-12 were obtained for several combinations of values of r1 and r2. This indicates that 

the 4-ASK signal generated by FWM amplitude multiplexing could be properly utilized in 

practical applications. 

BER performance of multi-amplitude signals depends on the dominant kind of noise. 
Generally speaking, different types of noise require different power level distributions to 
minimize signal BER. Theoretical and experimental analyses of such optimum distribution 
for 4-ASK signals are presented in (Walklin & Conradi, 1999). In particular, it is shown that 
under the dominance of amplified spontaneous emission (ASE) noise, the power levels of a 
quaternary amplitude signal should be in proportions of 0: 1: 4: 9.  

Concerning the 4-ASK generated by OAM-4F, such optimal distribution would apply to the 

cases described by Eqs. (28b) and (29a), where consecutive power levels represent 

complementary bits (i.e., 0101). Unfortunately, the proportions of 0: 1: 4: 9 cannot be 

achieved by FWM amplitude multiplexing. This may be understood by noting in Eq. (24a) 

that 00
out

P


 is never null; moreover, rup= rlow ((26) and (27)). In the cases described by Eqs. 

(28a) and (29b), the two lowest power levels stand for bit 0, whereas the two highest ones 

represent a bit 1. Therefore, for a given average power, BER minimization would require the 

two lowest power levels and also the two highest power levels to coincide. But this 

degenerates the 4-ASK signal into a 2-ASK one, which does not allow information from the 

signals at 1 and 2 to be recovered. This discussion shows that minimizing BER1 does not 

lead to a minimization of BER2.  

3.2 Optical amplitude multiplexing through fiber parametric amplification 

3.2.1 Theory 

As detailed in Section 2, fiber optics parametric amplifiers are realized by coupling both a 

weak probe signal at angular frequency S, and a high-power pump signal at angular 

frequency P into an optical fiber that acts as a nonlinear medium. Usually the performance 

of parametric amplifiers is analyzed for binary signals with two intensity levels representing 

bits “0” and “1” (Kalogerakis et al., 2006; Mussot et al., 2007; Chavez Boggio et al., 2004b; 

Peucheret et al., 2006) as sketched in Fig. 8(a). The power of these levels at the fiber input are 

indicated by 0(0)SP  and 1(0)SP , respectively; the ideal 0(0)SP  being null. Figure 8(b) shows a  
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Fig. 8. Scheme for (a) PA and (b) ASK-4 generation. (k with k = P, S, i represents the angular 

frequencies of the pump, the signal and the idler, and 0 = 2c/λ0, where 0 is the zero 
dispersion wavelength of the fiber). 

scheme of the theoretical principle of OAM-4P. Essentially, this principle is equal to the PA, 
but two new features are added to the signals involved.  

First, as in OAM-4, the power of the probe signal is intentionally offset from zero. Thus, the 
ER of the signal is no longer infinite (in contrast to the ideal OOK signals), and is given by: 

 1 0
(0) / (0)S S Sr P P . (30) 

Second, the pump is also modulated with binary information, in an analogous way to that of 

the probe signal. The powers of the “0” and “1” bits transmitted by the pump at the fiber 

input are designated as 0(0)PP  and 1(0)PP , respectively. It is assumed that 0(0)PP  is 

considerably higher than 1(0)SP . Once the pump is modulated, it will provide two 

amplification factors, 0
PG  or 1

PG , depending on whether the pump information is a “0” or 

“1” bit. Consequently, each of the binary levels of the signal at S will have a lower or a 

higher gain, splitting into two new power levels at the fiber output.  

For example, consider that the signal at S has the “1” bit power level, then the pump 

modulation will split it in two power levels “01” and “11”, depending on whether the pump 

information is a bit “0” or “1”, respectively. This argument is also valid when the probe 
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signal transports a bit “0” power level. In such case, the probe signal will either assume a 

“00” or “10” power level at the fiber output, depending again on whether the pump 

information is a bit “0” or “1”, respectively. Therefore, the power levels of the signal 

envelope at S and at z = L will be: 

 00 0 0(0)out P SP G P  (31a)  

 01 0 1(0)out P SP G P  (31b) 

 10 1 0(0)out P SP G P  (31c) 

 11 1 1(0)out P SP G P  (31d) 

where ij
outP  represents the power of the signal at S and at z = L, when bits i and j (i, j = “0” 

or “1”) at z = 0 are assigned to the pump and the probe signal, respectively. 0
PG   and 1

PG   

can be obtained through Eq. (16) with pump powers 0
PP  and 1

PP , respectively. 

Note that Eqs. (31) clearly show that the 4-ASK signal contains information from both the 
pump and the probe signal. As in Section 3.1, we identify the eye made up of the two lowest 
power levels with the subscript “low”; analogously, the subscripts “int” and “up” are 
utilized for the eyes that involve the two intermediate and the two higher power levels, 

respectively. By using this convention and considering 10 01
out outP P  ( 0 1 1 0(0) (0)P S P SG P G P ), the 

ERs for each one of these eyes can be written as: 

 
01

00
out

low S
out

P
r r

P
   (32a) 

 
10

int 01
 out G

Sout

P r
r

rP
 (32b)  

 
11

10
out

up S
out

P
r r

P
   (32c) 

where rG is defined as  

 
1

0
P

G
P

G
r

G
 , (33) 

and it is the ER associated with the amplification factors 0
PG  and 1

PG . In the case 10 01
out outP P  

( 0 1 1 0
(0) (0)P S P SG P G P ), the ERs are given by:  

 
10

00
out

low G
out

P
r r

P
   (34a) 
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01

int 10
out S

Gout

P r
r

rP
   (34b) 

 
11

01
out

up G
out

P
r r

P
   (34c) 

Eqs. (32) and (34) show that the power level distribution of the generated 4-ASK signal does 

not depend on the powers of the probe signal at S (only on its ER), but on the powers 
utilized in the pump. This is quite reasonable because in our analytical model the power of 
the probe signal was supposed to be much lower than the pump power, and so it was 
neglected (Song et al., 1999a). Besides that, it is clear that by controlling only the parameters 
rS and rG it is possible to regulate the power of the quaternary levels.  

The pump ER 1 0(0) / (0)P P Pr P P is controlled by setting the values of the pump average 

powers, and then it is possible to control the value of rG. For the ideal OOK modulation in 

the pump ( 0(0) 0PP  ), Eqs. (31), (32) and (34) are still valid, and in this special case 0 1PG   

and 1
G Pr G .  

The theoretical model for 4-ASK presented here and applied to modulated signals is actually 
based on a set of equations generated for cw signals. In the next two subsections the  
applicability of the technique to practical situations is tested through simulations and 
experiments, showing that our assumptions work fine.  

3.2.2 Results and discussions 

Fig. 9 shows the experimental setup used in both simulations and experiments. The lasers 

(two DFB lasers) that were used as the pump and the signal were tuned at P = 1553.5 nm 

and S = 1552.2 nm (k = 2c/k, k = P or S), respectively. 

EDFA1PRBS PM

PRBS EDFA2

f1 f2 f3

PC

PCPC

Pump

Probe

signal 

OBPF1

OBPF2 OBPF3
DSA

Optical Spectrum

Analyser

DS fiber

90 20

10 80

 

Fig. 9. Experimental setup. 

A pseudo-random bit sequence at 1 Gb/s was used to modulate the lasers through direct 
modulation. In order to suppress stimulated Brillouin scattering (SBS), the pump linewidth 
was broadened by phase modulation using a phase modulator (PM) driven by three RF 
signals. After the Erbium-doped fiber amplifier (EDFA 1), the pump was filtered with an 
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optical band-pass filter (OBPF) to suppress most of the amplified spontaneous emission 
(ASE). A 90/10 coupler was used to couple the pump and the signal to a 7 km long segment 
of dispersion shifted fiber (DSF). 

The other fiber parameters were: the zero-dispersion wavelength 0 = 1550.2 nm, the zero-

dispersion wavelength variation Δ0 = 0.08 nm, the dispersion slope S0 = 0.074 ps/nm2/km, 

the nonlinear coefficient  = 2.1 W-1km-1, and the attenuation coefficient  = 0.2 dB/km. The 
maximization of the parametric gain was achieved by aligning the pump and the signal 
states of polarization using polarization controllers (PCs). The optical power was divided 
with an optical coupler at the fiber output for spectral and systemic characterization. A 
fraction of ~20% was delivered to an optical spectrum analyzer (OSA) for recording the 
spectra. The remaining power (~80%) was sent to an OBPF centered at the signal frequency 

S. The signal was then amplified and filtered again to reduce the ASE power accumulated 
in the amplification stage. Finally, the signal with an average power of approximately 0 dBm 
entered a digital oscilloscope to characterize the resulting ASK-4 eye-diagrams. The 
quaternary signal was also analyzed after being transmitted through a 75 km-long spool of 
standard fiber. To compensate for the dispersion due to the propagation, the signal was also 
passed through a -68 ps/nm compensating fiber. 

An accurate control of the ERs of both the pump and the signal was a necessary item for the 

proper evaluation of the proposed technique. Thus, with the equipment available in our labs, 

we found that the required accuracy was more easily obtained by programming the 

modulation index of directly modulated lasers than by varying the bias voltage of the external 

modulator. However, the technique should also hold for signals with external modulation if 

specific modulators were available. It is anticipated that due to the femto-second response of 

PA (Grudinin et al., 1987) the technique should also work well for higher bit rates.  

The simulated results presented here were obtained using exactly the same setup as used for 
the experiments. To perform the simulations as close as possible to the experiments, the 
laser linewidth was set at the maximum value of the equipment at ~30 MHz. Also the same 
phase modulation scheme used experimentally was added to our simulations. This point is 
particularly important because the PM induces noise at the level “1” of the binary eye- 
diagrams. Consequently, additional noise is also expected at quaternary levels. The DSF was 
divided into 10 segments to perform the simulations in order to consider the influence of the 
zero dispersion wavelength variations along the fiber. All segments had the same length 

and the Δ0 was distributed within the range 0-Δ0/2 to 0+ Δ0/2. The segments were 
randomly ordered. The propagation along each segment was handled by solving the non-
linear Schrödinger equation using the split-step Fourier method (Agrawal, 2001). A 
commercially available software program was used to perform the simulations. 

Fig. 10 shows spectral and temporal results. Fig. 10(a) shows a comparison between the 

simulated and the experimental spectra at the fiber output. Note that the main difference 

between them is in the noise region of the spectra. The principal reason for such a difference 

is that the ASE originated in the pump Erbium booster amplifier, that is not completely 

suppressed by the band-pass filter, is then amplified by the parametric amplifier. It is 

important to note that S is placed within the frequency region where the signal 

performance is not affected by the phase modulation used to suppress the SBS (Boggio et al., 

2005a). This region for conventional (non-modulated pump) PA is the region of maximum  
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Fig. 10. (a) Experimental and simulated optical spectrum at the fiber output.  (b) Binary 
pump. (c) Binary signal before amplification. (d) ASK-4 signal obtained after PA 

gain; however, the gain bandwidth does not remain the same when the pump transmits 
either a bit “1” or “0”, thus the change in bandwidth also modifies the spectral regions 

where the PM affects the signal performance. Consequently, some influence on the OSNR 
performance of the quaternary signal is expected.  

Two bit sequences carried by the pump and the probe signal at the fiber input are illustrated 
in Figs. 10(b) and (c). The resulting quaternary signal is illustrated in Fig. 10(d). The pump 

and the probe signal ERs are rP = 6.0 dB and rS = 2.6 dB, respectively. As expected the signal 
of Fig. 10(d) presents four well-defined power levels. Note that the same power levels are 

obtained when the bits of the pump and the probe signals are repeated, and in the 
experimental case, the probe signal is slightly delayed in relation to the pump, which does 

not occur in the simulated case. This fact explains the slight delay between the quaternary 
signals obtained in the experimental results. 

Fig. 11 shows the values of rup, rint and rlow as a function of rS, for rG varying from 3 to 7 dB. 
These values were calculated using the sets of Eqs. (32) and (34), and the analytical, the 

simulated, and the experimental values were plotted in all of these cases, showing a rather 

good agreement for rup and rint.  

However, in the case of rlow, a difference between the experimental and the 

analytical/simulated values for rS> 6 dB appeared. Such difference increases when the value 
of rG increases.  Moreover, the experimental values are always smaller than those of the 

simulated ones and the difference is always smaller than 1.4 dB. This difference can be 
explained by the fact that when rG is significantly high, the  quaternary signal ER, given by 

intlow up G Sr r r r r r  is also high. Thus, even when the measurements are taken with a fixed 

average power, the power of level “00” can reach a value around -10 dBm; this value is 

comparable to the power level generated by the DSA photodiode dark current. 
Consequently, measurements of rlow are not as accurate as those for smaller values of rG. 

To measure the rS values, the pump was simply turned off. Then, the ER of the binary signal 

at S was measured from the eye-diagram at the DSA. A continuous-wave (cw) at S and a 

modulated pump with ER = rP were used to obtain rG. The PA gave two gains to the cw  
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Fig. 11. Values of rup, rint and rlow as a function of rS for: (a) rG = 3.0 dB, (b) rG = 5.0 dB, (c) rG = 
7.0 dB. 

signal, generating a binary signal whose eye diagram can be seen on the DSA. The ER of 
such signal is precisely rG. 

Two sets of three ASK-4 eye-diagrams for the signal at frequency S are exhibited in Figures 
12 and 13. The labels “00” and “11” used to identify the quaternary pattern levels always 
correspond to the lowest and uppermost levels, respectively. On the other hand, the labels 
“01” or “10” are always used to identify the two intermediate levels, but in this case the 
label of each specific level depends on the value of the signal extinction ratio rS. For instance, 
for rS = 2.2 dB (as in Fig. 12(a) the second and third power levels of the quaternary eye 
diagram correspond to labels “01” and “10”, respectively. This can be explained as follows. 
When rS = 2.2 dB and the pump level is “1”, the parametric gain obtained by the signal level 
“0” is higher than that of the signal level “1” when the pump level is “0”.  

Fig. 12(b) shows a particular case when the parametric gain given by the pump level “1” to 
the  signal level “0” coincides with  that given by the pump level “0” to probe level “1”. In 
such a situation, rS  rG (3.8 dB  4 dB), and the quaternary signal degenerates into a ternary 
one. This situation must be avoided in practical applications. Fig. 12(c) presents the case rS = 
6.8 dB > rG, which is the inverse case of the one shown in Fig. 12(a). Now, the power level of 
the label “10” is lower than that of the label “01”. This is because the gain of pump level “1” 
given to level “0” is higher than that given by the pump level “0” to signal level “1”. 
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Fig. 12. Simulated (full lines) and experimental (white circles) eye diagrams for (a)  rS = 2.2 
dB, (b) rS = 3.8 dB, and (c)  rS = 6.9 dB. In all the cases rG = 4 dB. 

 

Fig. 13. Simulated (full lines) and experimental (white circles) eye diagrams for (a) rS = 2.2 
dB, (b) rS = 5.1 dB, and (c)  rS = 6.9 dB. In all the cases rG = 5 dB. 

A very good agreement between the simulated and experimental eye diagrams is observed 

in Figs. 12 and 13 for the two values of rG used, and similar results were observed for other 

values of rG.  

The eye diagrams for the quaternary signal that propagated through 75 km of standard 
fiber are shown in Fig. 14. The agreement between experimental eye diagrams and 
numerical results is also very good. The experimental BERs are lower than 10-13 and 10-11 
before and after transmission, respectively. In principle, it is possible to improve such 
values by using a narrower optical band-pass filter or by increasing the quaternary signal 
average power. Table 1 presents estimations for the BERs before and after propagation by 
using Eqs. (29). 

 

 Before Propagation After Propagation 

 Experiment Simulation Experiment Simulation 

P
BER  1.1x10-14 1.7x10-14 7.4x10-12 3.2x10-12 

S
BER  8.0x10-14 4.8x10-14 7.6x10-12 2.8x10-11 

Table 1. BER estimation before and after fiber propagation. 
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Fig. 14. Simulated (full lines) and experimental (white circles) eye diagrams: (a) before 
propagation, (b) after a 75 km standard fiber propagation. rP = 0.86 dB (rG   2.5 dB), rS = 4.4 
dB. 

The recovery of the original binary information from the quaternary-amplitude signal can 
also be performed optically by using some known techniques (Oda & Maruta, 2006), or by 
developing especial optical devices with the S- and U-shaped transfer functions (Fagotto & 
Abbade, 2010).  

4. All-optical generation of ternary amplitude-shift keying signals 

In the previous section we showed how to multiplex two 2-ASK signals into a single 4-ASK 
one. To perform such operation, it was necessary to provide a power offset to both input 
binary signals. As a result, the lowest level power of the  of the 4-ASK signal was not null, 
which degrades the signal BER performance.  

In this section, we discuss two other techniques that multiplex two binary signals and 
generate a 3-ASK signal rather than a 4-ASK one. The first one, OAM-3F, is based on FWM; 
it requires a power offset on just one of the input binary signals. The second, OAM-3P, 
utilizes PA and holds for two OOK input binary signals. For the same average power, 
ternary-amplitude signals present lower BERs than quaternary ones. Besides, the 3-ASK 
signal lowest power level is null for both techniques; this also contributes to reduce the BER 
of the multiplexed signal and it is an important advantage for the techniques presented here. 
However, recovering information relative to two binary signals from a single ternary one 
requires the use of some special signal characteristics. All of these aspects are detailed 
below. 

4.1 Optical amplitude multiplexing through fiber four-wave mixing 

4.1.1 Theory 

The notation employed here is the same utilized in Section 3.1. The principle of OAM-3F is 
illustrated in Fig. 15a. Two co-polarized OOK signals at ǚ1 and ǚ2 are coupled and 
propagated through an optical fiber with nonlinear and dispersion parameters appropriate 

for favoring FWM; however, it is assumed that the signal at ǚ2 is an OOK, so  0
2 0 0P  .  
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Fig. 15. Scheme illustrating the principle of operation of OAM-3F. 

The OBPF is centered at ǚ+; therefore, when the signal at ǚ1 conveys a bit i (= “0” or “1”) and 
the signal at f2 carries a bit j (= “0” or “1”), the signal at the fiber output presents the 
following four power levels, 

out

ijP


: 

    00 0 0 2
1 20 0 0

out
P k P P

       (35a) 

    10 1 0 2
1 20 0 0

out
P k P P

       (35b) 

    01 0 1 2
1 20 0

out
P k P P

       (35c) 

    11 1 1 2
1 20 0

out
P k P P

       (35d) 

Since 00 10 0
out out

P P
 
  , the output signal now is a 3-ASK one. Recovering information 

transmitted by the ǚ2 signal from the generated ternary amplitude signal is a 

straightforward task. If one detects power levels corrspeonding to 01
out

P


or 11
out

P


, the signal at 

f2 clearly transmits a bit “1”; otherwise it transmits a bit “0”. This may be promptly verified 

by inspecting Fig. 15a or Eqs. (35).  

On the other hand, recovering the pump information from the generated ternary amplitude 

signal is, in principle, not possible because 00 10
out out

P P
 
 . This power level ambiguity implies 
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that when the lowest (null) power level is detected, the signal at f1 may either convey a “0” or a 
“1”-bit. However, it is possible to solve this problem if the following assumptions are made: 

a. The line code used by the signal at ǚ2 guarantees a maximum of (N-1) bits 0 in a row, i.e. 

in a sequence of N bits there is at least one bit “1”. In fact, this characteristic is 

implemented by most practical line codes to minimize the chance of the receiver loosing 

synchronism to the transmitter. For example, the line code utilized in Gigabit Ethernet 

standard, called 8B/10B, assures that no bit sequence presents more than four bits “0” 

in a row of ten bits;  

b. the signal bit rate at ǚ2, Rb2, is higher than the signal bit rate at ǚ1, Rb1: 

 2 1b bR NR , (36) 

where N is the same integer number considered in assumption (a), and  

c. to recover information conveyed by the signal at ǚ1, such a signal is oversampled at a 

rate Rb2. Because of (b), this oversampling process establishes that N samples of the 

signal at ǚ1 are obtained for each of its bits. However, following (a), at least in one of 

these samples, the signal at ǚ2 shall transmit a “1”-bit. Therefore, the detection rules for 

the signal at ǚ1 are the following. In a sequence of N samples: 

i. if only power levels 11
out

P


 and 00
out

P


are detected, then the signal at ǚ1 sent a “1-bit”; 

ii. if only power levels 01
out

P


and 00
out

P


are detected, then the signal at ǚ1 sent a “0-bit”; 

iii. if any other combination of power levels is detected, then there is an error and 

information should be discarded. 

The detection rules just described may be verified by simple inspection of Fig. 15b, where 

rules (a), (b), and (c) were considered for N= 4.  

As stated before, power level optimization for optical multi-amplitude signals depends on 

the kind of the dominant noise and it is analyzed in (Walklin & Conradi, 1999). In case ASE 

noise is dominant, such optimal distribution must follow a quadratic law; for a ternary-

amplitude signal, this means that power levels must be distributed following proportions of 

0: 1: 4. Eqs. (35d) show that such distribution may be easily obtained by setting: 

 
 
 

11 1
1

101 0
1

0
4

0

out

out

P P
r

P P





    (37) 

Therefore, power level optmization may be easily achieved when using this technique. In 

fact, OAM-3F is able to generate 3-ASK signals with arbitrary power level distributions, by 

solely setting the ER of the signal at ǚ1.  

After inspecting Fig. 15b and following a reasoning similar to the one considered in Section 

3.1, it is easy to conclude that: 

 01 00
2

01 00

i i
BER Q

 
 

  
 

 (38a) 
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To estimate BER1, we assume that an EDC, such as the one illustrated in Fig. 2, is 
programmed to decide which bit was sent by the signal at ǚ1 based only on the first non-null 
sample of the acquired N samples (assumption (c) above). In this case, the EDC interprets 
that the signal ǚ1 sent a ‘0’-bit or ‘1’-bit when, respectively, the intermediate or the highest 
power level is detected. In this case, one can write: 

           1

01 10 01 10 11 01 11 01

01 10 01 10 11 01 11 01

01 10 11 01

01 10 11 01

|' ' ' ' |' ' ' ' |' ' ' '

1 1 1 1

2 2 4 4

1

2

BER P l P l P i P i P h P h

i i i i i i i i
Q Q Q Q

i i i i
Q Q

  

       

   

  

           
              

            
     

     
      

 (38b) 

where ‘l’, ‘i’, and ‘h’ stand, respectively, for the lowest, intermediate, and highest amplitude 
levels,  P x  is the probability of occurrence of level x (x= ‘l’, ‘i’, and ‘h’), and  |P x  is the 
conditional probabylity that an error occurs given that level x (x= ‘l’, ‘i’, and ‘h’) is detected. 

Although the theory presented above was derived for a signal with finite ER at ǚ1 and an 
OOK signal at ǚ2, the proposed technique could also be applied for an OOK signal at ǚ1 and 
a signal with finite ER at ǚ2. Also, the FWM component selected by the OBPF could be at ǚ-.  
Eqs. (35)-(38) should be adapted in all of the possible combinations. Nevertheless, the 
general aspects treated here, like the power level optimization would still hold. 

4.1.2 Results and discussion 

Considering the system shown in Fig. 15b, Fig. 16 presents simulation results for bit 
sequences for the (a) signal at ǚ1= 193.1 THz with r1= 2 and Rb1= 2.5 Gb/s, (b) signal at ǚ2= 
193.2 THz with Rb2= 10 Gb/s, and (c) signal at the OBPF output at ǚ+= 193.3 THz. Fiber 

parameters are: 0 = 1552.52 nm, S0 = 0.017 ps/nm2/km,  = 5.3 W-1km-1,  = 0.2 dB/km, and 
L= 3.0 km. The signal observed in Fig. 16c clearly represents a ternary-amplitude one. 
Moreover, the same power levels are obtained when the bits of the pump and the probe 
signals are repeated. 

 

Fig. 16. Input signals at (a) ǚ1 and (b) ǚ2 and output signal at (c) ǚ+. 
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Fig. 17 plots the eye diagrams for the ternary-amplitude signals with average power of 1 

mW, for r1= (a) 2.0, (b) 4.0, and (c) 6.0. Eye-diagrams present 11 01
out out

P P
 

, respectively, of 1.9, 

3.9, and 5.8, which are in good agreement with the values predicted by the theory 

previously presented. In these simulations, ASE noise was deliberately added to the signal 

in order to provide a typical OSNR of 65 dB at the receiver. In the three presented cases,  

 

Fig. 17. Eye diagrams for r1= (a) 2, (b) 4, and (c) 5. 

BER2 is inferior to 10-15, which may be considered as error-free. BER1 achieves a maximum of 

4.6 10-12 for r1= 2.0. Such low BER values suggest OAM-3F viability in practical situations. 

The uppermost amplitude level is the noisier one; this is a consequence of FWM combining 

the noise from two “1”-bits of the input binary signals, which are more affected by ASE 

noise than the "0"-bits. 

4.2 Optical amplitude multiplexing through fiber parametric amplification 

4.2.1 Theory 

Here, we use the same notation as in Section 3.2. Fig. 18 illustrates a diagram for 

implementing OAM-3P. Two co-polarized OOK signals at optical carriers ǚP and ǚS are 

coupled and co-propagated through an optical fiber that provides the appropriate 

dispersion regime and nonlinear parameter to support parametric amplification. However, 

both input signals are OOK; hence,    0 00 0 0.P SP P   It is assumed that  1 0PP  >>  1 0SP . 

In this case, three power levels are possible for the signal at ǚP at the OBPF output. The first 

one occurs when both signals transmits a “1”-bit and is given by: 

  11 1 1 0out P SP G P  (39a) 

Obviously, this corresponds to the situation where the probe signal is amplified by the 

pump. In the second case, the probe signal transmits a “1”-bit whereas the pump transmits a 

“0”-bit. In this situation, the probe signal is not amplified by the pump and, assuming low 

fiber dispersion, it is solely attenuated by the fiber. In this situation, the power at the OBPF 

output is: 

  01 1 0 L
out SP P e   (39b) 
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Fig. 18. Scheme for 3-ASK generation (k with k = P, S, i representing the angular 

frequencies of the pump, the signal and the idler, and 0 = 2c/λ0, where 0 is the zero 
dispersion wavelength of the fiber). 

Finally, the third case corresponds to the one where the probe signal transmits a “0”-bit. 
Then, no matter the bit set by the pump, the power at the OBPF output will be null: 

 00 10 0out outP P   (39c) 

We have already treated a situation where information from two input binary signals need 
to be recovered from a ternary-amplitude one in the previous sub-section. In fact, here we 
may apply the same reasoning used in Section 4.1. Particularly, the detection rule for 
recovering information of the signal at ǚS from the photo-detected ternary-amplitude signal 
is the same considered for the signal at ǚ2 in Section 4.1. So, it is interpreted that the signal at 

ǚS transmits a bit “1” if  the power levels corresponding to 01
out

P or 11
out

P are detected and that 

it transmits a bit “0” if a null power is received. 

Because of the ambiguity expressed by (39c), recovering the signal information at ǚP from 
the photodetected ternary-amplitude requires the use of assumptions equivalent to the ones 
utilized in Section 4.1:  

a. the line code used by the signal at ǚS guarantees a sequence of N bits contains at least 
one bit “1”.  

b. the bit rate of the signal at ǚS, RbS, is related to the bit rate of the signal at ǚP, RbP by: 

 bS bPR NR , (40) 

c. the signal at ǚP is oversampled at a rate RbS and the following detection rules are used: 

i. if only power levels 11
out

P  and 00
out

P are detected, then the signal at ǚP sent a “1-bit”; 

ii. if only power levels 11
out

P  and 00
out

P are detected, then the signal at ǚP sent a “0-bit”; 

iii. if any other combination of power levels is detected, then there is an error and 
information should be discarded. 
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Due to the similarities between the ternary-amplitude signals generated by OAM-3F and 
OAM-3P, it is also possible to write the bit error rates associated to the signals at ǚS and ǚP, 
respectively, as:  

 01 00

01 00
S

i i
BER Q

 
 

  
 

 (41a) 

 01 10 11 01

01 10 11 01

1

2
P

i i i i
BER Q Q

   
     

     
      

 (41b) 

It should be observed that, as OAM-3S, OAM-3P also offers arbitrary power level 

distribution. In fact, since 00 0
out

P  the ratio between the two other power levels may be 

regulated by simply setting 1
PG . This may be easily verified by dividing (55a) by (55b): 

 
11

1
01

Lout
P

out

P
G e

P

  (42) 

Thanks to this characteristic, power level distribution of ternary-amplitude signals generated 
by OAM-3P may be set to minimize BER under the dominance of any kind of noise. 

4.2.2 Results and discussion 

Fig. 19 illustrates an experimental setup utilized for generating 3-ASK signals through 
OAM-3P with N= 4. Pump consists of a modulated signal at fP= 192.3 THz. It is phase-
modulated by radio-frequencies of 601 and 983 MHz to prevent the deletrious effects of 
Brillouin backscattering. This pump is further amplified and filtered in such a way that its 
power at the fiber input can be varied from 9.3 to 10.8 dBm. A 215-1 pseudo-random bit 
sequence (PRBS) externally modulates a cw at fS= 193.2 with RbS= 1.0 Gb/s. Its power at the 
fiber output is of -19 dBm. The highly nonlinear dispersion-shifted fiber (HNL-DSF) is 

characterized by 0 = 1555.4 nm, Δ0 = 10 nm, S0 = 0.017 ps/nm2/km,  = 9.1 W-1km-1,  = 
0.83 dB/km, and L= 3.0 km. Signals at fiber output are filtered, amplified and filtered again. 
Both filters are centered at fS. The 3-ASK signal at fS is then either analyzed by a DSA or 
transmitted through a 40-km long SMF link in KyaTera Network (FAPESP, (n.d.)). 

 

Fig. 19. Experimental setup. 
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In this second situation, the signal is further amplified, filtered and goes through a dynamic 
polarization controller (DPC) before being analyzed by the DSA. The DPC ensures the 
output signal state of polarization (SOP) will be the same, no matter its input SOP. This is 
important because the utilized link uses aerial cables that frequently introduces SOP 
changes due to environmental condition variations. Signal spectra at the (a) HNL-DSF 
output and (b) at the OBPF3 output, for an OSNR of ~31 dB, are shown in Fig. 20. 

Fig. 21 plots bit sequences for the signals at (a) fP and (b) fS, and (c) for the correspondent 
generated OAM-3P. It is clearly verified that the signal in Fig. 21c represents a ternary-
amplitude one. Moreover, as with the other presented techniques, the same power levels are 
obtained when the bits of the input binary signals are repeated. 

  

Fig. 20. Power spectra at the (a) HNL-DSF output and (b) OBPF3 output. 

 

Fig. 21. Binary sequences (a) Pump (b) Signal (c) Ternary Amplitude Optical Signal for r=2.5. 

Finally, Fig. 22 presents eye-diagrams for ternary-amplitude signals before and after 

network propagation with 11 01
out outP P = 3.0, 3.5, and 4.0. Such values were obtained by 

varying the pump power, i.e., by controlling the parametric gain provided by the modulated 

pump. Using (41) we find that the lowest BERs are obtained for 11 01
out outP P = 2.0 and BERS= 

3.5 10-15 and BERP= 4.7 10-14. These low values, show that the technique may be properly 
applied to practical applications. 
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Fig. 22. Eye diagrams of ternary-amplitude signals after 40 km for 11 01
out outP P = (a) 3.0, (b) 3.5, 

and (c) 4.0. 

5. Applications and comparisons 

In Sections 3 and 4 we have presented four techniques that convert two input binary signals 
into either a 4-ASK or a 3-ASK one. Due to the fast response of parametric interaction in 
fibers, all of these techniques are bit-rate independet for practical bit rates. Futhermore, all of 
them are able to transmit information from both input signals simultaneously and in the 
same bandwidth. Therefore, they could be used, for instance, to multiplex data from two 
different wavelengths into a single one, which results in bandwidth savings (Abbade et al., 
2005).  

Another possible application is to use one of the input signals to introduce a label to the 
second one. This optical labeling operation is illustrated in Fig. 23 and would be useful 
when binary data is entering the domain of an optical packet switching network (OPSN) 
and needs to be converted to an optical packet (Abbade et al., 2006a; Abbade et al., 2010a).  

 

Fig. 23. Optical labeling application 
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Yet another possible application is to use OAM-4F and OAM-4P in several stages in a way 
that binary signals are successively converted into an analog signal (Abbade et al., 2010a). 
For example, OAM-4F could be used to multiplex two binary signals into a quaternary one, 
which could be combined to another binary signal into an octary one and so on, until the 
number of levels is high enough to make the signal resemble an analog one.  

In spite of being employed to the same applications and utilizing very similar setups, there 
are marked differences among the analyzed techniques. Some of them have already been 
mentioned; here, it is interesting to summarize them and present some further distinctions. 

One of these is that two of the considered techniques, OAM-4F and OAM-4P, generate 4-
ASK signals and the other two, OAM-3F and OAM-3P, produce 3-ASK signals. Both of these 
modulation formats are advantageous over OOK modulation because they provide higher 
tolerance to chromatic dispersion degradations. The considered 3-ASK signals present lower 
BERs than the 4-ASK not only because their number of levels is smaller, but also because 
their lowest level has null power. In fact, the power level distribution of these 3-ASK signals 
may be arbitrarily set, which does not happen for the considered 4-ASK signals. OAM-3P 
still has the advantage of not needing any power offset for its input binary signals, i.e., it can 
operate with conventional OOK input signals. 

On the other hand, OAM-3F and OAM-3P only work under some special conditions, which 
comprises restrictions to the input signals line codes and bit rates and also demands 
oversampling the output signal to recover information transmitted by the pump signal. This 
makes OAM-3F and OAM-3P more suitable for the optical labeling application, where label 
bit rate is typically inferior to that of payload (otherwise, packet overhead could be very 
high). By their turn, OAM-4F and OAM-4P are independent of the utilized line codes and bit 
rates. 

Since the techniques based on FWM, OAM-4F and OAM-3F, do not need a pump to 
transfer power to another signal, they may be accomplished by utilizing lower powers 
than OAM-4P and OAM-3P require. In fact, the average power of the input signals in 
experiments of OAM-4F were around ~12 dBm (Abbade et al., 2006b), whereas for the 
OAM-4P setup an average pump power as high as 20 dBm was necessary (Abbade et al., 
2010b). With such high powers, Brillouin backscattering becomes relevant; thus, the 
experimental setup of OAM-4P and OAM-3P needs some additional equipment to reduce 
the influence of this effect and becomes more complex than the setup utilized by the other 
two techniques. In particular, if phase modulators and RF generators are used to prevent 
Brillouin backscattering, then phase noise may cause further degradations to the 
generated signal. However, in spite of these drawbacks and in opposition to FWM, PA 
does not broaden the linewidth of the generated signal. Therefore, if no measures are 
taken to compensate dispersion, the multi-amplitude signals generated by OAM-4P and 
OAM-3P can propagate through longer distances than the ones produced by OAM-4F and 
OAM-3F. 

Another important advantage for OAM-4P and OAM-3P techniques is that the generated 

multi-amplitude signal is at the same wavelength as one of its inputs. This does not occur 

with OAM-4F and OAM-3F strategies, where it is necessary to know the spacing between 

the input signals frequencies to set the filter that will select the output signal. Table 2 

summarizes the most important differences commented above. 
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Technique One of the 
Input 

Channels need 
a higher bit-

rate 

One of the 
Input 

Channels need 
a higher 
power 

Number of 
Input 

Channels 
with power 

off-set 

Output at a 
new 

wavelength

Output 
with 

broadened 
linewidth

Output Signal 
with Arbitrary 
Power Level 
Distribution 

Output 
Signal 
BER 

OAM-4F No No 2 Yes Yes No High 

OAM-4P No Yes 1 or 2 No No No High 

OAM-3F Yes No 1 Yes Yes Yes Low 

OAM-3P Yes Yes 0 No No Yes Low 

Table 2. Comparison among the presented techniques. 

6. Conclusion 

The utility of optical fibers goes far beyond simple transmission in Optical Communication 
systems. In this work we have considered fiber applications to the very promising field of 
all-optical digital signal processing. Particularly, we focused on four techniques that allow 
the conversion of input binary signals into ternary- or quaternary-amplitude ones. Three of 
these techniques had already been analyzed in other reports; OAM-3F was, however, 
proposed and analyzed here for the first time.  

Although we considered solely the generation of multi-amplitude signals, some 
modifications on the presented techniques could allow for optical phase multiplexing, as 
well. For example, in (Zhou et al., 2006) OAM-4F was adapted to merge two differential 
phase-shift keying signals into a single differential quadrature phase-shift keying one. 
Finally, it should be noted that the techniques discussed here could, in principle, be 
extended to any other nonlinear material that supports FWM and PA, such as 
semiconductor optical amplifiers and silicon chips. The latter is of special importance 
because it would allow the aforementioned applications to be performed in chip-to-chip 
communications, in the emerging field of silicon photonics.  
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