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1. Introduction 

Effective, precise and consistent brain cortical tissue segmentation from magnetic resonance 

(MR) images is one of the most prominent issues in many applications of medical image 

processing. These applications include surgical planning (Kikinis et al., 1996), surgery 

navigation (Grimson et al., 1997), multimodality image registration (Saeed, 1998), 

abnormality detection (Rusinek et al., 1991), multiple sclerosis lesion quantification (Udupa 

et al., 1997), brain tumour detection (Vaidyanathan et al., 1997), functional mapping (Roland 

et al., 1993), etc. Traditionally, the purpose of segmentation is to partition the image into 

non-overlapping, constituent regions (or called classes, clusters, subsets or sub-regions) that 

are homogeneous with respect to intensity and texture (Gonzalez & Woods, 1992). If the 

domain of the image is given by ߗ, then the segmentation problem is to determine the sets ܵ௞ ⊂  Thus, the sets that make up a segmentation .ߗ whose union is the entire domain ,ߗ

must satisfy 

 
1

K

k
k

S


    (1) 

where ܵ௞ ∩ ௝ܵ ൌ ∅ for ݇ ് ݆, and each ܵ௞ is connected. Ideally, a segmentation method is to 

find those sets that correspond to distinct anatomical structures or regions of interest in the 

image (Pham et al., 2000). 

For brain MR image segmentation, some studies aim to identify the entire image into sub-

regions such as white matter (WM), grey matter (GM), and cerebrospinal fluid spaces (CSF) 

of the brain (Lim & Pfefferbaum, 1989), whereas others aim to extract one specific structure, 

for instance, brain tumour (M.C. Clark et al., 1998), multiple sclerosis lesions (Mortazavi et 

al., 2011), or subcortical structures (Babalola et al., 2008). Due to varying complications in 

segmenting human cerebral cortex, the manual methods for brain tissues segmentation 

might easily lead to errors both in accuracy and reproducibility (operator bias), and are 

exceedingly time-consuming, we thus need fast, accurate and robust semi-automatic (i.e., 

supervised classification explicitly needs user interaction) or completely automatic (i.e., non-

supervised classification) techniques (Suri, Singh, et al., 2002b). 
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1.1 MR imaging (MRI) 

MR imaging (MRI), invented by Raymond V. Damadian in 1969, and was firstly done on a 
human body in 1977 (Damadian et al., 1977). MR imaging is a popular medical imaging 
technique used in radiology to visualize detailed internal structures. It provides good 
contrast between different soft tissues of the body, which makes it especially useful in 
imaging the brain, muscles, the heart and cancers when compared with other medical 
imaging techniques, such as computed tomography (CT) or X-rays (Novelline & Squire, 
2004). According to different magnetic signal weighting with particular values of the echo 
time ( ாܶ) and the repetition time ( ோܶ), three different images can be achieved from the same 
body: ଵܶ-weighted, ଶܶ-weighted, and PD-weighted (proton density).  

In the clinical diagnosis, one patient’s head is examined from 3 planes showed in Fig.1 (a), 
and they are axial plane, sagittal plane and coronal plane. The ଵܶ-weighted brain MR images 
from different planes are respectively showed in Fig.1 (b), (c), and (d). 

 
(a) 

     
(b)   (c)       (d) 

Fig.1. Brain MR images from (b) axial plane, (c) sagittal plane and (d) coronal plane. 

1.2 Difficulties in segmentation of brain MRI 

Even though cortical segmentation has developed for many years in medical research, it is 

not regarded as an automated, reliable, and high speed technique because of magnetic field 

inhomogeneities: 
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1. Noise: random noise associated with the MR imaging system, which is known to have a 
Rician distribution (Prima et al., 2001); 

2. Intensity inhomogeneity (also called bias field, or shading artefact): the non-uniformity 
in the radio frequency (RF) field during data acquisition, resulting in the shading of 
effect (X. Li et al., 2003); 

3. Partial volume effect: more than one type of class or tissue occupies one pixel or voxel 
of an image, which are called partial volume effect. These pixels or voxels are usually 
called mixels (Ruan et al., 2000). 

1.3 Evaluation of segmentation techniques 

The evaluation of brain tissue classification also is a complex issue in medical image 

processing. Visual inspection and comparison with manual segmentation are very strenuous 

and are not reliable since the amount of data to be processed is usually large. Tissue 

classification methods can also be validated by using synthetic data and real brain MR 

images. The simulated brain MR data with different noise levels and different levels of 

intensity inhomogeneity, have been provided by Brainweb simulated brain phantom 

(Collins et al., 1998; Kwan et al., 1999) (http://www.bic.mni.mcgill.ca/brainweb/), and the 

ground truth for both the classification and partial volumes within the images is also 

available to estimate different methods quantitatively. The real brain MRI datasets with 

expert segmentations can be obtained from Internet Brain Segmentation Repository (IBSR) 

(http://www.cma.mgh.harvard.edu/ibsr/). A few surveys on this topic have been 

provided in (H. Zhang et al., 2008; Y.J. Zhang, 1996, 2001). Here, we depict three different 

measures for quantitatively evaluating segmentation results. 

(1) The misclassification rate (MCR) is the percentage of misclassified pixels and is 

computed as (background pixels were ignored in the MCR computation) (Bankman, 2000) 

 ×
number of  misclassified pixels

MCR = 100%
total number of  all pixels

 (2) 

(2) The root mean squared error (RMSE) is to quantify the difference between the true 

partial volumes and the algorithm estimations. The RMSE of an estimator ߠ෠ with respect to 
the estimated parameter ߠ is defined as (Bankman, 2000): 

 2ˆ ˆ ˆ( ) ( ) [( ) ]RMSE MSE E       (3) 

(3) Let ௙ܰ௣ be the number of pixels that do not belong to a cluster and are segmented into 

the cluster, ௙ܰ௡ be the number of pixels that belong to a cluster and are not segmented into 

the cluster, ௣ܰ be the number of all pixels that belong to a cluster, and ௡ܰ be the total 

number of pixels that do not belong to a cluster. Three parameters in this evaluation system 

may now be defined as follows (Shen et al., 2005). 

 Under segmentation (UnS): ܷ݊ܵ ൌ ௙ܰ௣/ ௡ܰ, representing the percentage of negative false 

segmentation; 

 Over segmentation (OvS): ܱܵݒ ൌ ௙ܰ௡/ ௣ܰ, representing the percentage of positive false 

segmentation; 
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 Incorrect segmentation (InC): ܥ݊ܫ ൌ ሺ ௙ܰ௣ ൅ ௙ܰ௡ሻ/ܰ, representing the total percentage of 

false segmentation. 

The purpose of this chapter is to render a review about existing segmentation techniques 
and the work we have done in the segmentation of brain MR images. The rest of this chapter 
is organized as follows: In Section 2, existing techniques for human cerebral cortical 
segmentation and their applications are reviewed. In Section 3, a new non-homogeneous 
Markov random field model based on fuzzy membership is proposed for brain MR image 
segmentation. In Section 4, image pre-processing, such as de-noising, the correction of 
intensity inhomogeneity and the estimation of partial volume effect are summarized. In 
Section 5, the conclusion of this chapter is given. 

2. Image segmentation methods 

A wide variety of segmentation techniques have been reviewed in (Balafar et al., 2010; 
Bankman, 2000; Bezdek et al., 1993; Clarke et al., 1995; Dubey et al., 2010; Pal & Pal, 1993; 
Pham et al., 2000; Saeed, 1998; Suri, Singh, et al., 2002b, 2002a; Zijdenbos & Dawant, 1994). 
We separate these techniques into 9 categories based on the classification scheme in 
(Pham et al., 2000): (1) thresholding, (2) region growing, (3) edge detection, (4) classifiers, 
(5) clustering, (6) statistical models, (7) artificial neural networks, (8) deformable models, 
and (9) atlas-guided approaches. Other notable methods that do not belong to any of these 
categories are described at the end of this section. Though each technique is presented 
separately, multiple techniques are often used in conjunction to solve various 
applications. 

2.1 Thresholding 

The simplest operation in this category is image thresholding (Pal & Pal, 1993). In this 
technique a threshold is selected, and an image is divided into groups of pixels having value 
less than the threshold and groups of pixels with values greater or equal to the threshold. 
There are several thresholding methods: global thresholding, adaptive thresholding, optimal 
global and adaptive thresholding, local thresholding, and thresholds based on several 
variables (Bankman, 2000). Thresholding is a very simple, fast and easily implemented 
procedure that works reasonably well for images with very good contrast between 
distinctive sub-regions. A typical example is to separate CSF from highly T2-weighted brain 
images (Saeed, 1998). However, the distribution of intensities in brain MR images is usually 
very complex, and determining a threshold is difficult. In most cases, thresholding is 
combined with other methods (Brummer et al., 1993; Suzuki & Toriwaki, 1991). 

2.2 Region growing 

Region growing (or region merging) is a procedure that looks for groups of pixels with 
similar intensities. It starts with a pixel or a group of pixels (called seeds) that belong to the 
structure of interest. Subsequently the neighbouring pixels with the same properties as 
seeds (or based on a homogeneity criteria) are appended gradually to the growing region 
until no more pixels can be added (Dubey et al., 2010). The object is then represented by all 
pixels that have been accepted during the growing procedure. The advantage of region 
growing is that it is capable of correctly segmenting regions that have the same properties 
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and are spatially separated, and also it generates connected regions (Bankman, 2000). 
Instead of region merging, it is possible to start with some initial segmentation and 
subdivide the regions that do not satisfy a given uniformity test. This technique is called 
splitting (Haralick & Shapiro, 1985). A combination of splitting and merging adds together 
the advantages of both approaches (Zucker, 1976). However, the results of region growing 
depend strongly on the selection of homogeneity criterion. Another problem is that different 
starting points may not grow into identical regions (Bankman, 2000). Region growing has 
been exploited in many clinical applications (Cline et al., 1987; Tang et al., 2000). 

2.3 Edge detection techniques 

In edge detection techniques, the resulting segmented image is described in terms of the 

edges (boundaries) between different regions. Edges are formed at intersection of two 

regions where there are abrupt changes in grey level intensity values. Edge detection works 

well on images with good contrast between regions. A large number of different edge 

operators can be used for edge detection. These operations are generally named after their 

inventors. The most popular ones are the Marr-Hildreth or LoG (Laplacian-of-Gaussian), 

Sobel, Roberts, Prewitt, and Canny operators. Binary mathematical morphology and 

Watershed algorithm are often used for edge detection purposed in the segmentation of 

brain MR images (Dogdas et al., 2002; Grau et al., 2004). However, the major drawbacks of 

these methods are over-segmentation, sensitivity to noise, poor detection of significant areas 

with low contrast boundaries, and poor detection of thin structures, etc. (Grau et al., 2004). 

2.4 Classifiers 

Classifier methods are known as supervised methods in pattern recognition, which seek to 

partition the image by using training data with known labels as references. The simplest 

classifier is nearest-neighbour classifier (NNC), in which each pixel is classified in the same 

class as the training datum with closest intensity (Boudraa & Zaidi, 2006). Other examples of 

classifiers are k-nearest neighbour (k-NN) (Duda & Hart, 1973; Fukunaga, 1990), Parzen 

window (Hamamoto et al., 1996), Bayes classifier or maximum likelihood (ML) estimation 

(Duda & Hart, 1973), Fisher’s linear discriminant (FLD) (Fisher, 1936), the nearest mean 

classifier (NMC) (Skurichina & Duin, 1996), support vector machine (SVM) (Vapnik, 1998). 

The weakness of classifiers is that they generally do not perform any spatial modelling. This 

weakness has been addressed in recent work extending classifier methods to segment 

images corrupted by intensity in-homogeneities (Wells III et al., 1996). Neighbourhood and 

geometric information was also incorporated into a classifier approach in (Kapur et al., 

1998). In addition, it requires manual interaction to obtain training data. Training sets for 

each image can be time consuming and laborious (Pham et al., 2000). 

2.5 Clustering 

Clustering is the process of organizing objects into groups whose members are similar in 

certain ways, whose goal is to recognize structures or clusters presented in a collection of 

unlabelled data. It is a method of unsupervised learning, and a common technique for 

statistical data analysis used in many fields. 
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2.5.1 K-means clustering 

K-means clustering (or Hard C-means clustering, HCM) (MacQueen, 1967) is one of the 
simplest unsupervised clustering method, aiming to partition N samples into K clusters by 
minimizing an objective function so that the within-cluster sum of squares is minimized. It 
starts with defined initial K cluster centers and keeps reassigning the samples to clusters 
based on the similarity between the sample and the cluster centers until a convergence 
criterion is met. Given a set of samples ሺݔଵ, ,ଶݔ … ,  ேሻ, where each sample is a M-dimensionalݔ
real vector, ௞ܰ is the num of samples in cluster k denoted by ߁௞, ݒ௞ is the mean value of these 
samples, and then the objective function is defined as: 

 2

1 1

||
K N

m i k
k i

J x v
 

     (4) 
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N 
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where ||ݔ௜ െ  ௞. Theݒ ௜ and the cluter centerݔ ௞|| is a distance measure between pointݒ
common distance measures are Euclidean distance, chessboard distance, city block distance, 
Mahalanobis distance, or Hamming distance. The K-means algorithm has been used widely 
in brain MR image segmentation (Abras & Ballarin, 2005; Vemuri et al., 1995), because of its 
easy implementation and simple time complexity. A major problem of this algorithm is that 
it is sensitive to the selection of K cluster centers, and may converge to a local minimum of 
the criterion function value (Jain et al., 1999). Dozens of optimal solutions have been 
proposed for selecting better initial K cluster centers to find the global minimum value 
(Bradley & Fayyad, 1998; Khan & Ahmad, 2004). 

2.5.2 Fuzzy c-means clustering (FCM) 

Fuzzy c-means clustering (FCM) (Bezdek, 1981; Dunn, 1973) is based on the same idea of 
finding cluster centers by iteratively adjusting their positions and minimizing an objective 
function as K-means algorithm. Meanwhile it allows more flexibility by introducing 
multiple fuzzy membership grades to multiple clusters. The objective function is defined 
as: 

 2

1 1

|| ,1
K N

m
m ik i k

k i

J u x v m
 

       (6) 

where m is constant to control clustering fuzziness, generally m = 2. ݑ௜௞ is the fuzzy 

membership of ݔ௜ in the cluster k and satisfying  Ͳ ൑ ௜௞ݑ ൑ ͳ,  ∑ ௜௞ݑ ൌ ͳ௄௞ୀଵ  ௜ is the i-thݔ .

sample in measured data. ݒ௞ is the cluster center, and ∥∗∥ is a distance measure. Fuzzy 
partitioning is carried out through an iterative optimization of the objective function shown 
above, with the update of membership ݑ௜௞ and  cluster centers ݒ௞ by: 
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This iteration will stop when ݉ܽݔ ቄቚݑ௜௞ሺ௣ሻ െ ௜௞ሺ௣ିଵሻቚቅݑ ൑  ε is a termination criterion between 0 ,ߝ

and 1, and p is the iteration step (Kannan et al., 2010). Although clustering algorithms do not 
require training data, they do require an initial segmentation (or equivalently, initial 
parameters). Clustering algorithms do not directly incorporate spatial modeling and can 
therefore be sensitive to noise and intensity inhomogeneities. This lack of spatial modeling, 
however, can provide significant advantages for fast computation (Hebert, 1997). Some 
work on improving the robustness of clustering algorithms to intensity inhomogeneities in 
MR images have been carried out (Pham & Prince, 1999). Robustness to noise can be 
incorporated with spatial correlations in an image based on k-nearest neighbor model (R. Xu 
& Ohya, 2010) or Markov random field (MRF) modeling (Liu et al., 2005). 

2.6 Statistical models 

Statistical classification methods usually solve the segmentation problem by either assigning 
a class label to a pixel or by estimating the relative amounts of the various tissue types 
within a pixel (Noe et al., 2001). Statistical inference enables us to make statements about 
which element(s) of this set are likely to be the true ones. 

2.6.1 Expectation maximization (EM) 

Expectation maximization (EM) algorithm (Dempster et al., 1977) is a method for finding the 
maximum likelihood or maximum a posteriori (MAP) estimator of a hidden parameter ߠ 
with a probability distribution. EM is an iterative method which alternates between 
performing an expectation (E) step, in which each pixel is classified into one cluster 
according to the current estimates of the posterior distributions over hidden variables, and a 
maximization (M) step, in which the hidden parameters are re-estimated by maximizing the 
likelihood function, according to the current classification. These parameter-estimates are 
then used to determine the distribution over hidden variables in the next E step. 
Convergence is assured since the increase of likelihood after each iteration (Zaidi et al., 
2006). The underlying model in EM algorithm can be specified according the specific 
requirements of the given task (Wells III et al., 1996; Y. Zhang et al., 2001). In spite of these 
achievements, they have a few deficiencies: a good prior distribution and the known 
number of classes are required, and it has extensive computations. 

2.6.2 Markov random field model (MRF) 

Markov random field (S.Z. Li, 1995) model is a statistical model that can be used within 

segmentation methods. MRFs model spatial interactions among neighboring or nearby 

pixels. In medical imaging, they are typically used because most pixels belong to the same 

class as their neighboring pixels (Pham et al., 2000). Let a finite lattice I as a 2D image, ݅ ∈  is ܫ

the pixel i in this image, which is denoted by ܻ ൌ ሼ ௜ܻ , ݅ ∈  ሽ, where ௜ܻ is the gray value ofܫ

pixel i. For each pixel, the region-type (or pixel class) that the pixel belongs to is specified by 

www.intechopen.com



 
Advances in Brain Imaging 150 

a class label ܺ ൌ ሼ ௜ܺ , ݅ ∈ ሽ (i.e., image segmentation results). ௜ܺܫ ∈ Λ, Λ ൌ ሼͳ,ʹ, … ,  ሽ is a set ofܭ

labels and K is the number of classes. So X (label filed) and Y (gray field) will be random 

fields in lattice I and the purpose of MRF model is to establish the relationship between X 

and Y, then the image model is defined as:  

 ,
ii X iY v e i I    (9) 

where ݒ௑೔  is the gray mean value of class ௜ܺ, and ݁௜ is a random variable meeting Gaussian 

distribution. If ௜ܺ ൌ ݇, ݇ ∈ Λ, ݁௜ െ ܰሺͲ,  ௞ଶ is the variance of ݁௜ for k, then theߪ ௞ଶሻ, in whichߪ

conditional probability density is defined as: 
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Subsequently, ܺ ൌ ሼ ௜ܺ , ݅ ∈  .ሽ, the priori model of image segmentation results is a 2D MRFܫ

According to Hammersley-Clifford theorem in (Hammersley & Clifford, 1971), the priori 

probability of MRF meets Gibbs distribution, and so the priori model is defined as: 

 
1

( ) exp[ ( )]c
c C

P X x V x
Z 

    (11) 

where Z ൌ ∑ exp	ሾെ∑ ௖ܸሺݔሻ௖∈஼ ሿ௫∈ஃ  is a normalizing constant called partition function and ௖ܸሺݔሻ denotes the potential function of clique ܿ ∈ ,ሺ݅ሻߜ which only depends on ,ܥ ݅ ∈ ܿ. C is 

the set of second order cliques (i.e. doubletons), and ߜሺ݅ሻ indicates the neighborhood of 

pixel i. If multi-level logistic (MLL) model is adopted and the second order 

neighborhood system and the dual potential function are only considered, energy 

function is defined as:  
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Note that the energies of singletons (i.e. pixel ݅ ∈  directly reflect the probabilistic modeling (ܫ

of labels without context, while doubleton clique potentials express relationship between 

neighboring pixel label. On the basis of maximum a posteriori (MAP) estimation (Geman & 

Geman, 1993) and Bayes’ theorem, the optimal solution X ൌ X∗ is defined as: 

 
* arg max ( | )

arg max ( | ) ( )
X

X

X P X Y

P Y X P X




 (14) 

In order to facilitate the solution, the objective function takes natural logarithm to be 

 * arg min { ( | ; ) ( )}
x

X U y x U x   (15) 
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In this way, the segmentation problem in MRF model is reduced to the minimization of the 
above energy function, which is usually computed by iterated conditional modes (ICM) 
algorithm (Besag, 1986). The ICM method uses the ‘greedy’ strategy in the iterative local 
minimization and convergence is guaranteed after only a few iterations (Boudraa & Zaidi, 
2006). By importing spatial relations among pixels, non-supervised and nonparametric MRF 
model can effectively decrease the influence of image noise, and undertake fine stable and 
satisfied segmentation results for low SNR images. This model has been widely applied in 
human cerebral cortical segmentation (Held et al., 1997; Y. Zhang et al., 2001). Contrarily a 
difficulty associated with MRF models is proper selection of the parameters controlling the 
strength of spatial interaction (S.Z. Li, 1995). A setting that is too high can result in an 
excessively smooth segmentation and a loss of important structural details. Some 
researchers have proposed several schemes for the estimation of MRF parameters 
(Descombes et al., 1999; Salzenstein & Pieczynski, 1997; R. Xu & Luo, 2009). In addition, 
MRF methods usually require computationally intensive algorithms (Pham et al., 2000). 

2.7 Artificial neural networks (ANNs) 

Artificial neural networks (ANNs) are parallel networks of processing elements or nodes to 
simulate biological neural networks. Each node in an ANN is capable of performing 
elementary computations. Learning is achieved through the adaptation of weights assigned 
to the connections between nodes. The massive connectionist architecture usually makes the 
system robust while the parallel processing enables the system to produce output in real 
time. To simulate biological neural network, the neurons and connections in ANNs model 
comprise the following components and variables in Fig. 2 (Kriesel, 2007). A thorough 
treatment of ANNs can be found in (J.W. Clark, 1991). 

 

Fig. 2. Data processing of a neuron (Images provided courtesy of D. Kriesel). 
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The most widely application in medical imaging is as a classifier (Gelenbe et al., 1996; Hall 
et al., 1992), in which the weights are determined by training data and the ANN is then used 
to segment new data. ANNs can also be used in an unsupervised fashion as a clustering 
method (Bezdek et al., 1993; Reddick et al., 1997), as well as for deformable models (Vilarino 
et al., 1998). Because of the many interconnections used in a neural network, spatial 
information can be easily incorporated into its classification procedures (Pham et al., 2000). 
However, the major disadvantage of the artificial neural networks (ANNs) is that it requires 
training data. For large neural networks, it also requires high processing time because its 
processing is usually simulated on a standard serial computer. 

2.8 Deformable models 

Deformable models are physically motivated, model-based techniques for detecting region 
boundaries by using closed parametric curves or surfaces that deform under the influence of 
internal and external forces. To delineate an object boundary in an image, a closed curve or 
surface must first be placed near the desired boundary and then be allowed to undergo an 
iterative relaxation process. Internal forces are computed from within the curve or surface to 
keep it smooth throughout the deformation. External forces are usually derived from the 
image to drive the curve or surface toward the desired feature of interest (Pham et al., 2000). 
The original deformable, called snake model, was introduced in (Kass et al., 1988), in which 
the contour deforms to minimize the contour energy that includes the internal energy from 
the contour and the external energy from the image. A number of improvements have also 
been proposed, such as snake variations (Cohen, 1991; McInerney & Terzopoulos, 2000; C. 
Xu & Prince, 1998). Level set is another important deformable contour method and it was 
firstly proposed for image segmentation in (Malladi et al., 1995). Some researchers applied 
level set formulation with a contour energy minimization for obtaining a better convergence 
(Siddiqi et al., 1998; Wang et al., 2004). 

Deformable models are quite helpful for cerebral cortical segmentation in MR images 
(Davatzikos & Bryan, 1996; C. Xu et al., 1998). The advantages are that they are capable of 
generating closed parametric curves or surfaces from images and incorporating a 
smoothness constraint that provides robustness to noise and spurious edges. The 
disadvantage is that they require manual interaction to place an initial model and choose 
appropriate parameters. The successes in reducing sensitivity to initialization have been 
made in (Cohen, 1991; Malladi et al., 1995; C. Xu & Prince, 1998). Standard deformable 
models can also exhibit poor convergence to concave boundaries. This difficulty can be 
alleviated somewhat through the use of pressure forces (Cohen, 1991) and other modified 
external-force models (C. Xu & Prince, 1998). Another important extension of deformable 
models is the adaptivity of model topology by using an implicit representation rather than 
an explicit parameterization (Malladi et al., 1995; McInerney & Terzopoulos, 1995). Several 
general reviews on deformable models in medical image analysis can be found in (He et al., 
2008; Heimann & Meinzer, 2009; McInerney & Terzopoulos, 1996; Suri, Liu, et al., 2002). 

2.9 Atlas-guided approaches 

Atlas-guided approaches are a powerful tool for medical image segmentation when a 
standard atlas or template is available. The whole idea of using the brain atlas was to 
provide a priori knowledge, which can help in grouping the segments into anatomical 
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structures. This helps to obtain fully automatic cortical segmentation procedures. The 
standard atlas-guided approach treats segmentation as a registration problem. It first finds a 
one-to-one transformation that maps a pre-segmented atlas image to the target image. This 
process is often referred to as ‘atlas warping’. The warping can be performed with linear 
transformations (Talairach & Tournoux, 1988), or nonlinear transformations (Collins et al., 
1995; Davatzikos, 1996). Atlas-guided approaches have been applied mainly in brain MRI 
segmentation (Collins et al., 1995), as well as in extracting the brain volume from head scans 
(Aboutanos & Dawant, 1997). One advantage is that labels as well as the segmentation are 
transferred. They also provide a standard system for studying morphometric properties 
(Thompson & Toga, 1997). Atlas-guided approaches are generally better suited for 
segmentation of structures that are stable over the population of study. One method that 
helps model anatomical variability is to use probabilistic atlases (Thompson & Toga, 1997), 
but these require additional time and interaction to accumulate data. Another method is to 
use manually selected landmarks (Davatzikos, 1996) to constrain transformation. 

2.10 Other techniques 

Texture segmentation is to segment an image into regions according to the textures of the 

regions. It was in the late 1970s when Haralick et al (Haralick et al., 1973) published an 

extensive paper on texture. Later, Peleg et al (Peleg et al., 1984) and Cross et al (Cross & 

Jain, 1983) also published work in texture analysis applied to computer vision images. 

Application of texture in brain segmentation started in the early 1990s, when Lachmann et 

al (Lachmann & Barillot, 1992) developed a method for the classification of WM, GM and 

CSF. This method, however, did not discuss the validation schemes, and it was hard to 

judge the performance of such a segmentation algorithm. Besides, it seemed sensitive to 

initial textural properties, and no such discussion was carried out in the paper (Suri, 

Singh, et al., 2002b). 

Self-organizing maps (SOM), introduced by Kohonen in early 1981 (Kohonen, 1990), is a type 

of artificial neural network, whose precursor is learning vector quantization (LVQ) invented 

by T. Kohonen (Kohonen, 1997). It is able to convert complex, nonlinear statistical 

relationships between high-dimensional data items into simple geometric relationships on a 

low-dimensional display via using unsupervised learning. The applications of SOM method 

can be found in (Y. Li & Chi, 2005; Tian & Fan, 2007). However, SOM algorithms are, firstly, 

highly dependent on the training data representatives and the initialization of the 

connection weights. Secondly, they are very computationally expensive if the dimensions of 

the data increases (Y. Li & Chi, 2005). 

Wavelet transform, adventured in medical imaging research in 1991 (Weaver et al., 1991), is a 

tool that cuts up data or functions or operators into different frequency components, and 

then studies each component with a resolution matched to its scale (Daubechies, 2004). 

Modern wavelet analysis was considered to be proposed by Grossmann and Morlet in their 

milestone paper (Morlet & Grossman, 1984). In medical image segmentation, wavelet 

transforms have been employed to combine texture analysis, edge detection, classifiers, 

statistical models, and deformable models, etc. Many works benefit through using image 

features within a spatial-frequency domain after wavelet transform to assist the 

segmentation (Barra & Boire, 2000; Bello, 1994). 
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Multispectral segmentation is a method for differentiating tissue classes having similar 
characteristics in a single imaging modality by using several independent images of the 
same anatomical slice in different modalities (e.g., T1, T2, proton density, etc.). As a 
consequence of different responses of the tissues to particular pulse sequences, this increases 
the capability of discrimination between different tissues (Fletcher et al., 1993; Vannier et al., 
1985). The most common approach for multispectral MR image segmentation is pattern 
recognition (Bezdek et al., 1993; Suri, Singh, et al., 2002b). These techniques generally appear 
to be successful particularly for brain MR images (Reddick et al., 1997; Taxt & Lundervold, 
1994), but much work remains in the area of validation. 

3. A new non-homogeneous Markov random field model 

As we introduced in Section 2.6.2, Markov random field (MRF) theory (S.Z. Li, 1995) has 

been widely used in the field of medical image processing with the advantages, including 

non-supervision, fine stability and satisfied segmentation effect for the image with low SNR. 

MRF theory provides a convenient and consistent way for modeling context among image 

pixels. This is achieved through characterizing mutual influences among such entities using 

conditional MRF distributions. The practical use of MRF models is largely ascribed to the 

equivalence between MRF and Gibbs distributions established by Hamersley and Clifford 

(Hammersley & Clifford, 1971) and is further developed by Besag (Besag, 1974) for the joint 

distribution of MRF. This enables us to model vision problems by a mathematically sound 

yet tractable means for image segmentation in Bayesian framework (Geman & Geman, 1993; 

Grenander, 1983). 

In traditional MRF model, Gibbs random field (GRF) uses the parameter ߚ to determine 
spatial correlation among dependent image pixels. The greater the parameter ߚ is, the 
stronger the spatial correlation would be; the smaller the parameter ߚ is, the weaker the 
spatial correlation would be. Generally, MRF model is assumed to be homogeneous, which 
means the parameter ߚ is constant. Plenty of previous researches have offered a series of 
methods to accurately estimate this parameter, which advance the effect of image 
segmentation (Deng & Clausi, 2004; Descombes et al., 1999). Due to its own features of 
medical image, homogeneous MRF model often leads to over-segmentation and induces 
higher misclassification rate. In this section, we propose a new non-homogeneous MRF 
model (called Modified-MRF or M-MRF model) using fuzzy membership to accurately 
estimate the parameter ߚ and the experimental results show our model effectively reduces 
over-segmentation and enhances segmentation precision (R. Xu & Luo, 2009). 

3.1 Fuzzy sets 

Fuzzy sets are sets whose elements have degrees of membership, which firstly were 

proposed by L.A. Zedeh in 1965 (Zadeh, 1965) as an extension of the classical notion of set. 

Classical set theory only describes precise phenomenon, because an element belonging to a 

classic set contains only two cases: yes or no. By contrast, fuzzy set theory permits the 

gradual assessment of the membership of elements in a set; this is described with the aid of 

a membership function valued in the real unit interval [0, 1]. Fuzzy sets generalize classical 

sets, since the indicator functions of classical sets are special cases of the membership 

functions of fuzzy sets, if the latter only take values 0 or 1 (DuBois & Prade, 1980). 
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The fuzzy set is defined as: Given a domain X, x denotes its element, the mapping ݑி is 
defined as ݑி ∶ ܺ → ሾͲ,ͳሿ, ݔ →  ሻ is x’s membership for F. The greater theݔிሺݑ ி is called F’s membership function andݑ ,ி confirms a fuzzy set F in domain Xݑ ሻ, which meansݔிሺݑ
membership, the greater the degree of one element pertaining to one fuzzy set. As a 
consequence, F is a subset in domain X, which does not have undefined border. 

3.2 Modified non-homogeneous MRF model 

In terms of the features in brain MR images, the spatial correlation of adjacent pixels varies 
with the positions of image space, which indicates the parameter ߚ should be a variable 
changing with space site. Consequently, the corresponding MRF model should be 
considered as non-homogeneous. 

3.2.1 The ࢼ Function based on fuzzy membership 

Let y be the gray value of pixels, and x be the classification of pixels in image I. If pixel i is 
marked by class k (ݒ௞ is the clustering center of class k, ݇ ൌ ͳ,… ,  will be ߚ the parameter ,(ܭ
a decreasing function of ݑ௜௞, which denotes the membership of pixel i belonging to class k. 
The smaller the ݑ௜௞ is, the less the degree of pixel i in class k would be, which implies the 
attribute of pixel i should be decided by the state of neighborhood. The larger the ݑ௜௞ is, the 
larger the degree of pixel i in class k would be, which implies the attribute of pixel i should 
be decided by the gray value of itself. Thus, the ߚ function is defined as: 

 1 0.8i iku     (18) 

3.2.2 The modified MRF model (M-MRF model) 

In traditional MRF model (see Section 2.6.2), the parameter ߚ is used to calculate the energy 

function ܷሺݔሻ and clique potentials ௖ܸሺݔሻ over all possible cliques ܿ ∈  which only depends ,ܥ

on the neighborhood of pixel i: ߜሺ݅ሻ, ݅ ∈ ܿ. According to the ߚ function, the energy function 

and clique potentials through considering multi-level logistic (MLL) model, second-order 

neighborhood system and dual potential function, can be modified as 
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And the new non-homogeneous MRF (M-MRF) model has been improved into 
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Therefore, the segmentation problem is reduced to minimize the above energy function, 

which is generally solved by iterated conditional modes (ICM) algorithm (Besag, 1986). The 

algorithm of M-MRF model for image segmentation is designed as follows: 
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1. Initialize the number of class K, the clustering center ݒ௞, the smallest error ߝ, and ݌ ൌ Ͳ; 
2. Get the initial segmentation results via KFCM algorithm (L. Zhang et al., 2002), and 

estimate the parameter ߚ by Eq.(18); 
3. Segment the initial image based on maximum-likelihood criterion and M-MRF model, 

and calculate the global energy E of whole image; 
4. Calculate local conditional energy of every pixel for all possible classification by 

Eq.(19) and Eq.(21), and update the classification of every pixel following the principle 
of minimizing local conditional energy. 

5. Calculate the global energy E of whole image again by the new classification of every 
pixel, ݌ ൌ ݌ ൅ ͳ; 

6. if max	ሾ|Eሺ௣ሻ െ Eሺ௣ିଵሻ|ሿ ൑ ε, then go to (7), else return (4); 
7. Output image segmentation results and stop. 

3.2.3 Smoothing of image 

Owing to complexity of brain MR images and their own reasons of segmentation 

algorithms, segmentation results are often accompanied by burrings, stains, rugged edges, 

etc. By smoothing, isolated burrings and stains of image can be removed, edges of regions 

can be smoothed and holes of areal objects can be filled. Sequentially, the quality of 

segmentation results can be further improved. In the processing of image smoothing, matrix 

template of ݊ ൈ ݊(n is customarily assigned by ͵~ͷ) is currently employed to march image 

via lines and columns. If the image matches successfully, the segmentation result of the pixel 

in the center of matrix template will be replaced by the same segmentation results around 

this pixel. 

3.2.3.1 Deburring 

The ͵ ൈ ͵ deburring matrix in  (a) is frequently betaken, where a,	b,	x ∈ ,ܮ ܽ ് ܾ(L is the set of 

labels) and ‘x’ is arbitrary which figures the segmentation results of x’s sites can be left out 

of account. When the image segmentation results in ͵ ൈ ͵ matrix march the deburring 

matrix in  Fig. 3 (a), ‘b’ in the center of matrix will become ‘a’. 

 

a a a 
 

a a x 
 

x x x 
 

x a a 
   

x a x 

a b a 
 

a b x 
 

a b a 
 

x b a 
   

a b a 

x x x 
 

a a x 
 

a a a 
 

x a a 
   

x a x 

    (a)                  (b) 

Fig. 3. The matrix for deburring and smoothing. (a) the deburring matrices; (b) the matrix of 
smoothing of lines. 

3.2.3.2 Smoothing of lines and filling of holes 

The methods of smoothing of lines and filling of holes are the same as that of deburring, just 
the matrices are different. The ͵ ൈ ͵ matrix of smoothing of lines in  Fig. 3 (b) is utilized as a 
rule. In the same way, When the image segmentation results in ͵ ൈ ͵ matrix march the ͵ ൈ ͵ 
matrix in Fig. 3 (b), ‘b’ in the center of matrix will become ‘a’. 
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3.3 Experimental results 

In order to verify the effect of M-MRF model in image segmentation, KFCM algorithm (L. 
Zhang et al., 2002), traditional MRF model (S.Z. Li, 1995) and M-MRF model are applied in 
the segmentation of simulated brain MR images. During the experiments, brain MR images 
are divided into four regions: gray matter (GM), white matter (WM), cerebrospinal fluid 
(CSF) and background (BG). All experiments are operated by VS.Net 2003 in PC of Intel® 
Core™2 CPU 6600 @ 2.40GHZ with 2GB memory. 

The simulated brain MR images from Brainweb (http://www.bic.mni.mcgill.ca/brainweb/) 
are applied in the experiments, and we call them gold standard of image segmentation. Each 
data set is composed of ʹͷ8 ൈ ʹͷ8 pixels, thickness of layer is 1mm, ଵܶ weighted. Herein, the 
lay images used in experiments are the ܼ ൌ ͳ͸.ͷ݉݉’s ones of image sequences. Fig. 4 is a 
comparison of the segmentation results of several algorithms for a simulated brain MRI 
superposed 9% noise. The experimental results demonstrate that, even for images of lower 
signal-to-noise ratio (SNR), M-MRF model also achieves more satisfied segmentation results. 

         
(a)     (b) 

         
(c)     (d) 
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(e)                                           (f) 

Fig. 4. A comparison of the segmentation results for several algorithms. (a) a simulated brain 
MR image; (b) a simulated brain MR image superposed 9% noise; (c) ground truth; (d) the 
results of KFCM method; (e) the results of MRF model; (f) the results of M-MRF model. 

Table 1 presents MCRs of several algorithms for simulated brain MRIs superposed noise of 

distinct intensity in image segmentation (see the definition of MCR in Section 1.3), whose 

data are average segmentation results of 20 images. From table 1, MCRs of M-MRF model 

for all simulated brain MRIs are lower than other algorithms. In addition, segmentation 

effect of M-MRF model for simulated brain MRI superposed 7% and 9% noise is obviously 

better than other algorithms, while segmentation effect of M-MRF model for simulated brain 

MRI superposed 3% and 5% noise only has slight ascendancy compared with other 

algorithms. For this reason, the stronger the intensity of noise in image is, the better the 

segmentation performance of M-MRF model would be. 

 

The intensity of noise(%) 3% 5% 7% 9% 

MCRs of KFCM(%) 4.88 5.65 6.64 8.19 

MCRs of MRF(%) 4.21 5.24 6.30 7.64 

MCRs of M-MRF(%) 4.06 5.00 5.80 6.67 

Table 1. MCRs (%) of images superposed noise of distinct intensity 

In consideration of its own traits of brain MRIs, a new non-homogeneous MRF model (M-
MRF model) is put forward for reducing over-segmentation, where the parameter ߚ is 
estimated to an inch by fuzzy membership, so that the spatial relativities among each 
pixel will be reasonably set up. The experimental results prove our model not only 
inherits the superiorities of traditional MRF model, e.g., non-supervision, fine stability 
and satisfied robustness for image of low signal-to-noise ratio (SNR), but also significantly 
enhance the accuracy of image segmentation. Meanwhile, the algorithm of this new model 
is also simple and feasible and it is easy to be applied into clinical application by fusing 
de-bias field model. 
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4. Image pre-processing 

Due to the inherent technical limitations of the MR image process, uncertainties are inserted 
into MR images, including random noise, intensity inhomogeneity, and partial volume 
effect, etc. A more complete and comprehensive coverage of the contributing sources of 
error inherent in MR images can be found in (Plante & Turkstra, 1991). The image pre-
processing techniques reviewed here mainly focus on reducing the detrimental effects of the 
artifacts mentioned for the purpose of applying segmentation methods. 

It is difficult to remove noise from MR images, which is known to have a Rician distribution 
(Prima et al., 2001), and state-of-art methods in removing noise are substantial. Methods 
vary from standard filters to more advanced filters, from general methods to specific MR 
image de-noising methods, such as linear filtering, nonlinear filtering, adaptive filtering, 
anisotropic diffusion filtering, wavelet analysis, total variation regularization, bilateral filter, 
trilateral filtering, and non-local means models (NL-means), etc. A worthy survey of image 
de-noising algorithms can be seen in (Buades et al., 2006). 

Intensity inhomogeneity (also called bias field, or shading artefact) in MRI, which arises from 

the imperfections of the image acquisition process, manifests itself as a smooth intensity 

variation across the image (Fig. 5). Because of this phenomenon, the intensity of the same 

tissue varies with the location of the tissue within the image. Although intensity 

inhomogeneity is usually hardly noticeable to a human observer, many medical image 

analysis methods, such as segmentation and registration, are highly sensitive to the spurious 

variations of image intensities. This is why a large number of methods for the correction of 

intensity inhomogeneity in MR images have been proposed in the past (Vovk et al., 2007). 

Early publications on MRI intensity inhomogeneity correction date back to 1986 (Haselgrove 

& Prammer, 1986; McVeigh et al., 1986). Since then, sources of intensity inhomogeneity in 

MRI have been studied extensively (Alecci et al., 2001; Keiper et al., 1998; Liang & 

Lauterbur, 2000; Simmons et al., 1994) and can be generally divided into two groups: 

prospective methods and retrospective methods. According to the classification proposed by 

U. Vovk (Vovk et al., 2007), we may further classify the prospective methods into those that 

are based on phantoms, multi-coils, and special sequences. The retrospective methods are 

further classified into filtering, surface fitting, segmentation-based, and histogram-based, 

etc. Additionally, several valuable reviews about this topic can be found in (Arnold et al., 

2001; Belaroussi et al., 2006; Hou, 2006; Sled et al., 1997; Velthuizen et al., 1998; Vovk et al., 

2007). 

 

Fig. 5. Intensity inhomogeneity in MR brain image (Images provided courtesy of U. Vovk). 
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Partial volume effect (PVE) means artefacts that occur where multiple tissue types contribute 
to a single pixel, resulting in a blurring of intensity across boundaries, which is common in 
medical images, particularly for 3D MRI data. Fig. 6 illustrates how the sampling process 
can result in PVE, leading to ambiguities in structural definitions. In Fig. 6 (Right), it is 
difficult to precisely determine the boundaries of the two objects. The most common 
approach to addressing partial volume effect is to produce segmentations that allow regions 
or classes to overlap, called soft segmentations. Standard approaches use ‘hard 
segmentations’ that enforce a binary decision on whether a pixel is inside or outside the 
object. Soft segmentations, on the other hand, retain more information from the original 
image by allowing for uncertainty (such as membership for every pixel) in the location of 
object boundaries. Generally, membership functions can be derived by fuzzy clustering and 
classifier algorithms (Herndon et al., 1996; Pham & Prince, 1999) or statistical algorithms, in 
which case the membership functions are probability functions (Wells III et al., 1996), or can 
be computed as estimates of partial volume fractions (Choi et al., 1991). Soft segmentations 
based on membership functions can be easily converted to hard segmentations by assigning 
a pixel to its class with the highest membership value (Pham et al., 2000). The growing 
attention have been given to estimate partial volume effect in the last decade (Choi et al., 
1991; Gage et al., 1992; Gonzalez Ballester et al., 2002; Roll et al., 1994; Soltanian-Zadeh et al., 
1993; Thacker et al., 1998; Tohka et al., 2004). 

 

Fig. 6. Illustration of partial volume effect. (Left) Ideal image; (Right) Acquired image 
(Images provided courtesy of D.L. Pham). 

5. Conclusion 

A great number of medical image segmentation techniques have been used for analysis of 
MRI data of human brain, whose performance is affected by the characteristics of MRI data, 
which include a number of artifacts, such as random noise, intensity inhomogeneity and 
partial volume effect, etc. On the other hand, the inherent multispectral character of MRI 
gives it a distinct advantage over other imaging techniques. Many of the approaches 
described here explore ways to correct the artifacts in MRI and to fully exploit the multi-
spectral character of this imaging modality. In this chapter, we have given a brief 
introduction to the fundamental concepts of these techniques, and presented our work on 
brain MR image segmentation, as well as a descripted the pre-processings such as de-
noising, the correction of intensity inhomogeneity and the estimation of partial volume 
effect. 
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The future researches in the segmentation of human brain MRI will focus upon improving 
the accuracy, precision, and execution speed of segmentation methods, as well as reducing 
the amount of manual interaction. Accuracy and precision can be improved by 
incorporating prior information from atlases and by the fusion of different methods. For the 
sake of advancing execution efficiency, multi-scale processing, graphic processing unit 
(GPU) technique and parallelizable methods such as neural networks can be used 
promisingly. In order to raise the current acceptance of routine clinical applications for 
segmentation methods, extensive efficient validation is required. Furthermore, one must be 
able to demonstrate some significant performance advantage (e.g. more accurate diagnosis 
or earlier detection of pathology) over traditional methods to guarantee the less cost of 
training and equipment. It is impossible that automated methods will replace the 
physicians, but they are likely to become crucial elements in medical image analysis. 
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