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1. Introduction 

The brain is a complex spatially extended biological system, where a great number of 
neurons (~1011) interact to carry out extremely sophisticated tasks. Alongside a well-
established tradition of studies of single neuron activity, a wealth of neuroimaging 
techniques has been developed where brain activity at various spatial scales is observed in 
terms of multichannel recordings of the dynamics of its components. 

Early neuroimaging studies of brain activity mainly focused on the functional specialization 

of segregated brain modules. The main concern of these studies was that of finding which 

brain areas change their activity as subjects carry out well-controlled tasks. A robust 

statistical underpinning for the quantitative analysis of results was offered by the general 

linear model and Gaussian field theory (Worsley & Friston, 1995), which allowed 

delineating a collection of significant cortical activations and deactivations associated with the 

execution of these tasks. From a computational point of view, this general univariate 

framework treated the brain as a collection of independent brain regions.  

While the brain developed largely segregated modules, communication between and within 
these modules is essential to the transfer and processing of information. Accordingly, 
neuroimaging studies started incorporating the idea that the neural activity associated with 
the execution of given cognitive tasks is indeed diffuse, and that the influence that one brain 
region exerts over the others cannot be neglected. As a consequence, over the past few years, 
the neuroimaging literature has seen a shift towards a focus on measures of functional 
integration of brain activity. Many methods were developed to estimate functional and 
effective connectivity (Friston, 1994). These methods were designed to investigate how a 
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generally rather small set of brain areas interact, and how different experimental 
manipulations may affect their mutual relationships (Friston et al., 1997). More or less 
coarse-grained brain regions are identified with the nodes of a network, while some metric 
of brain coupling between these regions is identified with an edge between these nodes. 
Prominent among these methods are data-driven methods such as Independent component 
analysis (ICA) (McKeown et al., 1998), Fuzzy Clustering Analysis (FCA) (Windischberger et 
al., 2003), Temporal Clustering Analysis (TCA) (Zhao et al., 2007), and autoregressive 
models such as the Granger Causal Mapping (GCM) (Goebel et al., 2003) and model-driven 
dynamical models expressed in dynamic causal modeling (DCM) (Friston et al., 2003). The 
former set of methods started exploiting the inherent multivariate and stochastic nature of 
fMRI data. Model-driven approaches, on the other hand, used causal influences among 
neural sources to produce an explicit computational model generating the observed signal. 
This method improved on early methods by incorporating an explicit temporal component 
into effective connectivity estimation (Penny et al., 2004). The main merits of these methods 
were that of making explicit the spatially non-local nature of task-related brain activity, and 
of adding to it a (rather coarse) temporal dimension. However, these methods are typically 
limited in the number of regions they can incorporate. Furthermore, while these methods 
incorporate the idea that correlations among neuronal assemblies play an important role in 
brain activity (Segev et al., 2004), no clear distinction between information processing and 
information transfer is made, and the output is essentially a flow-chart of communication 
between nodes. As a consequence, the meaningfulness of the networks that are delineated 
boils down to the combined functional properties attributed to the segregated brain regions 
that are identified with the network nodes, but it is unrelated to some general property of 
the network per se. This in turn implies, among other things, that no clear relationship exists 
between brain anatomy, the structure of functional networks of brain activity and the 
dynamics taking place on them. 

While single region activity can be characterized in a straightforward way through time-

varying profiles of amplitudes of some aspect of brain activity, network activity needs 

appropriate non-trivial observables to be defined. Graph theory (Boccaletti et al., 2006) offers 

a convenient and flexible way to analyze topological properties of systems with a network 

organization (Bullmore et al., 2009). Most importantly for neuroscientists, graph theory can 

be used to understand the complex relationship between structure, dynamics and function 

in the brain. Graph theory shows that the topology of structural networks influences the 

dynamical processes (namely synchronization) taking place on them (Boccaletti et al., 2006). 

For instance, small-world properties of dense or clustered local connectivity with relatively 

few long-range connections confer distinctive dynamical and functional properties: in 

addition to optimizing information processing (Strogatz, 2001), facilitating synchronization 

(Bucolo et al., 2003), ensuring rapid response and emergence of coherent oscillations (Lago-

Fernández et al., 2000), and conferring resilience against pathological attack, small-world 

architecture has been shown to provide an optimum trade-off between efficiency and wiring 

costs, conferring high local and global efficiencies for relatively low connection costs (Latora 

& Marchiori, 2001). 

Recently, an increasing number of neuroimaging studies using graph theoretical tools have 
started showing that the brain developed in such a way that a clear correspondence exists 
between anatomical network topology and dynamical processes taking place on it. It has 
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been convincingly shown that brain anatomical networks have characteristically small-
world properties of dense or clustered local connectivity with relatively few long-range 
connections (Sporns et al., 2004). Similarly, human brain functional networks associated 
with the execution of cognitive tasks have also been associated with fractal small-world 
architecture (Achard et al., 2006; Bassett et al., 2006; Eguíluz et al., 2005; Salvador et al., 
2005), which support efficient parallel information transfer at relatively low costs and is 
differently impaired by normal aging and pharmacological manipulations (Achard & 
Bullmore, 2007; Bassett et al., 2009). Furthermore, specific neuroanatomical connectivity 
patterns are univocally associated with given functional complexity levels, and networks 
capable of producing highly complex functional dynamics share common structural motifs 
(see e.g. (Sporns et al., 2000, 2002)). Finally, simulations showed that brain dynamics exhibits 
a modular hierarchical organization, where clusters coincide with the topological 
community structure of anatomical networks (Zhou et al., 2006).  

Arguably graph theory’s greatest strengths is that it has made possible to address a whole 
range of new research questions, far exceeding the original main one addressed by 
neuroimaging, of localizing brain activity, particularly issues related to how the brain 
organizes its activity as it carries out tasks of arbitrary complexity. A relative limitation of 
graph theoretical applications, in their current form, to neuroimaging is that both 
computations and visualization of functional brain networks are performed based on the 
Euclidean coordinates of observed activity. However, it has long been known that there is 
no straightforward correspondence between spatial and functional proximity between brain 
regions, so that regions that are contiguous to each other can in fact be involved in the 
execution of completely different tasks. It is then of great interest to be able to represent the 
topology of the functional space, and ultimately to delineate the correspondence between 
anatomical and functional spaces. 

Here we propose a new method, Functional Holography (FH), designed to describe the 

information content of a network as it functions as a whole unit. The term used for the 

familiar holograms indicates that the photographic plates can capture the whole information 

about the 3D image. The FH method can overcome the main limitations of previous 

methods by visualizing networks of correlated activity in an auxiliary space of correlations 

and linking the components according to similarities between them.  

The main objectives of the FH method are:  

1. To overcome the limitations of existing methods taking into account only a fraction of 
the network components.  

2. To identify underlying functional motives embedded in complex spatio-temporal 
behavior.  

3. To identify functional subgroups functional clusters and to reveal the causal relations 
between them.  

4. To relate the observed temporal ordering activity propagation to underlying causal 
motives propagation of information and causal connectivity.  

5. To be able to compare the activity of two different networks or different modes of 
behavior of the same network. 

In the remainder of this chapter, we will first illustrate the mathematical procedure of the 
method; we will then show some applications of the method to various neurophysiological 
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signals, and will finally conclude by discussing the scope of the FH method in the context of 
brain imaging data analysis. 

2. Methods and applications 

2.1 FH analysis  

The FH method was developed from the perspective of cultured networks (Segev et al., 

2004). Yet it can be applied to essentially any type of neural signal from the analysis of slices, 

to cortex-recorded activities, ranging from electro- or magneto-encephalographic (EEG and 

MEG respectively) to functional magnetic resonance imaging (fMRI) signals. Moreover, it 

makes it possible to place the recordings from all of these levels within the same 

presentation schema for comparative studies. 

The FH approach allows identifying additional motifs embedded in the inter-neuron 

correlation matrices— analogous to the inter-location coherence matrices evaluated for 

ECoG recordings of brain activity (Milton & Jung, 2002; Towle et al., 1999) that are not 

transparent in the real space connectivity networks. The correlation matrix is represented in 

a higher dimensional space of functional correlations, or correlation affinities. 

The FH method involves the following steps:  

1. Evaluation of the similarity matrix between components.  

2. Clustering by sorting or reordering of the similarity matrix.  

3. Construction of a matrix of functional correlations.  

4. Dimension reduction.  

5. Retrieval from the correlation matrix of the information lost in the dimension reduction.  

6. Inclusion of temporal causal information describing the activity propagation in the 

network.  

7. Holographic zooming and comparison. 

2.1.1 Correlation matrices 

The first stage in the FH analysis is computation of the signals correlation matrices – the 
matrices of correlations between the dynamical responses of all pairs of signals.  We used 

the Pearson formula (Pearson, 1901) to calculate the correlation  ,C i j  between signals (i) 

and (j): 

  
         

   
1

, ,

,

T

k

X i k i X j k j

C i j
i j

 

 


 



    (1) 

where  X i  and  X j  are the recorded time signals (i) and (j), with corresponding means 

   ,i j   and standard deviations    ,i j  . 

For N signals, the pair–wise correlations define a symmetric NxN correlation matrix. In 

order to reveal subgroups in the correlation matrix, we make use of the commonly used 

dendrogram clustering algorithm (Dubes & Jain, 1980).  This algorithm reorders the 
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correlation matrix such that highly correlated signals are closely located.  This is performed 

using the correlation distance D(i,j) between signals (i) and (j), which is the Euclidean 

distance between the rows i and j in the correlation matrix (the vectors of correlations of 

each one of the signals with all other ones) 

           2

1

, , ,
N

k

D i j C i C j C i k C j k


   
 

  (2) 

where  is the correlation vector between signal (i) and all other signals.  Next, the 

algorithm reorders the correlation matrix by sorting it according to the hierarchical tree of 

correlation distances.  In such a way we produce a real metric that satisfies the triangle 

inequality. In Fig. 1 we illustrate the analysis with a simple example. We generate 25 signals 

to imitate a multichannel recording of the activity of a network of 25 components. The 

signals (Fig. 1a) include two subgroups of periodic signals with higher correlations and a 

group of random signals. In Fig. 1b we show the corresponding correlation matrix 

computed using the Pearson correlations. Applying the dendrogram clustering algorithm 

(Fig. 1c) on the correlation matrix, the subgroups are delineated in the resulting sorted 

(reordered) matrix (Fig. 1d).  The correlation matrix can be associated with the correlation 

space, i.e. the N-1 dimensional space of correlations (Baruchi et al., 2006; Baruchi  et al., 2004). 

We note that the correlation space does not represent a real space in the sense that the 

eigenvectors do not create an orthogonal mathematical space. 

2.1.2 Collective normalization 

The next step of the analysis is designed to capture mutual or relative effects between 

several signals. A collective normalization of the correlations (cross-correlation) is 

performed and an affinity matrix is computed.  The affinity transformation represents a 

collective property of all channels, and can help capturing hidden collective motifs related to 

functional connectivity in the network behaviors (Baruchi et al., 2006; Baruchi  et al., 2004). 

The affinity matrix is calculated using the meta-correlation matrix MC(i,j), which is the 

Pearson's correlation between the rows of the reordered correlation matrix of any two 

components (i) and (j) as described in Eq.3.  The affinity collective normalized matrix is the 

product of the correlation matrix and the meta-correlation matrix as defined in Eq. 4.   

  
         

   
,

22
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 





 (3)   

      , , ,A i j C i j MC i j    (4) 

This MC matrix is calculated on the reshuffled rows of the matrix in such a way that all the 

elements between the signals (i) and (j) themselves are not included in the calculation. We 

note that the affinity transformation is performed after rescaling the range of the 

correlations to [0,1]. 

 C i

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Fig. 1. Correlation matrix of synthetically produced signals. (a) Synthetic signals that include 

three groups—the first subgroup of nine signals (color coded in magenta) was generated by 

harmonic signals with the same periodicity, a phase shift of about 2π/10 and added noise. 

The second subgroup signals (color coded in green), is another set of harmonic signals, with 

a different frequency. The other signals just have pure noise with no correlations. (b) The 

corresponding correlation matrix that was computed using the Pearson's correlations. (c) 

The dendrogram tree. The vertical axis is the correlation distance between the signals (the 

Euclidian distance between the vectors of correlations of each signal with all the others, or 

the row in the correlation matrix that corresponds to the signal). Longer/shorter distances 

correspond to lower/higher correlations. (d) The sorted correlation matrix using the 

dendrogramed clustering algorithm. In this matrix the two subgroups form distinct clusters. 

2.1.3 Dimension reduction and construction of the holographic networks 

To search for hidden functional motifs of brain activity induced by the execution of a given 

task, dimension reduction of the correlation matrices is performed. Principal component 

analysis (PCA) a standard dimension reduction algorithm can be used to extract the 

maximal relevant information embedded in the signal correlation matrices. The relevant 

information can then be presented in a 3-dimensional principal component space (Baruchi et 

al., 2006; Baruchi  et al., 2004) the axes of which are the three leading PCA principal vectors.  
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Each node is placed in this space according to its three eigenvalues for the three leading 

principal vectors. Reduction to three dimensions (projection on the three leading principal 

components) typically extracts most of the relevant information (above 85%), (Baruchi et al., 

2006; Madi et al., 2008). To retrieve the information lost as a result of dimension reduction, 

we link each pair of nodes by lines color coded according to the correlations between them 

(Baruchi et al., 2006; Baruchi  et al., 2004; Madi et al., 2008). The result is a holographic 

representation (Fig. 2) of a network (or manifold) of linked nodes in the PCA space.  

 

Fig. 2. Holographic representation of the synthetically produced signals from Fig.1 in the 3D 
space. The axes are the three leading principal PCA vectors of the correlation matrix.  Each 
node is located in this space according to its eigenvalues corresponding to the leading 
principal vectors. All the nodes with correlations above 0.8 are linked by lines color coded 
according to the correlations (represented in the colorbar), creating the holographic 
manifold. 

2.1.4 Holographic zooming 

Often, one is interested in more details about a part of the manifold. Details cannot be 
extracted simply by rescaling of the axes as done, for example, when a part of a picture is 
magnified. The idea of the holographic zooming is to take advantage of the collective 
normalization in the following way: 1) Identifying the part of the manifold to be magnified; 
2) isolating the subsimilarity matrix for the cluster; 3) performing a second iteration on this 
matrix, i.e., the affinity transformation, dimension reduction and construction of a manifold 
(see Fig. 3).  

2.1.5 Inclusion of temporal information 

An essential, though often neglected aspect of brain activity is represented by its temporal 
dimension. The similarity matrices, the cornerstone of the FH method exposed so far, do not 
include essential information about the temporal propagation of activity across the 
components. When available, this information can be presented in temporal ordering 
matrices the generic Ti,j element of which describes the relative timing or phase difference 
between the activity of components i and j. Various methods can be used to evaluate the 
temporal ordering matrices. Recently, a new notion—the temporal center of mass, or temporal 
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location was introduced in the context of cultured networks (Segev et al., 2004), but works 
equally well for other fast continuous neurophysiological signals, ECoG and EEG, and 
though with minor modifications even for relatively slow signals, viz. fMRI.  

 

 
 

Fig. 3. Holographic zooming. The FH algorithm conducted for each cluster separately;  

(a) cluster 1 (b) cluster 2 (c) noise signals nodes. All the nodes are linked by lines color coded 

according to the correlations (represented in the colorbar), creating the holographic 

manifold. Note that the two clusters are highly correlated whereas the noise group has no 

high or low correlations between them. The FH diagrams in (d,e and f) represent the same 

diagrams as in (a,b and c) from a different point of view while all nodes with correlations 

above 0.8 are linked. 

The idea is to regard the activity density of each node i as a temporal weight function so that 

it's temporal center of mass, Tin, during a synchronized bursting event (SBEs), i.e. a time 

segment in which most of the recorded neurons exhibit rapid firing is given by Ti 

 T୧୬ ൌ ሺ୲ି୘౤ሻୈ౪౤ሺ୲ି୘౤ሻୢ୲ୈ౪౤ሺ୲ି୘౤ሻୢ୲׬  (5) 

where the integral is over the time window of the SBE, and Tn marks the temporal location 

of the nth SBE, which is the combined “center of mass” of all the neurons. The temporal 

center of mass of each neuron can vary between the different SBEs. Therefore we define the 

relative timing of a neuron i to be  ௜ܶ ൌ ۃ ௜ܶ௡ۄ௡ the average of the sequence of SBEs. Similarly, 

we define the temporal ordering matrix as follows: 

 ௜ܶ,௝ ൌ ۃ ௜ܶ௡ െ ௝ܶ௡ۄ										(6)  

Interestingly, when the temporal information is superimposed on the 3-D space of leading 

PCA eigenvectors, the activity propagates along the manifold in an orderly fashion from one 

end to the other (Fig. 4). For this reason, it is proposed to view the resulted manifold, which 

includes the temporal information as a causal manifold. 
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Fig. 4. Inclusion of temporal information. (a) and (b) show the inclusion of the causal 
information for the holographic network shown in Fig. 3a,b respectively. The activity 
propagation is added by coloring the nodes location according to the relative phases or time 
lag between them. Blue is for early time (negative phases) and red for late times (positive 
phases). Note that adding this information helps to reveal the phase shifts imposed in the 
generation of the signals. 

2.1.6 Holographic comparison and superposition of networks activity 

A versatile method of data analysis should also come with the ability to quantitatively 

assess difference between experimental conditions. Clustering algorithms are often used for 

comparison between the activities of different networks, e.g., gene expression in different 

groups of patients, or between two modes of behavior of the same network, e.g., during and 

between epileptic seizures of the same patient. We propose the following holographic 

comparison between networks: 1) Compute the PCA leading eigenvectors of the affinity 

matrix for each network. 2) Project the affinity matrix of each network on the leading 

eigenvectors of the other one. Clearly, this approach can also be used for comparison 

between different modes of activity of the same networks, like the above-mentioned case of 

brain activity in between and during seizure, or different clusters identified in a given 

matrix. Once the clusters are identified, the similarity matrix for each is isolated from the 

combined matrix and the above two stages are applied. The holographic superposition is 

designed as additional method for comparison between different modes of activity of the 

same network. The idea is similar to the holographic comparison; however, the projection is 

on the mutual PCA leading eigenvectors, i.e. the leading eigenvectors of a combined matrix 

that includes the different modes. 

2.1.7 Quantifying cluster information: Cluster entropy 

Once clusters of functional brain activity are singled out, it is often useful to describe them 
in a quantitative fashion. This in particular enables to compare different clusters within and 
across subjects. 

Entropy has been used in statistics and information theory to develop measures of the 

information content of signals (Shannon, 1948). However, entropy can also be used to 

measure the amount of information or variance embedded in a cluster, and to quantify the 

deviation of the cluster's eigenvalue distribution from a uniform one (Alter et al., 2000). This 
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idea has been used in the context of biological systems (Varshavsky et al., 2007; Varshavsky 

et al., 2006) and economic systems (Shapira et al., 2009).  The eigenvalue entropy is defined 

as  

   
     

1

1
log

log

N

i

S i i
N 

        (7) 

where Ω is given by, 
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




 


  (8)  

N the number of signals, and  denotes the matrix eigenvalues. S ranges from 0 to 1. 

Note that  is a normalization factor ensuring that S reaches its maximum (S=1) 

for a uniform eigenvalue distribution (i.e. random correlations matrix). 

2.1.8 Extracting topological information: MST analysis  

The correlation matrix of the system creates a topological network structure, where the links 

between nodes are the pair-wise correlations, and the correlation coefficients as the weights 

of these links. Valuable information can be extracted from the topological properties of the 

network, over and above the mere localization in the brain volume. To extract this 

information, graph theoretical techniques can be applied to the data.  

The graph induced by the correlation matrix is complete and therefore difficult to interpret 

per se. Extracting meaningful information from this complete graph involves providing a 

more compact description of the graph and analyzing its topological properties (e.g. 

(Newman, 2003; Tumminello et al., 2007). A graph and its connectivity can be synthetically 

described by its minimum spanning tree (MST) (West, 2001), i.e. a connected, undirected 

graph composed of subgroups of edges with the following two properties: I) The tree spans 

the graph, i.e. connects all the nodes of the graph. The number of links retained is (n − 1) for 

a network of (n) nodes. II) The sum of the edges' weights is minimal out of all possible 

spanning trees. The MST creates a subgraph without loops, maintains the connection of all 

nodes, using only the links with minimal weight.  

The topological structure of the constructed tree creates a new visualization of the complex 

system, which allows visually tracking clusters of nodes, as well as structural similarities 

and differences of the system under different conditions. Other graph properties, such as 

node degree, node centrality and betweenness can be used to extract information from the 

tree (Newman, 2003; Tumminello et al., 2007; West, 2001).  

The MST can be constructed based of the correlation matrix (i.e. the correlation based 

system) obtained by the FH algorithm.  Plotting the MST upon the PCA affinity space and 

on the anatomical slice image enables us to monitor the dynamical changes of the selected 

voxels and the tree they create (their connections) over the entire time course of the 

experiment. 

 i
 1 /log N
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The MST method requires assigning weights to the links between the nodes. The weights 
are assigned according to the affinity matrix. A commonly used distance transformation is 
the ultrametric distance, suggested by Rammal et al. (1986) (Rammal et al., 1986) and 
Mantegna et al. (2000) (Mantegna & Stanley, 2000). Using this distance, the pairwise 
correlation coefficient for each pair of nodes is translated into the distance between those 
two nodes. The ultrametric distance is UD(i,j) given by 

      (9) 

where C(i,j) is the correlation coefficient between nodes i and j.  This distance metric satisfies 
the ultrametric inequality, (I) UD(i,j) = 0 if and only if i = j, (II) UD(i,j) = UD(j,i), (III) UD(i,j) 
≤ Max{UD(i,k),UD(k,j)}. 

The result of the ultrametric transformation is that strong positive correlations are translated 
into short distances, and strong negative correlations are translated into long distances. For 
the case of perfect positive correlation, i.e. C(i,j) = 1, the distance is 0; for the case of no 
correlation, i.e. C(i,j) = 0.5, the distance is 1; and for the case of perfect negative correlation, 

i.e. C(i,j) = 0, the distance is √2. The ultrametric distance matrix describes the complete 
network´s topological structure that yields no significant information (West, 2001). To 
construct the MST, the Kruskal algorithm (Kruskal, 1956) can be applied. This algorithm is 
considered greedy, as it runs in polynomial time (this problem however is not particularly 
severe if the networks have about 300 nodes, which renders the problem computable), and 
in each phase some local optimum is chosen. Fig. 5 demonstrates the use of the Kruskal 
algorithm to find the MST for a complete graph.  

 

Fig. 5. An example of how the Kruskal algorithm can be used in order to find the minimal 
spanning tree from the complete graph. (a) Original graph. The numbers near the links 
indicate their weight. AD and CE are the shortest links, with length 5, and AD highlighted 
to indicate that it has been arbitrarily chosen. (b) CE is now the shortest link with length 5, 
which does not form a cycle, so it is highlighted as the second link. (c) The next 

    , 2 1 ,UD i j C i j  
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link, DF with length 6, is highlighted using the same method. (d) The next-shortest links 
are AB and BE, both with length 7. AB is chosen arbitrarily, and is highlighted. The link BD 
cannot be chosen as it would form a cycle (ABD) and has therefore been marked in red. (e) 
The process continues to highlight the next-smallest link, BE with length 7. Many more links 
are highlighted in red at this stage: BC because it would form the loop BCE, DE because it 
would form the loop DEBA, and FE because it would form FEBAD. (f) Finally, the process 
finishes with the link EG, of length 9, and the minimum spanning tree is found. 

The MST analysis can be used in combination with FH analysis. The FH analysis performs the 
aforementioned PCA dimension reduction algorithm creating a visualization of this complex 
network. The nodes in the reduced 3D space are then linked according to the MST connections, 
with lines color coded according to their original correlations. These lines create a topological 
MST manifold upon the 3D correlations space (see figs. 11 and 14 in section 2.2.2). This MST 
manifold is displayed on the brain slice image in the same way as that of the FH, thus providing 
information about connectivity on the real space (see figs. 12 and 15 in section 2.2.2). 

 

Fig. 6. The MST representation of the synthetically produced signals from Fig.1. The 
magenta and green colors represent clusters 1 and 2 respectively, and the cyan color 
represents the noise signals. 

2.1.9 Dissimilarity measure for MSTs 

The MST can conveniently be used to quantify similarities between different networks of 
brain activity. This can be done by resorting to the divergence rate measure developed by 

www.intechopen.com



 
Functional Holography and Cliques in Brain Activation Patterns 

 

113 

Lee et al. (Lee et al., 2006). This measure is based on the information metric d(X,Y), which 
quantifies the conditional entropies (or the difference) between two information sources, 

      , | |d X Y H X Y H Y X 
 ,
  (10) 

where H(X|Y) and H(Y|X) are the conditional entropies between sources X and Y. This 
metric satisfies the triangle inequality. The conditional entropy H(X|Y) denotes the amount 
of information that is obtained by measuring an information source Y with the knowledge 
of a different source X. The information gain can be approximated by the information 
change between two different sources. The source X is transformed into the Y source space 
by the transformation Y=f(X).  The average information change by the transformation is 
defined as  
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where N is the number of elements of an information source. 

The divergence rate can be defined as an approximation of the average information change 
in order to apply it between two MSTs, 
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Where D(X)(i) is the sum of all distances taken from a reference node i to the neighboring 
nodes in the XMST, and D(X|Y)(i) is the sum of all distances taken from the node i to the 
nodes in the YMST. Given the distances between node i to its neighbors in the XMST, 
D(Y|X)(i) evaluates how much the distance changed in the YMST. Note that the number of 
neighboring nodes for every reference node is different. This measure evaluates how much 
information is needed on average to explain YMST, given XMST. Then, to quantify the 
dissimilarity between two MSTs the metric distance is given by, 

      , | |D X Y D Y X D X Y    (13) 

If the MSTs are identical, D(X,Y) = 0, otherwise D(X,Y) > 0. Subgroups in the metric distance 

can then be delineated using the dendrogram clustering algorithm. 

2.2 Applications 

2.2.1 Analyzing ECoG recorded human brain activity 

The occurrence of epilepsy is rising and is estimated to affect, at some level, 1%–2% of the 

world population (Towle et al., 2002). Due to availability of many antiepileptic drugs, 
approximately 80% of all epileptic patients can be kept seizure free. But for the remaining 
20%, the only cure is surgical resection of the seizure focus (Chkhenkeli et al., 1998; Doyle & 
Spencer, 1998). One of the most challenging tasks facing epileptologists is precise 
identification of brain areas to be removed so that the problem can be cured with minimal 
damage and side effects. Often, the precise location of the epileptogenic region remains 
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uncertain after obtaining conventional, noninvasive measurements such as 
electroencephalogram (EEG) and magnetoencephalogram (MEG) cannot provide sufficient 
information because of the relatively low spatial resolution of these methods. In these cases, 
the activity is directly recorded by the electrocorticography (ECoG) procedure in which the 
recording electrodes are placed directly on the brain surface.  

Here we illustrate how the FH method can be applied to reveal the existence of hidden 
causal manifolds in the electrical brain activity of epileptic patients with implanted 
electrodes. We note that the method can also be applied to experimental seizure studies that 
have gained much attention (Ben-Jacob et al., 2007 ). Typical results are presented in Fig. 7. 

 

Fig. 7. Holographic networks of recorded brain activity. The holographic networks are for 
the ECoG recorded human brain activity for the inter-Ictal and Ictal activities. (a) and (b) 
show the connectivity diagram for the inter-Ictal and Ictal respectively, constructed upon 
the set of electrodes placed on the surface of the brain (the frontal lobe in this case). (c) and 
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(d) show the corresponding dendrogram correlation matrices. (e) and (f) show the 
corresponding FH manifolds in the PCA affinity space. In the analysis we included only 
electrodes whose correlations with the other electrodes are above noise level. Note, that the 
locations change their functional role during seizure (Ictal) relative to those during the inter-
Ictal durations. 

Notably, the manifold of the inter-ictal activity has a very simple topology of almost circular 

horseshoe like part and another subgroup perpendicular to its plane and position at the 

center of the horseshoe. Although the new manifold has as expected a more complex 

topology, it retains some of the features of the one associated with inter-Ictal activity, when 

viewed from specific angle. Preliminary analyses also indicate that causal features are 

captured when the temporal (i.e., phase coherences) information is imposed on the 

manifolds. These results bear the promise that functional holography might become a 

valuable diagnostic procedure in the treatment of intractable epilepsy. 

2.2.2 Analyzing fMRI recorded human brain activity 

When applied to fMRI data, FH is an effective clustering method, capable of capturing 
system level networks using voxel-voxel correlation matrices (Jacob et al., 2010). Here we 
show how the algorithm using a dendrogram clustering method combined with a standard 
deviation (STD) filter can effectively be used to identify and extract voxel clusters. Subjects 
were instructed to clench and open either their left or right hand, according to an auditory 
cue. The paradigm consisted of 11 blocks of 114 volumes. Each consisted of a resting period 
with cross fixation (6–15 s), an auditory instruction period regarding hand movement (right 
or left; 3 s), and a period of hand movement execution (15 s). The blocks were presented in a 
constant order across subjects with regard to which hand to move. Two types of sequences 
were examined: repetitive (two consecutive movements of the same hand) and alternating 
hand movements.  

Even for this simple hand clenching motor task, the FH analysis conducted for a single block 
revealed interesting motifs. For example, unilateral hand movement yielded two clusters, one 
located in the contralateral primary motor cortex showing increased signal (i.e. activation), and 
the other one in the ipsilateral homologue region, showing reduced signal (i.e. deactivation) 
(Fig. 8). Inspection of repetitive vs. alternating hand movements suggested that this pattern 
could be indicative of an inhibition mechanism of the ipsilateral hemisphere. In addition, a 
single-block level analysis, using only 12 time points corresponding to a 36 second recording 
session, was enough to determine which hand was moved by the subject, while other methods 
required the entire experiment time course. Moreover, cluster quantification based on 
eigenvalue entropy showed lower entropy for the motor-dominant hemisphere clusters. This 
lower entropy demonstrates less variability in the cluster's correlations, suggesting a higher 
modular organization in specific motor dominant hemisphere. 

The MST was extracted for each subject and each block. The divergence rate measure was used 
for quantification of the structural similarities and differences of the system under the two 
different conditions of right or left hand movement. Fig. 9 displays examples of the 
dendrograms constructed from the divergence rate measure. Each dendrogram represents the 
distance, i.e. the divergence rate measure or similarity between all pairwise MSTs of the 
experiment's different blocks. Half of the subjects exhibited good separation between right and 
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left hand movement MSTs (e.g. Fig. 9a), displaying clusters of 3-4 same hand movement trees. 
The other half of the subjects did not yield such good separation (e.g. Fig. 9b). Fig. 10 depicts 
the MSTs for a single subject that showed good separation. To elucidate the functional and 
structural meaning of the MST, the tree's nodes were colored according to their location in the 
brain; the red and blue colors represent voxels in the right and left hemisphere respectively, 
while yellow represents the midline SMA region. All the resulting MSTs showed two distinct 
clusters, one dominated by the right (red) and one by the left hemisphere (blue). The 
interesting result is that this representation highlights for all blocks a few red voxels in the blue 
cluster and blue ones in the red cluster, these voxels are the same in every block.  

 

Fig. 8. FH applied on fMRI data. Presented here is an example of the results of a right-
handed single subject, for a right hand movement block (12 TRs). (a) The correlation matrix 
shows a pattern of two dominant distinguished clusters. (b) The magenta cluster averaged 
BOLD signal demonstrated clear activation, whereas the green cluster showed deactivation. 
(c) The magenta activation cluster was located at the left hemisphere in the M1 region and, 
as expected. The second green cluster was located in the M1 region of the ipsihemisphere. 
(d) and (e) show the holographic presentations of the voxels or the holographic networks 
while the voxels with correlations above 0.8 are linked in (d) and voxels with correlations 
below -0.4 are linked in (e). (f) Displays the corresponding holographic networks on the 
brain slice image for correlations with a specific range of 0.98-0.99 and (-0.9)–(-1.0). 

To further investigate whether the two groups of subjects as obtained by the divergence rate 
measure, differed in terms of topological structure of their functional networks of correlated 
activity, the MST was used in combination with the FH visualization. The MST constructed 
for every single block shows a good separation between the hemispheres. For half of the 
subjects, the divergence rate measure allowed to partition the MSTs into two clusters of 
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right and left hand movements. Figs.11-15 depicts the MSTs on the FH correlation PCA 
space, and on the anatomical brain slice image of a single subject that showed a good 
separation between right and left hand movements (Figs.11-12). A single subject who did 
not yield a good separation is also shown (Figs.13-15). Looking at the dynamic changes of 
the MSTs along the experiment time course in the anatomical slice image it becomes visible 
that blocks of sequences of repetitive hand movements resulted in numerous connections 
between the clusters as opposed to the alternating hand movements' blocks. The graph in 
Fig. 16 displays the average Z score of the number of connections between the clusters for 
each block across subjects (N=15). This demonstrates that these two kinds of sequences can 
also be differentiated by the MST visualization. 

 

Fig. 9. Dendrograms constructed from the divergence rate measure for two different 
subjects. Each dendrogram represents the distances i.e. the divergence rate measure 
between all pair wise MSTs. The dendrogram clusters all the MSTs that show similar 
structure. The subjects were divided into two groups; (a) An example of a subject who's 
MSTs had much similarity showing clusters separating between right and left hand 
movement MSTs. (b) An example of a subject that showed no distinct clusters for MSTs 
associated with right and left hand movements. 

 

Fig. 10. Example of the MSTs constructed for a single left-handed male subject that shows a 
good separation in the divergence rate dendrogram. Displaying the MSTs for all the 
experiment's ten blocks i.e. right hand (RH) and left hand (LH) movements. The MST color 
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coded according to the brain anatomic structure. The red and blue colors represent the right 
and left hemisphere voxels respectively, and the yellow color represents the SMA area. The 
MSTs give a good separation between the right and left hemisphere. Note that in every MST 
there are few red voxles in the blue cluster and one blue voxle in the red cluster, since all the 
voxles are labeled  a closer inspection shows that these outlier voxels are the exact same 
voxles in every MST.  

 

Fig. 11. The MSTs from fig. 10 constructed on the FH affinity PCA space. Displaying the 
MSTs of a subject that resulted in a good separation between right and left hand MSTs, 
showing high similarity between right hand block MSTs, and between left hand block MSTs. 
Each 3D graph represent the same voxels (color coded according to their original cluster 
with magenta and green), for each experiment block. These voxels are presented in their 
new location in the correlation space and connected according to the block's MST with lines 
color coded according to their correlation coefficient.  In this visualization it is hard to detect 
the similarities and dissimilarities between the tree's structures. However it becomes visible 
in this case, that right hand movement's MSTs yielded a better separation of the clusters as 
opposed to left hand movements. 
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Fig. 12. The same MSTs from figs. 10 and 11 constructed upon the brain slice EPI image. This 
presentation shows that according to the MSTs the two hemispheres are highly coupled 
(with positive correlation and with negative correlation) in the motor task. 

 

Fig. 13. Example of the MSTs constructed for a single left-handed subject that does not show 
a good separation in the divergence rate dendrogram. Displaying the MSTs for all ten blocks 
i.e. right hand (RH) and left hand (LH) movements. The red and blue colors represent the 
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right and left hemisphere voxels respectively, and the yellow color represents the SMA area. 
Although this subject does not yield a good separation between the right and left hand 
MSTs his MSTs do show a good separation between the right and left hemispheres.  

 

Fig. 14. The MSTs from fig. 13 constructed on the FH affinity PCA space. Demonstrating the 
MSTs of a subject who displayed no similarities or dissimilarities between right and left 
hand block MSTs in the divergence rate dendrogram tree. 
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Fig. 15. The same MSTs from figs. 13 and 14 constructed upon the brain slice image. In this 
presentation, the two hemispheres seem to be highly negatively connected within the motor 
task blocks. 

The topological structure of the constructed tree allows visual tracking clusters of nodes, 

and the variations undergone by the system as it faces different experimental conditions. 

This visualization is of paramount importance when dealing with highly complex systems, 

and is particularly helpful in the identification of clusters and their hierarchies. Thus two 

different clusters, each dominated by one hemisphere (figs. 10 and 13) or "outlier" voxels, 

which may have an important part in inter-hemispheric communication, could be 

highlighted.  

Finally we point out one drawback of the MST method. When applied on a correlation-
based system the MST uses the shortest distances. This induces a bias to positive 
correlations, while anti-correlations are overlooked. Further analysis of the data treating 
positive and the negative correlations on a par level (e.g. using the absolute values of the 
correlation matrix) may be recommended. 

Overall, with this extremely simple example, we have illustrated how analyzing a very basic 
topological network property of networks of correlated activity associated with different 
cognitive conditions can reveal, in a rather parsimonious way, it's most important 
connections, suggesting the potential of this type of analysis in dealing with more 
challenging and rich data. 
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Fig. 16. The averaged Z score of number of links in the MST connecting the two clusters 

across subjects (N=15) for each experiment block. The two repetitive hand movements (i.e. 

blocks 2 and 8) resulted in higher average than the rest of the blocks. A statistical Z-test was 

calculated for each block with the null hypothesis that the scores in each block are a random 

sample from a normal distribution with mean zero. According to this test the two repetitive 

hand movements were found significant (p=2x10-4 and p=6.9x10-10 for blocks 2 and 8 

respectively).  

3. Conclusion 

Over the past two decades, the development of new neuroimaging techniques has produced 

spectacular improvements in the amount of detail with which brain activity can be 

monitored. As precision has rapidly been gained, though, so has the typical data set size 

grown steadily. The range of questions that researchers and clinicians alike have started 

finding an answer for with neuroimaging techniques has also dramatically expanded.  All 

this, in turn, has created a demand for new methods of data analysis, These new methods 

were developed on the one hand to provide new ways to represent brain activity, and on the 

other hand, to make quantitative sense of the rich information embedded in very high 

dimensional data and to visualize them in a way that can be read and understood in a 

sufficiently straightforward way by researchers first and, ultimately, by clinicians. 

In this chapter, we presented FH a method which effectively tackles these issues. The FH 

algorithm deals with the multivariate and multiscale nature of brain imaging data sets and 

simplifies their complexity by representing patterns in a low-dimensional space which 

preserves the higher dimensional information of the original pattern of connectivity. In this 

sense, the FH analysis may be regarded as a system-level analysis that produces a complete, 

holographic, representation of brain activation.  
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The method also provides an effective visualization of the system, of critical importance 

when dealing with highly complex systems, and is particularly helpful in the identification 

of clusters and their hierarchies. Even more important though is the ability of the FH 

analysis to reveal subtle, system-level dynamical features that are hard to detect through 

other methods, even at the single subject level. And that might be overlooked due to prior 

assumptions by hypothesis-driven methods. In fact, the FH method can capture sensitive 

hemodynamic variations at the single block level, without further need for averaging or for 

contrasts between experimental conditions. In addition the method requires far less time 

point to localize activations than other clustering methods, viz. ICA (Bell & Sejnowski, 1995), 

FCA (Windischberger et al., 2003) or TCA (Zhao et al., 2007), suggesting that the FH method 

may play a prominent role in the development of classification algorithms for blind 

identification of different conditions in extremely short time series.  

It is important to portray the FH method not only as an alternative but also as a valuable 
complement to existing methods. For instance, its dimension reduction step could be carried 
out using a variety of clustering techniques. Perhaps even more cogently, there is a clear 
complementarily between network theory and the FH method. The application of the 
former that we presented, i.e. the MST, clearly represents but one out of the many possible 
applications. To the extremely vast field of issues that network theory allows to address in a 
versatile but quantitatively rigorous and qualitatively explicit way, the FH method adds a 
compact representation in an auxiliary field that makes functional networks more explicit, 
as it divorces them from the anatomical space in which they live. 

A distinctive quality of the FH method is represented by its versatility. While originally 

developed for cultured neural networks, the method can be applied to the analysis of 

essentially any type of signal, including the main tools for system-level neuroimaging, viz. 

EEG/MEG and fMRI.  Although fewer examples of application to the latter are and further 

investigation of the method on different (viz. event-related) designs is needed, the proposed 

method shows great potential even for fMRI data in differentiating experimental conditions 

particularly when the corresponding signals are separated (Jacob et al., 2010). Since the 

outcome of the analysis is a holographic presentation in an abstract reduced space, it 

represents an ideal tool for multi-modal analysis of data from experiments combining EEG´s 

temporal precision with fMRI´s spatial one. Finally, the principles and implementation of 

the FH analysis are relatively simple and straightforward; taken together with the methods 

efficiency in delineating and tracking the time-varying unfolding of fine details of clustered 

activity at different spatial scales, it may represent a tool of election for brain scientists and 

for clinical neurologists alike.   
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