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1. Introduction 

Widespread concerns over the integrity of natural ecosystems worldwide have initiated 
numerous attempts at developing new tools of monitoring present conditions, assessing 
future risks and visualizing alternative futures. Reports on the ‘state of the world’ abound 
and so do policy proposals and sustainability strategies. Amidst this plenty of ideas, our 
ability to reverse the trend and secure a safe, minimum stock of valuable natural capital 
seems counterproductive. A better understanding of ecosystem dynamics at both the 
quantitative (biochemical cycling) as well as the qualitative (ecological structure of food 
webs) levels, without artificial divisions between them, is needed. We also need to 
understand better the institutional failures leading to a growing number of ‘tragedies of the 
commons’. 
To tackle these challenges appropriately, current environmental management strategies 
need to 'navigate' through an apparent tension: On the one hand they must meet the 
demand for scientific knowledge-based policy, expressed under the motto 'science speaks to 
policy'. On the other hand, the very same strategies urge for stakeholder involvement and 
sponsor initiatives to elicit lay-people attitudes, beliefs and visions for the future. This 
tension seems to reflect the ever lasting stand-off of bottom up and top down approaches.  
The motivation for this chapter comes from the authors’ uneasiness with the present 
methodological arsenal in the domain of environmental stakeholder analysis. Previous 
research on non-market valuation of environmental assets has shown the importance of 
complementing the neoclassical microeconomic framework of choice in stated preference 
surveys with qualitative - both ex ante and ex post – analysis of individual mental processes, 
perceptions and beliefs (Kontogianni et al, 2001, 2005, 2008). Especially applications of 
contingent valuation have benefited from in-depth interviews and focus groups conducted 
ex ante in order for the researcher to understand the cultural, social and psychological 
background of choices elicited through structured interviews. (Desvousges & Smith 1988, 
Brouwer, 1999). In spite though of the importance of stakeholder qualitative analysis in 
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stated preferences valuation techniques, we still lack a coherent, standardized approach to 
analyze environmental perceptions and beliefs. The need to fill the gap becomes apparent 
when we recognize the fact that the way non-experts articulate complex relationships, such 
as those governing marine ecosystem functions, have their own special weight in 
influencing policy design and implementation: they transcend the fact/value divide (senso 
Putnam 1985) and offer valuable insights on the ways cause and effect relationships in 
nature are perceived (Karageorgis et al., 2006). 
Fuzzy Cognitive Mapping (FCM) was thus selected as a suitable method for semi-
qualitative analysis to achieve our research goal. In this chapter we introduce the reader to 
the concept of Fuzzy Cognitive Maps (FCMs) and their theoretical background. In section 2 
we summarize the state-of-the-art in qualitative, stakeholder analysis for environmental 
management. We then present the structure of FCMs (section 3) and the analytical use of 
graph theory in defining relevant indices (section 4). We proceed with the development of 
FCMs (section 5) and the FMC inference and simulation processes (section 6). After 
presenting the theoretical structure, the practical steps involved in the design and 
implementation of a FCM exercise are codified (section 7). We then illustrate the concepts 
discussed so far with a practical application implemented by the authors in The Black Sea 
(section 8) before we summarize and conclude in section 9. 

2. The many facets of stakeholder analysis in environmental management 

Integrated approaches to environmental planning with proper stakeholder involvement 
offer a possible way forward. Such an approach needs to facilitate communication within 
multidisciplinary research teams; it needs to recognize the functional continuity from 
watersheds to the coasts to the open sea, thereby helping to locate the scale of intervention 
less on the base of traditional jurisdictions and more towards appropriate ecosystem scales. 
Last but not least, it must encompass participatory management schemes which promise a 
substantive change in the exploitation of local knowledge. By enhancing stakeholder 
involvement, participatory management strengthens policy relevance, diminishes 
uncertainties, improves monitoring and raises enforcement rates (NRC 1996, OECD 2005). 
Participatory (or deliberative) approaches to environmental management are usually 
grouped under the general term of stakeholder analysis (Grimble and Wellard 1997, Bryson 
2004, Reed et al., 2009). Stakeholder analysis in turn can be divided into what we opt to call 
macro-stakeholder and micro-stakeholder analysis. The former category includes all those 
qualitative approaches that refer to the interaction of social groups and their dynamics: 
social networks analysis (Scott, 2000, Carrington et al 2005, Turnpenny et al., 2005), analysis 
of conflicts (Howard, 1989, Hjortso et al. 2005, 2010; Stoney & Winstanley, 2001), and actor 
analysis (Hermans, 2008). The latter category refers to qualitative or semi-quantitative 
approaches, which explore individual perceptions, values and attitudes. These include: 
fuzzy cognitive mapping of social perceptions and values (Bots et al., 2000, Stone 2002), 
perceptions mapping (Bots, 2007), mind mapping (Buzan, 1993), concept mapping (Novak, 
1993), focus groups and in-depth interviews.  
Approaches in stakeholder analysis as described above share some common characteristics: 
they are 'eclectic but pragmatic' approaches with varying degree of sophistication, requiring 
in average a low in-depth academic investigation, but able to manipulate a vast quantity of 
soft information. Their strength lies primarily with thinking about problems than solving 
them. The present paper aims at contributing to a refinement of participatory management 
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tools by applying fuzzy cognitive mapping (FCM) to the exploitation of local knowledge.  
FCM fits the requirements stated above better than any of the other conceptual modelling 
techniques analyzed here. Most other methods are either too difficult for the type of 
stakeholders we are aiming for, or take too much time. Yet, FCMs have their own set of 
specific disadvantages as Kok (2009) overview them.  
In the case of stakeholders’ analysis for ecological modeling and environmental 
management, the FCMs have found a good number of applications. At first, Hobbs et al., 
2002 applied FCM as a tool to define management objectives for complex ecosystems 
(Hobbs et al., 2002). Next, Ozesmi and Ozesmi (2003, 2004) proposed a multi-step FCM and 
participatory approach of Stakeholder Group Analysis in Uluabat Lake, Turkey, for 
ecosystem observation. The multi-step fuzzy cognitive mapping approach analyzes how 
people perceive a system, and compare and contrasts the perceptions of different people or 
groups of stakeholders (Ozesmi & Ozesmi, 2004). 
After the pioneering work of Ozesmi & Ozesmi (2003, 2004), in environmental and 
ecological management topics, other researchers followed with more implementations of 
FCMs in this area. FCMs have been employed in a number of studies including a FCM for 
rapid stakeholder and conflict assessment for natural resource management (Hjortsø et al. 
2005; Robson & Kant, 2007), a FCM for modelling a generic shallow lake ecosystem by 
augmenting the individual cognitive maps (Tan & Ozesmi, 2006), FCM for predicting the 
effects of perturbations on ecological communities, thus to control on the fledging rate of an 
endangered New Zealand bird (Ramsey & Vetman, 2005), FCM for assessing local 
knowledge use in agroforestry management (Isaac et al., 2009), FCM for modelling of 
interactions among sustainability components of an agro-ecosystem using local knowledge 
(Rajaran & Das, 2009), FCM for predicting modelling a New Zealand dryland ecosystem to 
anticipate pest management outcomes (Ramsey & Norbury, 2009), FCM for cotton yield 
management in precision agriculture (Papageorgiou et al., 2009, 2010). 

3. The structure of Fuzzy Cognitive Maps 

Fuzzy Cognitive Mapping methodology is a symbolic representation for the description and 
modeling of complex systems. Fuzzy Cognitive Maps (FCMs) describe different aspects of 
the behavior of a complex system in terms of concepts. Each concept represents a state or a 
characteristic of the system and interacts with each other showing the dynamics of the 
system. FCMs have been introduced by Kosko, (1986) as signed directed graphs for 
representing causal reasoning and computational inference processing, exploiting a 
symbolic representation for the description and modeling of a system.  
In fact, FCM could be regarded as a combination of Fuzzy Logic and Neural Networks 
(Kosko, 1992). Graphically, FCM seems to be an oriented graph with feedback, consisting of 
nodes and weighted arcs. Nodes of the graph stand for the concepts that are used to 
describe the behavior of the system, connected by signed and weighted arcs representing 
the causal relationships that exist between the concepts (see Figure 1). It must be mentioned 
that all the values in the graph are fuzzy, so concepts take values in the range between [0,1] 
and the weights of the arcs are in the interval [-1,1]. Observing this graphical representation 
it becomes clear which concept influences other concepts by showing the interconnections 
between them. Moreover, FCM allows updating the construction of the graph, such as the 
adding or deleting of an interconnection or a concept. FCMs are used to represent both 
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qualitative and quantitative data. The construction of a FCM requires the input of human 
experience and knowledge on the system under consideration. Thus, FCMs integrate the 
accumulated experience and knowledge concerning the underlying causal relationships 
amongst factors, characteristics, and components that constitute the system.  
A FCM consists of nodes or concepts, Ci, i = 1…N, where N is the total number of concepts. 
Each interconnection between two concepts Ci and Cj has a weight, a directed edge Wij, 
which is similar to the strength of the causal links between Ci and Cj. Wij from concept Ci to 
concept Cj measures how much Ci causes Cj. In simple FCMs, directional influences take on 
trivalent values {-1; 0; +1}, where -1 indicates a negative relationship, 0 no causal relation, 
and +1 a positive relationship. In general, Wij indicates whether the relationship between 
the concepts is directed or inverse. The direction of causality indicates whether the concept 
Ci causes the concept Cj or vice versa. Thus, there are three types of weights: 
- Wij > 0 indicates a positive causality between concepts Ci and Cj. That is, the increase 

(decrease) in the value of Ci leads to the increase(decrease) on the value of Cj, 
- Wij < 0 indicates a inverse (negative) causality between concepts Ci and Cj. That is, the 

increase (decrease) in the value of Ci leads to the decrease (increase) on the value of Cj 
- Wij = 0 indicates no causality between Ci and Cj. 
It is important to note that Wij≠Wji in that causal relationship are not necessarily reversible. 
In Figure 1, an example FCM representation of the public health system is illustrated which 
has seven generic vertices (C1 to C7) and the weights (weighted edges) showing the 
relationships between concepts. 
 

 
Fig. 1. Example of FCM model of the public health system: (a) FCM graph, and (b) 
connection matrix (adapted from Montazemi & Conrath, 1986). 
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4. Data analysis using graph theory indices 

Graph theory methods help analyzing the structural properties of cognitive maps (Ozesmi 
& Ozesmi, 2003). During the interviews, participants develop a FCM of the critical variables 
by drawing and circling the considerations they believe are important in relation to the topic 
under consideration. Then the main factors are defined and coded as concepts. The fuzzy 
directional arrows to one or more preceding factors are represented by fuzzy linguistic 
weights (see section 6), which after defuzzification produce a representative numerical 
weight. Using the defuzzification method of Centre of Gravity (COG) (Zadeh, 1976) a 
numerical weight is produced for each connection between concepts. CoG is computed from 
the following equation: 
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where Nq is the number of quantization used to discretize the membership function 
( )B qy of the fuzzy output B. 

Thus they make-up a continuity map whereby concept Ci is preceded by concept Cj 
indicating a cause-and-effect relationship. Each individual map is analyzed in relation to the 
number of concepts, connections, connection-to-concept ratio, and density (calculated by 
dividing the number of connections in the map by the square value of concepts). To allow 
for identification of key criteria within the process of cognitive mapping, an analysis of 
domain and centrality is also conducted. The complexity level of each individual concept is 
revealed through a number of structural measures of cognitive maps, e.g. the centrality 
index borrowed from social networks analysis. 
According to graph theory an effective way to better understand the structure of complex 
cognitive maps is condensing them. Condensation is achieved by replacing subgraphs 
(consisting of a group of variables connected with lines) with a single unit (Harary et al. 
1965). Once the individual cognitive maps are drawn, they are qualitatively aggregated 
using clustering concepts to produce a condensed map named the collective FCM. Due to the 
complexity in FCM graphs (as the number of nodes and connections is often very large) the 
most central variables with their weighted connections are usually illustrated.  
Analyzing the structure of cognitive maps is to look how connected or sparse the maps are. 
This is expressed by an index of connectivity, called density of a cognitive map (D). The 
density is equal to the number of connections divided by the maximum number of 
connections possible between N variables, thus N2. If the density of a map is high then the 
interviewee sees a large number of causal relationships among the variables.  
The structure of a cognitive map apart from number of variables and connections can best be 
analyzed by finding transmitter variables (forcing functions, givens, tails, independent 
variables), receiver variables (utility variables, ends, heads, dependent variables) and ordinary 

variables (Bougon et al. 1977; Eden et al. 1992; Harary et al. 1965). These variables are defined 
by their outdegree and indegree. Outdegree is the row sum of absolute values of a variable in the 
adjacency matrix and shows the cumulative strengths of connections (Eij). It is a measure of 
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how much a given variable influences other variables. Indegree is the column sum of absolute 
values of a variable and shows the cumulative strength of variables entering the unit. 
Transmitter variables are units whose outdegree is positive and their indegree is 0. Receiver 

variables are units whose outdegree is 0 and their indegree is positive. Other variables, which 
have both non-zero outdegree and indegree, are ordinary variables (means) (Eden et al., 1992, 
Ozesmi & Ozesmi 2004). This type of variables reveals how people think about the causal 
relationships. For instance, if someone views a variable as a transmitter, this means that he 
perceives of the relative causal relationship as forcing function, which cannot be controlled 
by any other variables. In contrast, a receiver variable is seen as not affecting any of the 
other variables in the system. The total number of receiver variables in a cognitive map can 
be considered an index of its complexity. Larger number of receiver variables indicates that 
the cognitive map considers many outcomes and implications that are a result of the system 
(Eden, 1992). Many transmitter units show the "flatness" of a cognitive map where causal 
arguments are not well elaborated (Eden et al. 1992).  
Centrality is the most important measure for map complexity, borrowed from social 
networks analysis, and is the summation of variable’s indegree and outdegree (Bougon et 
al., 1977; Eden et al., 1992). Actually the centrality shows how connected the variable is to 
other variables and what the cumulative strength of these connections is. Another structural 
measure of cognitive maps is the hierarchy index (h), which is a function of the out-degrees 
and number of variables in a given map and represents the type of system as fully 
hierarchical, or democratic (see Ozesmi & Ozesmi, 2004, pp. 50–51 for formulas). 

5. Development of Fuzzy Cognitive Maps 

The design of a fuzzy cognitive map is a process that heavily relies on the input from 
experts and/or stakeholders (Hobbs et al., 2002). This methodology extracts the knowledge 
from the stakeholders and exploits their experience of the system’s model and behaviour. 
FCM is fairly simple and easy to understand for the participants, which opens up the 
possibility for involving lay people as well as planners, managers and experts (Isaac et al. 
2009). Even though the cognitive nature of a FCM makes it inevitably a subjective 
representation of the system, Tan & Özesmi (2006) emphasize that the model is not arbitrary 
as it is built carefully and reflexively with stakeholders (in groups or individually).  
According to the FCM development process, at the first step of the construction process, the 
number and kind of concepts are determined by a group of experts and/or system 
stakeholders that comprise the FCM model. Then, a domain expert and/or stakeholder 
describe each interconnection either with an if-then rule that infers a fuzzy linguistic 
variable from a determined set or with a direct fuzzy linguistic weight, which associates the 
relationship between the two concepts and determines the grade of causality between the 
two concepts. 
For example, someone can assign the strength of influence of concept Cj on concept Ci using 
the following form: “The strength of influence of concept Cj on concept Ci is T{influence}” 

where the variable T{influence} declares the causal inter-relationships among concepts (i.e. the 
degree of influence from concept Cj to Ci). Its term set T{influence} is suggested to comprise 
thirteen variables and takes values in the universe U=[-1, 1]. Using thirteen linguistic variables, 
an expert can describe in detail the influence of one concept on another and can discern 
between different degrees of influence. The thirteen variables used here are: T(influence) =  
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{negatively very very strong, negatively very strong, negatively strong, negatively medium, 
negatively weak, negatively very weak, zero, positively very weak, positively weak, positively 
medium, positively strong, positively very strong, positively very very strong}. 
The corresponding membership functions for these terms are shown in Fig. 2 and they are 
μnvvs, μnvs, μns, μnm, μnw, μnvw, μz, μpvw, μpw, μpm, μps μpvs and μpvvs. 
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Fig. 2. The thirteen membership functions describing T(influence) 

The inference of the rule T{influence} means that the linguistic weight y (wij)  is μΒ, where μB is 
a linguistic variable from the set T. Also, experts and/or system stakeholders can directly 
assign the fuzzy linguistic weight y (that describes the strength of connection between 
concepts Ci and Cj) with no use of fuzzy rules. For example, someone can assign the strength 
of the connection between concepts Ci and Cj as follows: The influence from concept Ci to 
concept Cj is positively very high. 
Finally, the linguistic variables D from the set T(influence) - proposed by the experts for each 
interconnection - are aggregated using the SUM method and so an overall linguistic weight is 
produced (Papageorgiou & Stylios, 2008). Finally, the Center of Gravity (CoG) defuzzification 
method (Zadeh, 1986) is used for the transformation of the linguistic weight to a numerical 
value within the range [-1, 1]. This methodology has the advantage that experts are not 
required to assign directly numerical values to causality relationships, but rather to describe 
qualitatively the degree of causality among the concepts. Thus, an initial matrix Winitial = [Wij], 
i, j = 1,…,N, with Wii = 0, i = 1,…,N, is obtained. Using the initial concept values, Ai, which are 
also provided by the experts, the matrix Winitial is used for the determination of the steady state 
of the FCM, through the application of the rule of Eq. (2) or (5).  

6. The FCM inference and simulation processes 

Using artificial intelligent techniques, the dynamics of a fuzzy cognitive map can be traced 
analytically through a specific inference and simulation process. Each one of the Cj concepts 

www.intechopen.com



 
International Perspectives on Global Environmental Change 

 

434 

can take values in the unit interval [0,1], also called the ‘activation level’. The activation level 
can be interpreted as relative abundance (Hobbs et al. 2002). More rigorously, the activation 
level can represent membership in fuzzy set describing linguistic measures of relative 
abundance (e.g. low, average, high) (Kosko, 1986).  
Values of the concept Ci in time t are represented by the state vector Ai(t) while the state of 
the whole fuzzy cognitive map can be described by the state vector 1 n(t)= [ (t),..., (t)]A A A  
representing a point within a fuzzy hypercube that the system achieves at a certain point. 
The whole system with an input vector A(0)  describes a time trace within a 
multidimensional space nI  that can gradually converge to an equilibrium point, or a chaotic 
point or a periodic attractor within a fuzzy hypercube. To which attractor the system will 
converge depends on the value of the input vector A(0) . 
The value Ai of each concept Ci in a moment t+1 is calculated by the sum of the previous 
value of Ai in a precedent moment t with the product of the value Aj of the cause node Cj in 
precedent moment t and the value of the cause-effect link wij. The mathematical 
representation of the inference process of a fuzzy cognitive map has the following matrix 
form (Papageorgiou & Stylios, 2008): 

 

   k k -1 (k -1)= f( + )A A A W

 
(2)

 

Thus, the value Aj for each concept Cj is calculated by: 
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where ( 1)k
iA  is the value of concept Ci at simulation step 1k , ( )k

jA  is the value of concept 
Cj at step k , jiw  is the weight of the interconnection between concept Cj and concept Ci and  
f is a threshold (activation) function (Bueno & Salmeron, 2008). Sigmoid threshold function 
gives values of concepts in the range [0,1] and its mathematical type is:  

 

1
( )

1 
 mx

f x
e  

(4)
 

where m is a real positive number and x is the value ( )k
iA  on the equilibrium point. A 

concept is turned on or activated by making its vector element 1 or 0 in (0,1). The sigmoid 
threshold function is used to reduce unbounded weighted sum to a certain range, which 
hinders quantitative analysis, but allows for qualitative comparisons between concepts 
(Bueno & Salmeron, 2008). 
A modified FCM inference algorithm, which updates the common FCM simulation process 
as initially suggested by Kosko (1986) can be used to avoid the conflicts that emerge in cases 
where the initial values of concepts are 0 or 0.5, thus overcoming the limitation present by 
the sigmoid threshold function. This rescaled algorithm is implemented especially for the 
cases where there is no information about a certain concept/state or the expert/stakeholder 
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cannot describe efficiently the initial state of a variable (Papageorgiou et al., 2010, 
Papageorgiou, 2011). Thus, the eq. (2) is transformed to the eq. (5). 

 



     
1

( 1) (2 ( ) 1) (2 ( ) 1)
N

i i j ji
j i
j

A k f( A k A k E )

 

(5)

 

The FCM simulation process is initialized through assigning a value between 0 and +1 to the 
activation level of each of the nodes of the map, based on experts/stakeholder opinion for 
the current state; then the concepts are free to interact. The value of zero suggests that a 
given concept is not present in the system at a particular iteration, whereas the value of one 
indicates that a given concept is present to its maximum degree. Other values correspond to 
intermediate levels of activation. The activation level of each concept depends on its value at 
the preceding iteration as well as on the preceding values of all concepts that exert influence 
on it through non-zero relationships. The simulation, which with regard to its content is 
mainly qualitative, is not intended to produce exact quantitative values. It aims at 
identifying the pattern of system’s behaviour via the achieved values of the concepts of the 
FCM, which are progressively formed according to given considerations.  
After defining all variables and necessary values, as well as the relationships between them, 
the simulation is carried out by use of the simulator consisting of the following five steps: 
Step 1. Definition of the initial vector A that corresponds to the concepts identified by 

suggestions and available knowledge. 
Step 2. Multiply the initial vector A and the matrix W defined through equation (2) or (5) 
Step 3. The resultant vector A at time step k is updating using eqs. (2) or (5) and (4). 
Step 4. This new vector Ak is considered as an initial vector in the next iteration. 
Step 5. Steps 2–4 are repeated until  A A

1k k e = 0.001 (where e is a residual describing the 

minimum error difference among the subsequent concepts) or A A
1k k . Thus A_f 

= Ak . 
In each step of the cycling the values of concepts change according to the equation (2) or (5). 
This interaction between concepts continues until: i) a fixed equilibrium is reached, ii) a 
limited cycle is reached or iii) a chaotic behavior is exhibited. Actually, in most cases, the 
iteration stops when a limit vector is reached, i.e., when k k -1

A = A or when  A A
1k k e ; 

where e is a residual, whose value depends on the application type (and in most 
applications is equal to 0.001). Thus, a final vector A_f is obtained.  
In the previous analysis, all type of information has numerical values. FCM allows us to 
perform qualitative simulations and experiment with a dynamic model. Simulations allow 
for analysis of several aspects of FCMs, such as concepts activation levels at the final state (if 
there are any) and changes/trends in the activation levels throughout the simulation 
concerning either all concepts or a subset of concepts that is of interest to the user, and 
discovery of cycles (intervals, concepts activation levels within the cycle). This type of 
analysis allows investigating “what-if” scenarios by performing simulations of a given 
model from different initial state vectors. Once an FCM has been subjected to an initial 
stimulus, it is possible to gain insight into a system’s behaviour by studying the resulting 
stable state or cycle of states. Simulations offer description of dynamic behaviour of the 
system that can be used to support decision-making or predictions about its future states 
(Stach et al., 2010).  
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7. Steps in designing and implementing fuzzy cognitive mapping 

As with many other interview techniques, it is helpful to produce systematic guidelines 
describing the single steps of FCM before starting with the interviewing. These interview 
guidelines should function as a guidance/inspiration for how to conduct the interviews, 
and how to create FCMs over the case study areas. In this section we summarize the 
practical steps needed to design and conduct a FCM exercise. At first, how to draw a FCM 
must be explained to the interviewee(s)/stakeholder(s) using a cognitive map and its related 
FCM as an example. Once the interviewees understood the process of constructing a fuzzy 
cognitive map, then they are able to draw their own map of the issue under investigation 
following the steps below: 
Step 1: Identification of factors. 
Based on the guidelines, each one of the interviewee is asked to identify the main factors 
which come to his/her mind when he/she is asked about the topic been investigated, e.g. the 
future environmental risks in the Black Sea, seen as a system where humans, marine animals 
and plants are all living together. After the identification of the main factors affecting the 
environmental topic under investigation, each stakeholder is asked to describe the existence 
and type of the causal relationships among these factors and then assesses the strength of these 
causal relationships using a predetermined scale, capable to describe any kind of relationship 
between two factors, positive and negative. Thus, a FCM from each interviewee is established 
presenting the main factors/variables and the relationships among them and illustrating the 
individual’s perceptions about the topic under investigation.  
Step 2: Clustering of individual issues in more general concepts. 
After the individual perceptions are elicited by interviews, a number of individual maps are 
produced. It is essential that the original concepts-variables, as described by lay people from 
interview, be clustered in more generic or more specific concepts, because most of them 
present the same meaning with a different word. Using experts’ judgement, the importance 
of the original factors is discussed and they are then clustered. This can also be done 
through the construction of an ontological tree. This process of condensation enables 
aggregation of variables into high-level concepts, which then feed into the construction of 
the collective FCM.  
Step 3: Estimation of causal link strengths in collective FCMs  
The individual maps are then turned into a representative, collective map. To achieve this, 
all the suggested strength relations by lay people are transferred into linguistic variables 
using the aggregation method of SUM to obtain an overall linguistic weight. Following this, 
defuzzification turns linguistic weights into numerical weights in the range of [-1,1]. This 
condensed map is analyzed using the established indicators of out-degree, in-degree, 
centrality, density, hierarchy as well as the transmitter, receiver, and ordinary variables.  
Through this analysis the collective map is explained demonstrating its usefulness for 
identifying policies vis-à-vis individual FCMs.  
Step 4: FCM simulations 
Next a number of simulations are performed using the inference process given by equations 
(2) and (5). The calculated output of the FCM model shows how the system reacts under the 
assumptions given by the stakeholders or related users. Usually, the calculated output is 
different from the expected one, thus presenting a potential added value of Fuzzy Cognitive 
Map as a decision support tool. 
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8. An application of FCM in the Black Sea 

In order to illustrate in brief the methods described so far, we present a FCM exercise 
designed and implemented in the Northern Black Sea with Ukrainian stakeholders (for 
details see Kontogianni et al., forthcoming). In this application we were interested in 
investigating how the citizens perceive the future prospects and risks of the Black Sea 
marine environment; creating and analyzing their FCMs this can be achieved. We employed 
29 in-depth lay people interviews (see Appendix A). Based on specific guidelines, each 
interviewee was asked to identify at first the main factors which come to his/her mind 
when he/she is asked about the Black Sea as a system where humans, marine animals and 
plants are all living together. During the interviews participants developed thus a FCM of 
the critical variables (important considerations) by drawing and circling the considerations 
they believe are important for environmental health of marine state ecosystem in the Black 
Sea area.  
After the identification of the main factors affecting the environmental health of the marine 
ecosystem in the Black Sea, each stakeholder was asked to describe the existence and type of 
the causal relationships among these factors and then, the strength of the causal 
relationships-influences that may exist between these factors. This phase was implemented 
13 grades scale, numbering from -6 to + 6, capable to describe any kind of relationship 
between two factors, positive and negative (see Table 1).  
Thus, a FCM from each interviewee was established presenting the main factors/variables 
and the relationships among them illustrating the individual’s perceptions about the future 
prospects and the risks about the ecological health of the marine environment in the Black 
Sea. Figure 3 illustrates the produced FCM defined by an individual/stakeholder from 
Ukraine for further assessment.  
The initial number of important factors identified by stakeholders was 52. Since it was 
decided to produce a collective FCM providing detail for future risks-related issues we 
limited the number of factors having the same meaning through clustering. Using marine 
experts’ judgement, the importance of the original 52 factors was discussed and then 
clustered in a total of 26 concepts (Table A in Appendix). The mean number of variables in 
the individual cognitive maps of the Black Sea ecosystem drawn by the 29 respondents was 
7.86 ± 1.7, with 11± 6.513 connections on average between the variables that they defined. 
There were a total of 26 variables with 145 connections in the collective cognitive map 
obtained by clustering and augmented the 29 individual FCMs. 
The process of condensation enabled aggregation of variables into high-level concepts, 
which then feed into the construction of a collective FCM for Ukrainian stakeholders.  
The collective FCM (consisting of 26 concepts and 145 relationships among concepts) is  
thus obtained (see Figure 4 developed in pajek software [http://vlado.fmf.uni-
lj.si/pub/networks/pajek/]). 
The collective FCM was then coded as adjacency matrix E=[eij] and its structure was 
analyzed using the indices derived from graph theory (see section 4). Due to the complexity 
of the collective FCM graph (as the number of nodes and connections is very large) Figure 5 
illustrates the most central variables with their weighted connections. 
It is observed from graph indices calculations that the density of collective FCM is high and 
a mentioned complexity is present. A relatively high complexity is considered in the cases 
where the receiver variables are more than the transmitter variables, and in our case, the 
complexity is equal to 1.5 (complexity>1 means relatively high complexity). The most 
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frequently mentioned (> 3 times) variables that were recurrent in the 29 fuzzy cognitive 
maps are: ‘Coastal Development’, ‘Biodiversity’, ‘Tourism’, and ‘Municipal Solid Waste’. 
 

Strength connection by lay 
people 

Sign and Strength of relationship 
(Linguistic weight) 

Interpreted crisp 
weight 

-6 Negatively very very strong -1 

-5 Negatively very strong -0.9 

-4 Negatively strong -0.75 

-3 Negatively medium -0.5 

-2 Negatively weak -0.3 

-1 Negatively very weak -0.1 

0 Zero  0 

1 Positively very weak  0.1 

2 Positively weak 0.3 

3 Positively medium 0.5 

4 Positively strong 0.75 

5 Positively very strong 0.9 

6 Positively very very strong 1 

Table 1. Interpretation of lay people’s strength connections among concepts to crisp weights 
in the range [-1,1]. 

 

 
Fig. 3. The individual FCM defined by an individual/stakeholder from Ukraine. 
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Fig. 4. The collective fuzzy cognitive map of Ukrainian stakeholders. 

www.intechopen.com



 
International Perspectives on Global Environmental Change 

 

440 

 
Fig. 5. The collective FCM with most central variables and strong connections. 

Table 2 gathers the calculated graph theory indices for the collective map and the sum of the 
29 individual maps. 
 

Indices Individual Maps Collective FCM 

Maps 29 1 
Variables (N) 7.86 ± 1.574 26 
Number of connections (W) 11± 6.513 145 
No. of transmitter variables (T) 2.21 ± 1.544 2 
No. of receiver variables (R ) 1.96 ±1.267 3 
No. of ordinary variables (O) 3.21 ±1.445 21 
Connection/Variable (W/N) 1.33 ±0.617 4.577778 
Complexity (Receiver/Transmitter) 1.02 ±1.198 1.5 
Density (D=W/N^2) 0.167 ± 0.065 0.101728 
Hierarchy index (h) 0.017 ± 0.005 0.012944 

Table 2. Average (± SD) graph theoretical indices of the individual FCMs and the indices of 
the collective FCM. 

The collective FCM was then used for analyzing system behaviour and to run management 
simulations. Simulations were generated using both inference equations, eq. (2) and rescaled 
eq. (5), by taking the product of the vector of initial states of variables (A0) times the square 
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matrix E of the collective map. Simulations were generated using the five steps described 
previously implemented in Matlab R2008a environment for Windows. At first, we 
determine the steady state condition of the system’s convergence before we consider any 
management options. We are doing this in order to be able to see the perceived tendency of 
the Black Sea ecosystem based on the collective cognitive map and test for its internal 
coherence. For this purpose, we run the generic FCM model with 50 different random initial 
states for all variables between 0 and 1 drawn from a uniform distribution. In all of these no-
management simulations, the system reached a steady state after 25-30 iterations, where 
some of the produced final steady states for each initial condition were different. By 
excluding a chaotic behavior, we accordingly confirm a dynamically stable and coherent 
mental structure of our sample. 
Then, we consider a number of assumptions for the concepts and risk factors, which affect 
the future state of the environmental health of marine ecosystem in the Black Sea to analyze 
the system performance and its decision-making capabilities. Initially, we considered a case 
where all concepts are set to zero. This means that all concepts are not activated for this 
specific consideration. After 23 iterations the FCM system reaches a final state where the 
concepts “Biodiversity” and “Ecological State” exhibit very high values and therefore 
increase the environmental health of marine ecosystem. This is an upper bound for the Black 
Sea ecosystem health, conditioned by the basic structure of respondents’ cognitive reality.  
In a next step, we consider a case where all concepts are set to one, meaning that the 24 
factors are fully activated under this assumption. After 20 iterations the system reaches a 
final state where “Biodiversity” and “Ecological State” respectively clamp to zero. This is a 
lower bound for the Black Sea ecosystem health, conditioned by the basic structure of 
respondents’ cognitive reality.  
In-between these two extreme cases, we develop a number of policy scenarios, based on a 
number of ad hoc interventions for the Black Sea ecosystem conservation. In these 
interventions, individual concepts and groups of concepts consequently were considered to 
be activated and the final state of FCM system under these scenarios determined. Each 
simulation runs under two different versions where the activated concepts are set either one 
or 0.5. The rationale for this approach is to test the influence of uncertainty in the 
functioning of the other concepts. The value of 0.5 means there is uncertainty concerning the 
true state of the impact of the other concepts. The calculated output of the FCM model 
shows how the system reacts under the assumptions given by the stakeholders or related 
users. Usually, the calculated output is different from the expected one, thus presenting a 
potential added-value of Fuzzy Cognitive Map as a policy making tool. 
One sample policy making scenario is presented. The five most central concepts- MSW 
(Municipal Solid Wastes), HA (Human Activities), Urban Sewage, IA (Industrial Activities), 
HAB (Harmful Algal Blooms)- are considered as the only de-activated concepts whereas all 
the other 21 concepts are considered as activated concepts that take values: (a) equal to 1 
and (b) equal to 0.5, depicting strong activation or uncertainty state. Table 3 depicts the 
calculated values of all concepts in the final state for the considered scenarios (a) and (b), 
main observations being the high values of Biodiversity (Bd) and Ecological State of marine 
environment (ECOL). A significant increase to Biodiversity and ECOL state is a potential 
outcome of conservation policies regulating the input of those five most central concepts 
acting as risk factors. Thus the future state of the marine ecosystem could be improved if the 
five most central concepts might decrease at a significant amount. 
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Concepts 

Initial 

values- 

Scenario 

(a) 

Final state 

–eq. (5) 

Scenario 

(a) 

Final state 

–eq. (2) 

Scenario 

(a) 

Initial 

values- 

Scenario 

(b) 

Final state –

eq. (2) 

Scenario 

(b) 

Final state- 

eq. (5) 

Scenario 

(b) 

AOSP 1.00 0.7103 0.8808 0.5 0.8800 0.2835 

Bd 1.00 0.0004 0.0005 0.5 0.0007 0.9974 

BW 1.00 0.7290 0.8069 0.5 0.8063 0.3024 

CD 1.00 0.8113 0.9097 0.5 0.8868 0.3855 

CW 1.00 0.8558 0.9721 0.5 0.9718 0.1635 

D-Distrust to State 1.00 0.8284 0.9303 0.5 0.9295 0.3751 

DFS 1.00 0.9903 0.9974 0.5 0.9972 0.0174 

HAB 0 0.9938 0.9986 0 0.9986 0.0162 

HA 0 0.7297 0.3376 0 0.3346 0.2689 

IA 0 0.5125 0.7095 0 0.7049 0.4638 

ISP 1.00 0.7903 0.8367 0.5 0.8365 0.2359 

LF 1.00 0.7103 0.8162 0.5 0.8161 0.4114 

M- Mining 1.00 1.0000 1.0000 0.5 0.5000 0.5000 

MC 1.00 0.9842 0.9924 0.5 0.9922 0.0235 

MR 1.00 0.3199 0.4806 0.5 0.4808 0.5738 

MSW 0 0.9664 0.9964 0 0.9950 0.0955 

PPP 1.00 0.7270 0.8281 0.5 0.8280 0.4026 

PSA 1.00 0.7581 0.8754 0.5 0.8737 0.3187 

RAW 1.00 1.0000 1.0000 0.5 0.5000 0.5000 

RP 1.00 0.6315 0.7144 0.5 0.7140 0.3678 

S- Urban Sewage 0 0.7332 0.8591 0 0.8572 0.3698 

Si-Siltation 1.00 0.9169 0.9379 0.5 0.9378 0.0933 

SLR 1.00 0.8314 0.8655 0.5 0.8653 0.1948 

Sphi 1.00 0.9970 0.9953 0.5 0.9952 0.0061 

Tourism 1.00 0.2055 0.1535 0.5 0.1520 0.7777 

ECOL 1.00 0.0026 0.0055 0.5 0.0056 0.9913 

 

Table 3. Initial and final concepts’ state after 25 iterations for Scenario (a) and (b). 
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9. Summary and conclusions 

In this chapter, the FCM methodology was presented and analyzed for the elicitation and 
understanding of individual and collective knowledge, preferences and beliefs. The aim was 
to present to the reader both a theoretical underpinning of FCMs as well as a grasp of their 
empirical modalities.  
A cognition model, like FCM, represents a system in a form that corresponds closely to the 
way humans perceive it. Therefore, the model is easily understandable, even by a non-
professional audience and each parameter has a perceivable meaning. The model can be 
easily altered to incorporate new phenomena, and if its behavior is different than expected, 
it is usually easy to find which factor should be modified and how. In this sense, a FCM is a 
dynamic modeling tool in which the resolution of the system representation can be 
increased by applying a further mapping. The FCM methodology developed makes it 
possible, if the initial mapping of the risk factors and future prospects of marine ecosystem 
is incomplete or incorrect, to make further additions to the map, and to predict the effects of 
the new parameters considered.  
FCMs have some specific advantageous characteristics over traditional mapping methods: 
they capture more information in the relationships between concepts, are dynamic, 
combinable, and tunable, and express hidden relationships (Kosko, 1986, 1992). The 
resulting fuzzy model can be used to analyze, simulate, and test the influence of parameters 
and predict the behavior of the system. Summarizing, FCM helps describe the schematic 
structure, represent the causal relationships among the elements of a given decision 
environment, and the inference can be computed by a numeric matrix operation. With FCM 
it is usually easy to find which factor should be modified and in which way.  
To illustrate the FCM methodology, an empirical application for modelling lay people 
perceptions is presented. We describe the main features of a FCM exercise designed to elicit 
the Black Sea stakeholder views/ perceptions about the risks that the Black Sea may face in 
the future 20 years. A generic model for environmental management is constructed by 
augmenting the individual FCMs drawn by lay people-stakeholders from Ukraine. The 
graph theoretical indices were calculated out of the individual cognitive maps and the 
collective cognitive map produced by augmentation. A number of scenarios were run using 
the FCM inference process to enable us to understand the complex structure of the Black Sea 
problems and the risks mainly affecting its marine ecosystem. This knowledge is further 
used to design policies that contribute in environmental management. The results show its 
functionality and demonstrate that the use of FCMs is reliable and efficient for this task. 

10. Acknowledgment 

This research was carried out within the IP project SESAME funded by the EU under 
Framework Programme 6, Key Action "Global change, climate and biodiversity",  Contract 
No. 2006-036949. We thank the Coordinator Dr. E. Papathanassiou for his encouragement to 
apply early in 2008 Fuzzy Cognitive Mapping  in marine governance. 

11. Appendix A 

Interview protocol 
Stage (1): A Formal Introduction 
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Which is the Aim of the study? 
What is cognitive mapping methodology? Example cognitive map and fuzzy cognitive map 
from the public health study is depicted. Explanation on main factors and how these factors 
are interrelated is presented. 
Stage (2) Creation of individual FCM 
Which factors, which things, come into your mind spontaneously if I mention to you the 
Mediterranean (Black) Sea as a system where humans, marine animals and plants are all 
living together? 
Is there any positive or negative relationship between these factors?  
How strongly a factor A influences another factor B? A scale having 12 grades capable to 
describe any kind of relationship between two things is given. 
Stage (3): Conclusion 
Strong words/phrases they used, general comments of the interview. 

12. Appendix B 

 

Concepts Abbreviation Description 
of concepts 

 Concepts Abbreviation Description 
of concepts 

C1 AOSP Accidental 
oil spill 
pollution 

 C14 Sphi Sulphide 
Increase 

C2 Tourism Tourism  C15 IA Industrial 
Activities or 
Industrial 
Pollution 

C3 PST Pollution of 
Sea Trade 

 C16 S Urban 
Sewage 

C4 CD Coastal 
Development

 C17 ISP Invasive 
species 

C5 BD Biodiversity  C18 MSW Municipal 
solid waste 
pollution to 
the sea 

C6 ChemW Chemical 
wastes 

 C19 MR MR= Marine 
Research 

C7 D Distrust to 
State & 
Institutions 

 C20 RP Riverine 
Pollutants 

C8 DFS Depletion of 
Fish Stocks 

 C21 SLR Sea level rise 

C9 RAW Radio-active  C22 BW Ballast 
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Waste Waters (ship 
dumps) 

C10 PPP Polluter 
Pays 
Principle 

 C23 Si Siltation 

C11 LF Luck of 
Financing 

 C24 M Mining 

C12 MP Microbio-
logical 
Pollution 

 C25 HAB Harmful 
Algae 
Blooms 

C13 HA Human 
activity 

 C26 ECOL  Ecological 
State of the 
marine 
environment 

Table A. 26 clustered concepts describing stakeholders’ perceptions. 

 
 
 

 

 
 
 
 

Fig. B1. A cognitive map defined by an individual/stakeholder from Ukraine. 
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AOSP
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Fig. B2. The collective FCM with the eighteen most mentioned concepts and their related 
interconnections. 
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