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1. Introduction 

During the past two decades, a striking increase in the number of people with metabolic 

syndrome has taken place worldwide. With the increased risk worldwide of not only type 2 

diabetes mellitus (T2DM), but also of cardiovascular disease from the metabolic syndrome, 

there is an urgent need for strategies to prevent the emerging global epidemic (1-4). Insulin-

mediated glucose metabolism varies widely in healthy human beings, and the more insulin 

resistant an individual, the more insulin they must secrete in order to prevent the 

development of T2DM. However, the combination of insulin resistance and compensatory 

hyperinsulinemia increases the likelihood that an individual will be hypertensive, and have 

a dyslipidemia characterized by a high plasma triglyceride (TG) and low high-density 

lipoprotein cholesterol (HDL-C) concentration. Given the rapid increase in the number of 

clinical syndromes and abnormalities associated with insulin resistance/hyperinsulinemia, 

it is reasonable to suggest, that the cluster of these changes related to the defect in insulin 

action be included within the term, insulin resistant syndrome.  

Under physiological conditions, insulin in the heart is for the regulation of the substrate 

employed in the contraction/ relaxation cycle and cell growth (5-9). Decreased insulin 

sensitivity reduces cardiac performance leading to left ventricular hypertrophy, diastolic 

dysfunction, and heart failure (10-12). Several mechanisms are known to contribute to the 

myocardial dysfunction including, reduced energy production due to decreased 

mitochondrial respiration and pyruvate dehydrogenase activity, oxidative stress, defective 

cardiac contractility, and intracellular Ca2+ regulatory proteins such as myosin, titin, 

sarcoendoplasmic reticulum Ca2+-ATPase (SERCA), phospholamban, and Na+-Ca2+ 

exchanger (13, 14). The high incidence of cardiac problems in patients with metabolic 

syndrome warrants a more stringent clinical management. Although a wide variety of 

pharmacological targets and agents have been discovered, the clinical management of 

cardiovascular risk associated with metabolic syndrome is still dismal. 

2. Diabetic cardiomyopathy 

It has been reported that diabetic patients suffer from heart failure with normal coronary 
arteries and with no other obvious aetiology for heart failure (3, 4). This phenomenon has 
led to the use of the term “diabetic cardiomyopathy” (DCM). The term now includes 
diabetic individuals with diastolic dysfunction, the prevalence of which may be as high as 
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60% in well-controlled T2DM individuals (12, 15). Thereby, subclinical left ventricular 
dysfunction may be a very common feature in diabetes, in addition to the increased 
prevalence of coronary heart disease (16-21). In experimental rodent models, myocardial 
contractile dysfunction independent of coronary artery disease has also been demonstrated 
in db/db, ob/ob, and Zucker rodent models, supporting the existence of an obesity-related 
cardiomyopathy and a diabetic cardiomyopathy (3, 22). In addition, mice with a selective 
cardiomyocyte only deletion of the insulin receptor (CIRKO mice) have reduced insulin-
stimulated glucose uptake and also have a modest decrease in contractile function, thereby 
implicating insulin resistance as a contributing factor in the development of contractile 
dysfunction in the metabolic syndrome (23, 24).  

3. Metabolic disturbances and cardiomyopathy 

It is well recognized that insulin regulates the critical steps in intermediary metabolism of 

many tissues (including skeletal muscle, adipose tissue, and liver) and consequently 

maintains metabolic homeostasis within the body. However, many other tissues including 

the heart also express insulin receptors and their important functions may be regulated by 

insulin. Insulin resistance is an important risk factor for the development of hypertension, 

atherosclerotic heart disease, left ventricular hypertrophy and dysfunction, and heart 

failure. It reflects a disturbance of insulin-mediated glucose metabolism and can potentially 

worsen metabolic efficiency of both skeletal and cardiac muscle. Recently, the relationship 

between insulin resistance and cardiac contractile dysfunction has been investigated by 

generating a new insulin resistant animal rat model on a high cholesterol-fructose (HCF) 

diet. The HCF diet-induced insulin resistance not only occurred in metabolic-response 

tissues but also in the heart as well. These results indicate cardiac insulin resistance-

associated metabolic alterations may consequently lead to the development of 

cardiomyopathy and contractile dysfunction (25). 

Diabetes causes metabolic dysregulation and contains numerous risk factors which are 

associated with cardiomyopathy and heart failure. Extensive cellular and molecular studies 

have elucidated putative process of metabolic disturbances in the pathogenesis of cardiac 

dysfunction in diabetes (Table.1) (26). The metabolic disturbances in the development of 

cardiomyopathy are listed below.  

3.1 Increased triglycerides (TG) and nonesterified fatty acids (NEFAs) 
Hyperlipidemia is one of the features of obesity induced T2DM. When circulating 

NEFAs are greater than the oxidative capacity of the heart, NEFAs are stored as 

intramyocardial triglycerides. Both NEFAs and TG contribute to cardiac lipotoxicity and 

worsened heart failure (27-32). High levels of circulating NEFAs promote insulin 

resistance by impairment of insulin-Akt activation and compensatory hyperinsulinemia 

(27, 33-36). NEFAs also induce the activation of atypical protein kinase C (PKC)θ, which 

is a serine/threonine kinase that phosphorylates and subsequently activates IB kinase. 

Then IB kinase phosphorylates insulin receptor substrate-1 (IRS-1) serine residues 

which inhibit the ability of IRS-1 to bind to SH2 domains of the p85 regulatory subunit of 

phosphatidylinositol 3-kinase (PI3K), and consequently impair insulin signal 

transduction (36). NEFAs not only trigger the development of cardiac insulin resistance 

but also lead to the development of myocardial contractile dysfunction. NEFAs can 
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directly alter myocardial contractility by increasing NEFA flux into the myocardium. A 

recent study suggests that increasing the entry of fatty acyl coenzyme A (CoA) into the 

cardiomyocytes may modulate the KATP channel opening during the contractile state of 

the myocardium (37). Activation of KATP channel contributes to shortening of the action 

potential and decreases trans-sarcolemmal calcium flux and subsequent myocardial 

contractility (37). 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Table 1. The relationship between diabetic metabolic disturbances (triggers) and the 
mediators, effectors, and intracellular targets that lead to a diabetic cardiomyopathic 
phenotype. (Modified from Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: 
the search for a unifying hypothesis. Circ Res. 2006; 98: 596-605.) 
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3.2 Hyperglycemia 
Hyperglycemia leads to increasing glucose oxidation. Brownlee and colleagues have 
elucidated that hyperglycemia generates reactive oxygen species (ROS) and consequently 
mediates tissue injury (38, 39). In fact, mitochondria generate high levels of ROS which lead 
to damage of DNA and inhibit the activity of glyceraldehyde phosphate dehydrogenase 
(GAPDH) (39, 40). On the other hand, hyperglycemia also shifts the glucose glycolytic 
pathway into alternative pathways that are considered mediators of hyperglycemia induced 
cellular injury (26). The damage resulting from hyperglycemia includes elevation of 
advanced glycation end products (AGEs), hexosamine and polyol pathway, activation of 
beta 2 isoform PKC and alteration of myocardial structure and function (41-47). In addition, 
it has been suggested that hyperglycemia is linked to altering the expression and function of 
both the ryanodine receptor (RyR) and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), 
and this alteration may contribute to impair myocardial systolic and diastolic function (26). 

3.3 Insulin resistance and hyperinsulinemia 
Insulin resistance is prevalent in chronic heart failure patients with idiopathic dilated 
cardiomyopathy (12, 48). Furthermore, insulin resistance is a primary etiology factor in the 
development of nonischemic heart failure (HF) (49). The cardiac insulin action and how insulin 
resistance leads to the development of cardiomyopathy are discussed in detail below. 

4. The cardiac action of insulin 

The heart is an energy-consuming organ that requires a constant supply of fuel and oxygen 

in order to maintain its intracellular ATP level, which is essential for the uninterrupted 

myocardial contraction/relaxation cycle. Oxidation of fatty acids supplies approximately 

70% of the heart’s energy needs, while glucose and lactate may account for up to 30% of 

total ATP production. The energy requirements of the heart could be covered for a short 

period by the breakdown of intracellular stored glycogen and lipid droplets, but a longer 

duration would rely on the uptake of exogenous glucose and long chain fatty acid (LCFA). 

Circulating insulin and increased contractile activity are the two major signals responsible 

for acute increases in cardiac substrate uptake, enabled by inducing transporter 

translocation from intracellular stores to the sarcolemma (Fig.1) (5). 

Under normal physiological conditions, the main role of insulin on the heart is the regulation 

of substrate utilization. Insulin regulates cardiac metabolism by modulating glucose and fatty 

acid transport, glycolysis, glycogen synthesis, lipid metabolism, protein synthesis, growth, 

contractility, and apoptosis in the cardiomyocytes (5). The actions of insulin are mediated by 

binding to specific cell surface receptors (insulin receptor, InsR). Each cardiomyocyte is 

expressed at levels of about 10,000 to 100,000 receptors of InsR. The InsR is a tetrameric 

enzyme comprising two extracellular -subunits and two transmembrane -subunits (5). The 

binding of insulin to the extracellular domain of InsR triggers the activation of intrinsic 

tyrosine kinase activity of the -subunits of the receptor. This leads to an 

autotransphosphorylation of the receptor where one -subunit phosphorylates the other on 

several tyrosine residues. Once activated and phosphorylated, InsR binds via its 

phosphotyrosine residues and phosphorylates a series of downstream elements, including the 

insulin receptor substrate (IRS) family and Shc (5, 50). This recruitment and activation lead to 

the activation of two main pathways, the phosphatidylinositol 3-kinase (PI3K) and the 
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mitogen-activated protein kinase (MAPK) pathway respectively. PI3K is considered to be the 

main player of the metabolic action of insulin, whereas the MAPK pathway is principally 

involved in cell growth and differentiation in the heart (Fig.2) (50, 51).  

 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 1. Cardiac metabolism under control (A) and insulin (B) conditions. Under control 

conditions, ATP production comes from fatty acids and glucose oxidation. Fatty acid is the 

privileged substrate used by the heart, the -oxidation inhibiting glucose oxidation via the 

Randle cycle. When glucose and insulin plasma levels increase, glucose becomes the main 

energy-providing substrate. Indeed, insulin induces Glut4 translocation and PFK-2 

activation, leading to the concomitant stimulation of glucose uptake and glycolysis. 

(Modified from Bertrand L, Horman S, Beauloye C, Vanoverschelde JL. Insulin signalling in 

the heart. Cardiovasc Res. 2008; 79: 238-248.) 
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Fig. 2. Signal transduction in insulin action. The insulin receptor is a tyrosine kinase that 

undergoes autophosphorylation, and catalyses the phosphorylation of cellular proteins such 

as members of the IRS family, Shc, and Cbl. These pathways act in a concerted fashion to 

coordinate the regulation of vesicle trafficking, protein synthesis, enzyme activation and 

inactivation, and gene expression, which results in the regulation of glucose, lipid, and 

protein metabolism. (Modified from Saltiel AR, Kahn CR. Insulin signalling and the 

regulation of glucose and lipid metabolism. Nature. 2001; 414: 799-806.) 

Insulin mediation of glucose uptake depends on the presence of glucose transporters (Gluts) 

at the plasma membrane. Glut1 and Glut4 are the two glucose transporters expressed in the 

heart; however, Glut4 is considered to be the main contributor for the insulin stimulated 

glucose uptake (52, 53). The role of the PI3K/PKB/Akt-signalling in the insulin-stimulated 

Glut4 translocation has been well established (54). Insulin not only stimulates glucose 

uptake, it also induces LCFA uptake in cardiomyocytes (55, 56). Insulin stimulates LCFA 

uptake by translocation of LCFA transporter (FAT/CD36) to the plasma membrane in the 

cardiomyocytes (57, 58).  

Insulin also promotes protein synthesis by phosphorylation and dephosphorylation of 
several translational factors and ribosomal proteins through PI3K/AKT/mTOR pathway 
(59, 60). Activation of mTOR mainly regulates two translational factors which are 4E-
binding protein-1 (4E-BP1) and the p70 ribosomal S6 protein kinase (p70S6K). 
Additionally, PKB/AKT also regulates GSK-3 and the forkhead transcription factor 
(FOXO) family, participating in the modulation of protein translation and promoting the 
atrogene transcriptional program (61). In addition to affecting energy metabolism, Akt 
activation also modulates several cellular functions which inhibit apoptosis, stimulate 

www.intechopen.com



 
Insulin Resistance and Cardiomyopathy 

 

519 

myocyte hypertrophy/fibrosis, and enhance nitric oxide production. Therefore, an absent 
insulin response can lead to less nitric oxide production, more apoptosis, and alterations 
in myocardial structure (62-65). Fig.3 elucidates the multiple biological functions of 
PKB/Akt (63). 
 
 

 
 

Fig. 3. Central role of protein kinase B (PKB)/Akt in multiple cellular responses. PKB/Akt 
control numerous of key cellular events. (Modified from Brazil DP, Hemmings BA. Ten years 
of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci. 2001; 26: 657-664.) 

5. Insulin resistance induced cardiomyopathy 

Insulin resistance describes an impaired biological response to insulin, and in the early stages, 
the plasma insulin level is increased. Although the increased insulin level may compensate for 
resistance to some biological actions of insulin, it may result in overexpression of actions in 
tissues that retain normal or slightly impaired sensitivity to insulin. In general, insulin 
resistance can be due to a prereceptor, receptor, or postreceptor abnormality (66). The insulin 
resistance induced cardiomyopathy may contain the following features.  

5.1 Hypertension 
Clinical studies reveal that insulin resistance and hyperinsulinemia is related to 
hypertension (67, 68). Mechanisms for the development of hypertension in insulin resistance 
and hyperinsulinemia include activation of the sympathetic nervous system, renal sodium 
retention, transmembrane cation transport alteration, growth-promoting effects of vascular 
smooth muscle cells, and vascular hyperreactivity (66, 69, 70). Fig. 4 is a schematic 
representation of the hypothetical relationships between obesity, insulin resistance, and 
hypertension (70). 
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Fig. 4. Multiple role of insulin resistance to hypertension. Insulin resistance as a physiologic 

mechanism to restore energy balance, activate sympathetic stimulation, and leading to 

hypertension. The steady-state hyperinsulinemia, acting at the level of the kidney, and the 

consequent sympathetic stimulation of the vasculature, heart, and kidneys result in 

hypertension. Plus signs denote positive or stimulatory effects, the minus sign a negative or 

inhibitory effect, and the dotted line the direct effects of food on insulin resistance and 

metabolic rate. (Modified from Reaven GM, Lithell H, Landsberg L. Hypertension and 

associated metabolic abnormalities--the role of insulin resistance and the sympathoadrenal 

system. N Engl J Med. 1996; 334: 374-381.) 

5.2 Ventricular hypertrophy 
Previous studies have demonstrated that left ventricular hypertrophy and heart failure may 
be associated with insulin resistance (71-73). Insulin and insulin growth factor-1 (IGF-1) may 
exert a direct growth-promoting effect on cardiomyocytes (74, 75) and lead to 
cardiomyocyte hypertrophy. On the other hand, diabetes and insulin resistance are a 
disorder of metabolic regulation. Many acute metabolic changes alter the cellular signal 
transduction cascades and are believed to be involved in the adaptation of the heart to 
changes in its environment. PI3K, PKC and Ca2+, all play a role in cardiac adaptation to 
regulate metabolism in the heart (76). Adrenergic activation induced hypertension may also 
stimulate pressure overload hypertrophy as an adaptation process (77).  
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5.3 Dilated cardiomyopathy and heart failure 
Many studies have confirmed a strong correlation between nonischemic cardiomyopathy 
and diabetes, with a dramatically increased prevalence of diabetes in the dilated 
cardiomyopathy population (78). Additionally, abnormal glucose tolerance and insulin 
resistance in patients with idiopathic dilated cardiomyopathy (IDCM) has been described 
(49, 79). It is almost clear that insulin resistance itself is not enough to trigger dilated 
cardiomyopathy as the majority of patients with insulin resistance do not develop dilated 
cardiomyopathy. Insulin resistance is more likely to create an abnormal environment, rather 
than causing another stressor (e.g., pressure/volume overload, metabolic inbalance, energy 
defect or decreased perfusion). Insulin resistance makes the heart unable to maintain 
homeostasis of its energy and function, which may favor the development of 
cardiomyopathy and heart failure (45, 80, 81). Fig. 5 shows the relationships/mechanism 
between insulin resistance and heart failure (49).  

5.4 Cardiac mitochondria abnormalities and ROS elevation 
ROS is the one-electron reduction of O2 to superoxide by nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase, which contributes to ROS generation, especially in chronic 
pathological states (82, 83). Mitochondria provide another significant source of 
cardiomyocyte ROS, particularly under acute stress. Insulin resistance impaired 
mitochondrial biogenesis and oxidative phosphorylation, is associated with myocardial 
dysfunction (84). Insulin resistance-induced hyperglycemia also directly enhances ROS 
generation and protein damage which leads to mitochondrial apoptosis and degradation 
(84). In addition, activation of the renin angiotensin aldosterone system (RAAS) is associated 
with increasing oxidative stress (85). The oxidative stress can impair glucose 
transport/utilization as well as mitochondrial ATP generation and intracellular Ca2+ 
regulatory proteins. Abnormalities in Ca2+ signaling/flux and myofilament functions, 
contribute to the cardiomyopathy changes and defective cardiac contractile function (86-87). 
In the 1980s, Przyklenk K et al. demonstrated that superoxide dismutase (SOD) plus catalase 
improve myocardial contractile function in the canine model (88). A recent study also points 
out that cardiac overexpression of catalase rescues insulin resistance induced myocardial 
contractile dysfunction (89).  
 

 

Fig. 5. Relationships/mechanism between insulin resistance to heart failure. ( Modified from 
Witteles RM, Fowler MB. Insulin-resistant cardiomyopathy clinical evidence, mechanisms, 
and treatment options. J Am Coll Cardiol. 2008; 51: 93-102.) 
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6. Animal models for diabetic or insulin resistant cardiomyopathy 

The impairment of glucose uptake, glycolysis, and pyruvate oxidation has been observed in 
both, types 1 and type 2 diabetes. In addition, attenuation of insulin function augments 
lipolysis and increases FFA release from adipose tissue. These abnormalities play a crucial 
role in the development of cardiomyopathy. Recently, several diabetic and insulin resistant 
animal models which include chemical (STZ-diabetes), genetic defect (ob/ob and db/db mice 
and Zucker diabetic fatty rats), and western diets (high fat, high fructose, high cholesterol, 
and high choleserol with fructose diets) diabetic induced animals, have been used to 
elucidate the pathophysiological processes of insulin resistance related cardiomyopathy. 

6.1 Type 1 diabetes model 
Streptozotocin (STZ) is a chemical generating the production of ROS which damages the 

pancreas with loss of function and reduced insulin production, by triggering DNA 

fragmentation (90, 91). The STZ-diabetic animal model can be employed for assessing the 

mechanisms of insulin dependent non-obese diabetes and screening potential therapies for the 

treatment of this condition. The characteristics of STZ-diabetes-induced cardiomyopathy 

include the alteration of contractile protein synthesis, abnormality of diastolic pressure-volume 

relationships, impairment of cardiac contractility, and incomplete relaxation of the myocardium 

(92, 93-97). The STZ-induced diabetics have metabolic disturbances especially, an increased 

plasma free fatty acid concentration (98-100). Insulin treatment reverses STZ-diabetes-induced 

cardiomyopathy suggesting that insulin deficiency is the major reason leading to the 

development of diabetic cardiomyopathy but not due to a primary cardiotoxic effect of STZ (92, 

101). Resveratrol (RSV), a natural antioxidant derived from grapes, has been suggested to 

improve cardiac contractile function in STZ-diabetic rats (102). Moreover, the angiotensin II 

blocker losartan, restores cardiomyocyte functional properties in STZ-diabetic rats (103).  

6.2 Ob/ob and db/db mice model 
Obesity is closely associated with insulin resistance and serves as a major risk factor for the 

development of T2DM. Leptin or leptin receptor gene deficiency mice (ob/ob and db/db mice) 

are commonly used animal models for the study of T2DM. The ob/ob and db/db mice exhibit an 

increase of hepatic lipogenesis and gluconeogenesis resulting in increased insulin secretion by 

the pancreas due to the hyperglycemia and hyperlipidemia, which begins a vicious cycle of 

insulin resistance. Recently, contractile dysfunction independent of coronary artery disease has 

also been demonstrated in db/db and ob/ob mice, supporting the existence of an obesity-

related cardiomyopathy and a diabetic cardiomyopathy (104-108). These genetically defective 

mice show a decrease in glucose oxidation rates and an increase of FFA oxidation and 

myocardial oxygen consumption (MVO2), resulting in impaired cardiac efficiency (106, 108). 

Moreover, ob/ob hearts show a decrease in mitochondrial oxidative capacity, an increase of 

fatty acid-induced mitochondrial uncoupling, and deleterious effects on global cellular Ca2+ 

homeostasis (109, 110). As observed in STZ-diabetic rats, db/db mice also have excessive ROS 

generation, which causes cardiomyocyte damage and augmentation of apoptosis (110, 111). 

6.3 Zucker diabetic fatty rat (ZDF rat) 
The Zucker rat (leptin receptor gene deficient) was bred to be a genetic model for research in 
obesity and hypertension, and T2DM. Obese Zucker rats exhibit hyperlipidemia, 
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hypercholesterolemia, and insulin resistance. The cardiac contractile functions and 
carbohydrate oxidation rates are reduced and fatty acid utilization is increased in the Zucker 
rat heart (28, 112-115). In contrast, several studies indicate that Zucker rats display insulin 
resistance without overt signs of diabetes (hyperglycemia and hyperlipidemia). These rats 
also show a normoglycemia phenomenon and absence of significant cardiac contractile 
dysfunction (116,117). Taken together, the genetic defect (leptin or leptin receptor)-induced 
cardiomyopathy may include several characteristics which contribute to impair myocardial 
contractility in diabetes mellitus. These are: (a) disturbance of substrate metabolism, (b) 
impairment of calcium homeostasis, (c) increased oxidative stress, (d) upregulation of the 
renin-angiotensin system, and (e) impairment of mitochondrial biogenesis and function (3).  

6.4 Diet induced insulin resistance and cardiomyopathy 
Based on previous reviews, it is widely accepted that disturbance of substrate metabolism is 

a key factor in the induction of insulin resistance and cardiomyopathy. Both genetic and 

environmental factors contribute to the development of metabolic abnormalities. Several 

experimental studies have demonstrated that the macronutrient composition of a diet is an 

important environmental determinant of the quality of insulin action (118, 119). High-fat 

and high-fructose intakes have been shown to contribute to conditions such as 

hyperlipidemia, glucose intolerance, hypertension, and atherosclerosis (120, 121). In 

addition, brief feeding of an excessive atherogenic diet (chow with 45% kcal from fat and 2% 

cholesterol) produces striking features of metabolic syndrome and coronary artery disease 

(122). High sugar intake is linked to an increased risk of heart disease. Simple sugars are the 

primary source of high triglycerides and very low-density lipoproteins (LDL), which are 

independent risk factors for atherosclerosis. Sugar lowers high-density lipoprotein (HDL) 

cholesterol and raises LDL cholesterol along with blood pressure. In addition, it has been 

suggested that fructose induced hyperuricemia results in endothelial dysfunction and 

insulin resistance, and might be a causal mechanism of the metabolic syndrome (123). 

6.4.1 High fat diet (HFD) 
With long term high fat intake, the response to a chronic high plasma concentration of long-
chain fatty acids is that the heart is forced to increase the uptake of fatty acid. This switch in 
metabolic substrate uptake is accompanied by an increased presence of the fatty acid 
transporter FAT / CD36 at the cardiomyocyte sarcolemma. This shifts oxidation towards FA 
rather than glucose oxidation, and results in the development of cardiac insulin resistance 
and ultimately diabetic cardiomyopathy (124). It is unquestionable that chronic feeding with 
a high fat diet causes insulin resistance. The implication is that it decreases insulin-
stimulated Akt phosphorylation, whereas cardiac basal Akt phosphorylation is elevated 
(124). HFD also causes cardiac lipotoxicity which may contribute to the development of 
diabetic cardiomyopathy (125). Additionally, hypertrophic growth and structural alterations 
in the context of disease is in the end maladaptive, because it will progress to, contractile 
dysfunction, decompensation and ultimately heart failure.  

6.4.2 High fructose diet 
High-fructose intake is shown to contribute to conditions such as hyperlipidemia, glucose 
intolerance, hypertension, and atherosclerosis (126). The preference of fructose in the 
lipogenesis pathway contributes to induce hyperlipidemia, in particular, a marked increase 
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of postprandial triglyceride (TG) concentration (Fig.6) (127-129). Fructose intake is 
associated with an increasing incidence of insulin resistance and insulin-resistant related 
hypertension and cardiomyopathy (130, 131). High fructose induced insulin resistance may 
manifest as alterations in insulin activated PI3K/Akt pathway leading to reduced, Glut4 
translocation, glucose uptake, and cardiomyocyte growth and survival. Upregulation of 
lipid metabolism in fructose-fed rats increases ROS production and damages the 
cardiomyocyte. In addition, ROS-induced dephosphorylation of Akt at Serine473 residue 
has been reported to participate in the insulin resistance (132). 
 

 

Fig. 6. Specific utilization of fructose and the glucose utilization in the liver. Hepatic fructose 
metabolism begins the phosphorylation by fructokinase. Fructose carbon enters the 
glycolytic pathway at the triose phosphate level. Thus, fructose bypasses the major control 
point by which glucose carbon enters glycolysis (phosphofructokinase), where glucose 
metabolism is limited by feedback inhibition by citrate and ATP. This allows fructose to 
serve as an unregulated source of both glycerol-3-phosphate and acetyl-CoA for hepatic 
lipogenesis. (Modified from Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ. Fructose, weight 
gain, and the insulin resistance syndrome. Am J Clin Nutr. 2002; 76: 911-922.) 

6.4.3 High cholesterol and fructose diet (HCF) 
Brief feeding of an excessively atherogenic diet (chow with 45% kcal from fat and 2% 
cholesterol) produces striking features of metabolic syndrome and coronary artery disease 
(122). Numerous studies show that high cholesterol induces chronic inflammation. It is 
reported that the addition of a small amount of cholesterol to a western-type diet is 
associated with chronic systemic inflammation, as evidenced by an increase in 
atherosclerosis and circulating inflammatory protein levels (133, 134). Specifically, a study 
proposes the concept that, dietary cholesterol worsens adipose tissue macrophages 
independent of weight gain (133). This observation is consistent with the notion that adipose 
tissue inflammation and dysregulation of adipokines secretion contribute to the 
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development of systemic insulin resistance (135). Our laboratory study reveals that a high 
cholesterol-fructose (HCF) diet also induces insulin resistance not only in metabolic-
responsive tissues (i.e. liver and muscle) but also in the heart as well (25). Insulin-stimulated 
cardiac glucose uptake was significantly reduced after 15 weeks of HCF feeding, and cardiac 
insulin resistance was associated with blunted Akt-mediated insulin signaling along with 
GLUT4 translocation. The basal FATP1 (fatty acid transporter 1) levels were increased in 
HCF rat hearts. The cardiac performance of the HCF rats showed a marked reduction (25). 
Our results indicate that high-cholesterol food and sugar-sweetened beverages that lead to 
maladaptive metabolic processes may interfere with the action of insulin and increase 
susceptibility for the development of cardiomyopathy (25). 

7. Potential therapies in insulin resistant related cardiomyopathy 

Insulin resistance is an important risk factor for the development of hypertension, 

atherosclerotic heart disease, left ventricular hypertrophy and dysfunction, and heart failure 

(136-138). It reflects a disturbance of glucose metabolism and can potentially worsen the 

metabolic efficiency of both skeletal and cardiac muscle. The exact mechanisms of cardiac 

insulin resistance leading to and progression of, left ventricular contractile dysfunction are 

not fully elucidated. Currently, the most promising potential medical therapies for insulin 

resistant cardiomyopathy can be divided into 2 broad categories which are, metabolic 

modulators and diabetic medications (Table.2)(49).  

 

 

Table 2. Potential treatments for insulin resistant cardiomyopathy. (Modified from Witteles 
RM, Fowler MB. Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and 
treatment options. J Am Coll Cardiol. 2008; 51: 93-102.) 
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1. Metabolic modulators which increase glucose metabolism, decrease FFA metabolism, 
and potentially enhance myocardial contractile efficiency are e.g. Trimetazidine, 
Perhexiline, Ranolazine, and L-carnitine.  

2. Diabetic medications enhancing insulin sensitivity (TZDs) might theoretically be the 
most attractive therapies to improve insulin resistant related cardiomyopathy. These 

agents work on the activation of PPARa transcription factor that promotes insulin 
sensitivity and decreases circulating FFA, and increases myocardial glucose uptake 
(139).  

Moreover, several newly developed classes of antidiabetic medications have been 
discovered recently. Glucagon-like peptide 1(GLP1) treatment, results in promotion of post 
prandial insulin secretion and improvement of insulin sensitivity (140). GLP1 infusion 
improves left ventricular function, hemodynamic status, and cardiac efficiency (141). In 
addition, angiotensin converting enzyme inhibitors (ACEI), angiotensin II receptor blockers 
and statins all affect glucose metabolism (142-144); although combined therapy involving a 
diuretic agent and a calcium-channel blocker is required (145). Interestingly, a recent study 
shows that RSV and insulin combination treatment has preventive effects on diabetes-
associated cardiovascular dysfunction. However, when a diabetic individual has suffered an 
acute heart attack the synergistic actions of combination treatment were nullified and the 
advantage of RSV was antagonized by insulin. This study provides valuable advice for 
using insulin and RSV in patients with diabetes and those diabetic individuals with 
ischemic heart disease (102).  

8. Summary and conclusion 

Insulin plays an important physiological role in coupling metabolic and cardiac homeostasis 
under healthy conditions. Loss of normal insulin action (insulin resistance) on the heart 
makes the heart unable to maintain homeostasis of its energy and function, which may favor 
the development of cardiomyopathy and heart failure. It is almost clear that insulin 
resistance itself is not enough to trigger dilated cardiomyopathy as the majority of patients 
with insulin resistance do not develop dilated cardiomyopathy. Insulin resistance is more 
likely to create an abnormal environment, rather than causing another stressor.  
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