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Enschede
The Netherlands

1. Introduction

Remote sensing data over a water body are related to the physical and biological properties
of water constituents through inherent optical properties (IOPs). These IOPs characterize
the absorption and scattering of the water column and are used as proxies to water quality
variables. The scientific procedure to derive IOPs from ship/space borne remote sensing data
can be divided into three steps: i- forward modeling, relates the radiometric data to the IOPs of
the water column; ii- parametrization, defines the minimal set of IOPs whose values completely
characterize the observed radiance; iii- inversion, derives the values of IOPs, and hence water
quality variables, from radiometric data.

Reliable methods for uncertainty quantification of earth observation (EO) products of IOPs are
important for sensor and algorithm validation, assessment, and operational monitoring. High
accuracy in both observations and algorithms may reduce considerable ranges of errors. EO
derived IOPs, however, have an inherent stochastic component. This is due to the dynamic
nature of aquatic biogeophysical quantities, intrinsic fluctuations, model approximations,
correction schemes, and inversion methods. Due to stochasticity of the measurements, as
well as model approximations and inversion ambiguity, the retrieved IOPs are not the only
possible set that caused the observed spectrum (Sydor et al., 2004). Instead, many other
IOPs sets may be derived. Each of these sets has an unknown probability of being the
derived product. The probability distribution of the estimated IOPs provides, therefore, all
the necessary information about the variability and uncertainties of derived IOPs.

Generally, uncertainty assessment of EO-data falls under one of two methods, namely
analytical deterministic or stochastic methods. Deterministic methods are based on
gradient techniques and have been used to asses the uncertainty of IOPs as derived from
EO-data. Duarte et al. (2003) analyzed the sensitivity of the observed remote sensing
reflectance due to variable concentrations of water constituents. Maritorena & Siegel (2005)
employed a deterministic technique for consistent merging of different products using their
uncertainties. Wang et al. (2005) performed a detailed study on the uncertainties of model
inversion related to fluctuations in each of the IOPs and their spectral shapes. Salama et al.
(2009) studied the uncertainty of model-inversion using the gradient-based method. They
found that the derived IOPs are linearly related to their errors. Lee et al. (2010) used analytical
derivative of the quasi-analytical algorithm (Lee et al., 2002, QAA) to estimate the uncertainty
of IOPs as derived from QQA. On the other hand, Salama et al. (2011) developed a gradient
based method to estimate the accuracy of a specific model-parameterizations setup. The
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advantage of their method is that it does not require radiometric information, however on
the cost of deriving detailed information. The main drawback of gradient-based methods
is that they depend on the used EO-model to derive the IOPs and a priori knowledge on
the radiometric uncertainty. On the other hand, stochastic methods are less dependent on
the used EO-model and can deal with non-convex functions. The basic idea of stochastic
methods is to systematically partition the region of feasible solutions into smaller subregions
and move between them using random search techniques. Stochastic uncertainty techniques
have been recently adopted to estimate the uncertainty of EO-derived IOPs. Salama & Stein
(2009) proposed a stochastic technique to quantify and separate the source of errors of IOPs
derived from EO data. The main objective of this chapter is to review the two families of
error-estimation methods and inter-compare their results.

The reminder of this chapter is organized as follow: in Section (2) we describe the ocean
color paradigm, i.e. used ocean color model, its parametrization and inversion. Deterministic
methods for error derivation are described in Section (3), whereas the principles of stochastic
methods are detailed in Section (4). The results of both families (deterministic and stochastic)
are inter-compared in Section (5) whereas, in Section (6) we present an exercise to decompose
the different sources of uncertainty. Error propagation exercise is detailed in Section (7)
followed by a discussion on the advantages and limitations of error estimation methods in
Section (8). We finalize the chapter by a summary and future developments in Section (9).

2. Ocean color model inversion

Remote sensing reflectance, the ratio of radiance to irradiance, above the water surface Rsw
can be related to the inherent optical properties (IOPs) using the ocean color model of Gordon
et al. (1988):

Rsw(λ) =
t

n2
w

2

∑
i=1

gi

(

bb(λ)

bb(λ) + a(λ)

)i

. (1)

Where Rsw(λ) is the remote sensing reflectance leaving the water surface at wavelength λ; gi
are constants taken from Gordon et al. (1988); t and nw are the sea−air transmission factor
and water index of refraction, respectively. Their values are taken from literatures (Gordon
et al., 1988; Lee, 2006; Maritorena et al., 2002). The parameters bb(λ) and a(λ) are the bulk
backscattering and absorption coefficients of the water column, respectively. The light field in
the water column is assumed to be governed by four optically significant constituents, namely:
water molecules, phytoplankton green pigment chlorophyll-a (Chl-a), colored dissolved
organic matter (CDOM) and detritus/suspended particulate matter (SPM). The absorption
and backscattering coefficients are modeled as the sum of absorption and backscattering from
water constituents:

a(λ) = aw(λ) + aph(λ) + adg(λ) (2)

bb(λ) = 0.5bw(λ) + ηbspm(λ). (3)

Where the subscripts on the right hand side of equations (2) and (3) denote water constituents:
water w; phytoplankton green pigment ph; lumped absorption effects of CDOM and detritus
dg and suspended particulate matter spm. η is the backscattering fraction, its value is
estimated from Petzold’s “San Diego harbor” scattering phase function as η ∼ 0.018 (Petzold,
1977).
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Current Advances in Uncertainty Estimation of Earth Observation Products of Water Quality 3

The absorption and scattering coefficients of water molecules, aw(λ) and bw(λ), are assumed
to be constant. Their values are obtained from Pope & Fry (1997) and Mobley (1994),
respectively. The total absorption of phytoplankton pigments aph(λ) is approximated as in
Lee et al. (1998),

aph(λ) ≃ a0(λ)aph(440) + a1(λ)aph(440) ln aph(440), (4)

where a0(λ) and a1(λ) are statistically derived coefficients of Chl-a, their values are taken
from Lee et al. (1998).

The absorption effects of detritus and colored dissolved organic matter (CDOM) are combined
due to the similar spectral signature (Maritorena et al., 2002) and approximated using the
model of Bricaud et al. (1981),

adg(λ) = adg(440) exp [−s(λ − 440)] , (5)

where s is the spectral exponent of combined effects of detritus and CDOM. The scattering
coefficient of SPM bspm(λ) is parameterized as a single type of particles with a spectral
dependency exponent y (Kopelevich, 1983):

bspm(λ) = bspm(550)
(

550
λ

)y

. (6)

Equation (1) is inverted to derive five parameters from the IOCCG data set and three
parameters from the NOMAD data set. The derived parameters are called the set of IOPs
and expressed in a vector notation as iop. The exponents s and y are assumed to be
unknown (Salama et al., 2009) and are derived from the IOCCG data set as:

iop =
[

aph(440), adg(440), bspm(550), s, y
]

. (7)

The numerical inversion is carried out using the constrained Levenberg-Marquardt Algorithm
(LMA) (Press et al., 2002), where the constraints are set such that they guarantee positive and
physically meaningful values: between 0 and 100 m−1 for aph(440), adg(440) and bspm(550),
between 0 and 2.5 for y and between 0 and 0.03 for s. Optimization is started using the initial
values of Lee et al. (1999) and s = 0.021 nm−1 and y = 1.7. Maximum number of iteration is
set equal to 100.

3. Error estimation via deterministic method

3.1 Description

The uncertainty in the derived IOPs is attributed to the infinitesimal change of radiance in
equation (1) as,

∆Rsw(λ) = wph(λ)∆aph(440) + wdg(λ)∆adg(440) + wspm(λ)∆bspm(550), (8)

where ∆Rsw(λ) represents the radiometric uncertainty at the wavelength λ; wph, wdg,wspm
are the partial derivatives of Rsw with respect to the derived IOPs. Equation (8) represents an
over determined linear set of equations that can only be solved if the radiometric uncertainty
is known in at least n wavelengths, with n being the number of derived IOPs.
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Analytical expressions of partial derivatives in (8) are listed hereafter. To simplify the
notations let us define the ratio ω as,

ω =
bb(λ)

c2
b

, (9)

where cb = bb(λ) + a(λ). The partial derivative wph is,

wph =
∂Rsw(λ)

∂aph(440)
=

t

n2
w

ζph

2

∑
i=1

jiω
i, (10)

where ζph is the spectral dependency of Chla,

ζph = a0 + a1

[

1 + log aph(440)
]

. (11)

The parameters ji are j1 = −g1 and j2 = −2g2cb. The term wdg is expressed as,

wdg =
∂Rsw(λ)

∂adg(440)
=

t

n2
w

ζdg

2

∑
i=1

jiω
i. (12)

The partial derivative wspm is expressed as,

wspm =
∂Rsw(λ)

∂bbspm(550)
=

t

n2
w

2

∑
i=0

viω
i, (13)

where v0 = g1/cb, v1 = 2g2 − g1 and v2 = j2.

Based on the above theoretical formulation in equation (8), Lee et al. (2010) obtained the
uncertainty of IOPs using the quasi analytical algorithm (Lee et al., 2002) and a prior
information on the radiometric errors. Salama et al. (2011), on the other hand, proposed a
method that produces a single (or ensemble) uncertainty measure for the collective errors in
the derived IOPs relative to the radiometric uncertainty without the need for model inversion
or prior information on the radiometric errors. In addition, the method provides the optimum
accuracy which can be achieved by a model-parametrization setup. The method of Salama
et al. (2011) is self-contained and is directly applicable to existing satellite based IOP products,
we therefore, brief this method hereafter.

3.2 Ensemble uncertainty of IOPs

Applying Taylor series approximation of the second moment on equation (8) gives:

σ2
r (λ) = w2

ph(λ)σ
2
ph(440) + w2

dg(λ)σ
2
dg(440) + w2

spm(λ)σ2
spm(550) (14)

Where σ2
r (λ) is the radiometric variance and σ2

ph(440), σ2
dg(440), and σ2

spm(550) are the
variances of the derived IOPs. The covariance terms in equation(14) is assumed to be zero,
i.e. the IOPs are mutually independent. Knowledge on the radiometric uncertainty is now
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avoided by dividing both sides of equation (14) by the radiometric variance,

i=n

∑
i=1

w2
i (λ)ψ

2
i (λ) = 1, (15)

with ψ2
i (λ) = σ2

i (λ0)/σ2
r (λ). The ensemble uncertainty of IOPs per radiometric error,

Ψ(λ), is derived from equation (15) by normalizing both sides by the squared sum of partial
derivatives and taking its square-root:

Ψ(λ) =

(

i=n

∑
i=1

w2
i (λ)ψ

2
i (λ)/

i=n

∑
i=1

w2
i (λ)

)0.5

=

(

i=n

∑
i=1

w2
i (λ)

)−0.5

. (16)

Ψ(λ) represent the ensemble uncertainty of IOPs per unit error of remote sensing reflectance
and have the unit of sr m−1. The advantages of this methods is that it can be applied on the
readily available earth observation products of IOPs (water quality proxies). Fig.(1) shows the
climatology of the ensemble uncertainty relative to the sum of derived IOPs. These figures
are generated by applying equation (16), to the monthly mean values of GSM-derived IOPs
and then averaged for each year from 1997-2007 (the year 1997 is not shown). It is clear that
there are persistent patterns of high values throughout the last decade in the subtropical gyres,
whereas lower values are observed in most coastal areas. These results are in accordance to
the global uncertainty maps of Chlorophyll-a presented by Mélin (2010) for the subtropical
gyres, whereas the coastal waters show contrary patterns, i.e. very small error. The spatial
distribution of the relative-ensemble uncertainty largely resembles the observed values of
remote sensing reflectance at 443 nm.

3.3 Detailed uncertainty of IOPs

Based on equation(8), Bates & Watts (1988) devised an elegant method to quantify the
uncertainties for each derived IOPs as,

IOPi± = IOPi ± σ
∥

∥

∥
W · R−1

∥

∥

∥
t(N − m, α/2) (17)

Where IOPi± is the upper "+" and lower "-" bounds of the derived IOP; W is the matrix of
partial derivatives; σ is the standard deviation of residuals between measured and model
best-fit radiances; t(N − m, α/2) is the upper quantile for a Student’s t distribution with N −
m degrees of freedom. N is the number of bands and m is the number of unknowns. R
is the upper triangle matrix of QR decomposition of the jacobian matrix. equation (17) has
widely been used to estimate the error of derived IOP (Salama et al., 2009; Van Der Woerd &
Pasterkamp, 2008). The derivative term in equation (17), can be approximated as being the
gradient of equation (1) with respect to the derived IOPs and is computed for model-best-fit
to the observation. This approximation is derived as follows.

Observed remote sensing reflectance can be approximated as being the sum of the model
best-fit Rsm(λ) and its deviations from the observed one ǫ(λ):

Rs(λ) = Rsm(λ) + ǫ(λ) (18)

The term Rsm(λ) is obtained from fitting the model in equation (1) to the radiometric
observation of ocean color or/and field sensors. The error ǫ(λ) is a lumped term that includes
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Fig. 1. Time series of ensemble-uncertainty of IOPs at 440 nm relative to the sum of derived
IOPs.
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model goodness-of-fit, measurements and atmospheric noises. For simplicity this term is
assumed to be nearly independent the derived IOPs. The derivative of (18), with respect
to the derived values, can then be written as:

∆Rs(λ)

∆iop
=

∆Rsm(λ)

∆iop
+

∆ǫ(λ)

∆iop
(19)

By definition of the least square minimization that was used to derive model-best-fit Rsm(λ),
we have:

∆ǫ(λ)

∆iop
≈ 0 (20)

Equation (19) can then be reduced to:

∆Rs(λ)

∆iop
≈

∆Rsm(λ)

∆iop
(21)

The simplification in equation (21) implies that the gradient of measured remote sensing
reflectance can be approximated by the gradient of the model in (1) which can easily be
computed as in equation (21).

4. Error estimation via stochastic method

4.1 Description

In this section we summarize the method of Salama & Stein (2009) as it is the only stochastic
method published so far in the field of ocean color.

Salama and Stein used prior information to obtain plausible ranges of the IOPs. These ranges
are used in a log-normal distribution to generate a first-estimate of the probability distribution
(PD) of the IOPs. This first-estimate PD is called the prior PD of the IOPs. The method,
explained hereafter, uses the prior PD to converge to a “posterior” probability distribution
that better describes the IOPs.

Prior information is obtained from known radiometric errors in Rsw and model-inversion
intrinsic errors. Radiometric errors are: (i) noise equivalent radiance of the sensor and (ii) error
in aerosol optical thickness. Sensor equivalent radiance is known from sensor specifications
and post-launch calibrations. Model approximation and inversion-accuracy can be quantified
by evaluating the performance of the employed ocean color model against measurements and
radiative transfer simulations. Atmospheric error, due to variation in aerosol optical thickness,
can be evaluated from available measurements or by using standard atmospheric correction
models. The error estimate algorithm will follow sequential steps as detailed hereafter.

An initial estimate of the confidence interval around water remote sensing reflectance can be
computed using the method of (Bates & Watts, 1988, pp.59, cf. 1.36 ) or available knowledge
on plausible fluctuations for model, noise and atmospheric residual respectively. The upper
and lower bounds of this interval are then inverted to derive the corresponding two sets of
IOPs iopu, iopl. These sets with the derived iopobs from the water remote sensing reflectance,
hereafter will be called the IOP-triplet: (iopl, iopobs, iopu) and denoted as ω. The value
log iopobs is assumed to approximate the mean of a first-estimate, i.e. prior, probability
distribution (PD) of IOPs in the logarithmic space. The prior PD is first elicited using
the IOP-triplet and prior knowledge on the log-normal shape of the IOPs as explained in
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section (4.2). The posterior probability distribution, or our gain in information, is then inferred
by maximizing the expected utility (Bernardo, 1979; Carlin & Polson, 1991) as explained in
section(4.3).

4.2 Prior probability distribution

Estimating the IOP-triplet, iopl, iopobs and iopu, is the first step towards deriving the
prior probability distribution of the IOPs. The use of flat or improper priors, e.g. uniform
distribution, may invalidate the derivation of the posterior probability (Goutis & Robert,
1998). According to the maximum entropy principle (Jaynes, 1957a;b) a proper prior
probability distribution should have the maximum entropy provided by the IOP-triplet.
However applying the maximum entropy principle on the information provided by the
IOP-triplet will give the probability values of iopl, iopobs and iopu but not the whole
probability distribution P(iop); for more detail one may consult Jaynes (1968). To overcome
this limitation, in data values, we introduce the following method to elicit the prior
distribution of IOPs assuming that they are log-normally distributed. The log-normal
assumption is based on Campbell’s work (Campbell, 1995) who pointed out that, in general,
marine bio-geophysical quantities follow a log-normal distribution i.e. their log transform has
a Gaussian distribution.

The IOP-triplet is first transformed to the log space, allowing us to use a Gaussian distribution
to simulate the PD of IOPs. Second we assume that log iopobs approximates the mean of
the prior PD of the IOPs. The Gaussian distribution of the IOPs can be standardized to a
N(0,1) distribution, i.e. normal distribution with zero mean and unity standard deviation.
The standard Gaussian variate for log iopu is,

αu =
log iopu − log iopobs

σ
, (22)

where αu is a sample drawn from the N(0,1) that corresponds to iopu. The parameters
log iopobs and σ are the expectation and the standard deviation of the population. From
equation (22) and the second set in the IOP-triplet iopl we can establish the ratio,

ru,l =
αu

αl
=

log iopu − log iopobs
log iopl − log iopobs

, (23)

and for convenience we set log iopu > log iopl. The standardization of the IOPs distribution
allows us to use the N(0,1) random number generator to simulate values of α as in
equation (22). The ratios of these random values are also computed and compared to the
ratio of the IOP-triplet in equation (23). The best fit allocates the two values αu and αl , hence
the standard deviation of the prior distribution can be computed from equation (22). The
prior probability distribution of the IOPs, is now known: N(log iopobs,σ), i.e. a Gaussian
distribution with log iopobs mean and σ standard deviation.

Random values (1000) are generated from the N(0,1) distribution such that they satisfy an
imposed acceptance-rejection condition. This condition requires that the ratio in equation (23)
defines a unique ordered pair of α. This is to enable the use of a simple searching method
with a fast convergence to the best-fit ratio. The uniqueness in this sense implies that the
squared difference between the computed ratio, from the IOP-triplet, and the best-fit is a
global minimum resolvable by the searching method and the used computer processor. Three
look-up tables (LUTs) are then created from the generated values. These LUTs correspond to
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the following three scenarios:

log iopobs > log iopu > log iopl

log iopobs < log iopl < log iopu

log iopl < log iopobs < log iopu

(24)

The generated N(0,1) values are, first, subdivided into two sets containing positive and
negative values. The ratios of the first and second LUTs are, then, computed from the ordered
descending sets as; xi/xi+1. The third LUT is generated from all possible combinations of the
unordered positive and negative sets. This will results in ratio values between 0 and 1, > 1
and < 0 for the first, second and third LUT respectively. The ratio in equation (23) is first
estimated from IOP-triplet. Based on the values of this triplet (equation 24) a lookup table
is selected and searched to find the best-fit value to the computed ratio (equation 23). This
best-fit is found either by direct search or interpolated. One of the corresponding pair is then
used in equation (22) to compute the standard deviation of the prior PD P(iop).

4.3 Posterior probability distribution

In section (4.2) we derived a proper prior distribution of the IOPs. This first-estimate, i.e.
prior distribution, is converged to a posterior distribution that better describes the IOPs using
the concept of Entropy. Entropy is a numerical measure of error associated with probability
distribution of derived IOPs or any hydrological parameter (Singh, 1998). For a population
with N sets of IOPs it is expressed as the Shannon entropy (Shannon, 1948):

H{P(iop)} = −
N

∑
1

P(iop) · log P(iop) (25)

where P(iop) is the prior probability distribution (PD) of the derived set of IOPs iop.

If we design a function D that measures the information, e.g. equation (25), between the prior
and the posterior PD, then we can derive the posterior PD such that it maximizes the expected
information to be gained in D (Bernardo, 2005; Christakos, 1990). In other words, maximizing
the function D will maximize the gained information from the posterior PD (Bernardo, 1979).
The Kullback-Leibler divergence (Kullback & Leibler, 1951), or cross-entropy, belongs to this
type of utility functions (Johnson & Geisser, 1985). It measures the divergence between the
posterior P(iop|ω) and the prior P(iop) probability distribution as:

DKL{P(iop|!)|P(iop)} =
N

∑
1

P(iop|ω) · log
P(iop|ω)

P(iop)
(26)

where P(iop|ω) is the posterior probability of iop given the IOP-triplet ω. Equation (26) can
be rewritten in view of equation (25) as:

DKL{P(iop|ω)|P(iop)} = H{P(iop|ω), P(iop)} − H{P(iop|ω)} (27)

where H{P(iop|ω), P(iop)} is expressed as:

H{P(iop|ω), P(iop)} = −
N

∑
1

P(iop|ω) · log P(iop) (28)
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Maximizing the cross-entropy in equation (26) or the corresponding expression in (27) is
equivalent to minimizing the entropy (uncertainty) of the posterior probabilities distribution,
i.e. maximizing gained information. The errors can then be estimated from the reconstructed
posterior probability distribution of IOPs P(iop|ω).

The posterior probability distribution is inferred by maximizing the utility function,
i.e. Kullback-Leibler divergence (equation 26). The maximum is found by iteration
through a sequential updating of the posterior using the prior parameters mean μ and
variance σ2 (Rubinstein & Kroese, 2004). The corresponding log-normal mean m and variance
v are computed as Kendall & Stuart (1987):

m = eμe0.5σ2
(29)

v = e2μeσ2
(

eσ2
− 1

)

(30)

The following steps describe the algorithm, as implemented, to derive the posterior PD
P(iop|ω):

1. From the water remote sensing spectrum estimate the initial radiometric confidence
interval using the method of (Bates & Watts, 1988, pp.59, cf. 1.36) or prior information
on atmospheric and noise-induced radiometric fluctuations.

2. Invert the ocean color model in equation (1) to derive the IOPs from the water remote
sensing spectrum and the upper and lower bounds. This will results in three sets of IOPs:
iopl, iopobs, iopu; IOP-triplet.

3. Based on the order of this IOP-triplet allocate the suitable LUT using equation (24).
4. Search for the best-fit ratio calculated from equation (23).
5. Use equation (22) to estimate the standard deviation of the prior PD.
6. Use the standard deviation and log iopobs to generate the prior PD.
7. Use initial values of the mean and standard deviation to generate n Monte Carlo samples

of PD.
8. Select the population that have the maximum Kullback-Leibler divergence (equation 26),

and update the initial values.
9. Repeat step 7 to 8 till convergence.
10. Update the prior PD with the resulting posterior PD (from the pervious step: 9), and

iterate steps 7 to 10 till convergence.

The convergence is defined by a threshold as follow. Keep track of the best ten candidates
which maximize equation (26). The system converges if the variance of these ten values is less
than 10−4.

5. Inter-comparison between deterministic and stochastic methods

The inter-comparison between the deterministic method, described in Section (3), and the
stochastic method, described in Section (4), is carried out using two data sets. The first, is
radiative transfer simulations of synthetic IOPs obtained from the International Ocean Color
Coordination Group (IOCCG), report-5 (Lee, 2006, IOCCG data set). The second consists
of concurrent observations from the Sea viewing Wide Field-of-view Sensor (SeaWiFS) and
measured inherent and apparent optical properties, retrieved from the NASA bio-Optical
Marine Algorithm Data set (NOMAD) Version 1.3 (Werdell & Bailey, 2005, SeaWiFS matchup
data set).
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5.1 IOCCG

IOCCG data set (Lee, 2006) of synthesized IOPs and their radiative transfer simulations at
30◦ sun zenith angle are used to inter compare the results of the deterministic and stochastic
methods. IOCCG simulated spectra, between 400 nm and 750 nm at 10 nm interval, are
inverted using the ocean color model in equation (1) to derive five variables. These variables
are: Chlorophyll-a absorption at 440 nm aph(440), detritus and CDOM absorption at 440
nm adg(440) and their spectral dependency s, SPM scattering at 550 nm bspm(550) and SPM
spectral dependency y, as shown in equation (7).

The standard deviation of the posterior PD represents the error/confidence of the derived
value iopobs. The deviation of the posterior PD from known IOPs is measured using
root-mean-square of errors (RMSE). These two values, RMSE and standard deviation, are
related through the bias, i.e the actual difference between derived and measured IOPs. Figure
(2) shows estimated errors, expressed as standard deviation using equation (30), against the
known root-mean-square of errors (RMSE). The actual RMSE is estimated from the posterior
PD and the known IOPs. The reproduced errors for the IOPs other than aph(440) have a high
accuracy with r2 values between 0.77 and 0.96. Estimated errors of aph(440) have the lowest r2

and n values. It is worth noting that the determinacy method of Bates & Watts (1988) generally
underestimates model-errors of the IOPs with lower r2 values than the presented stochastic
method. This is apparent at an almost threefold difference for the error values of aph(440). On
the other hand, the stochastic method has a tendency to overestimate the errors of the IOPs
with a better fit and improved capability, in the sense that it can be applied to populations of
any bio-geophysical variable.

5.2 NOMAD

Due to the limited number of available visible bands in this data set we reduced the number of
unknowns to three only. The first three IOPs in equation (7) are derived from SeaWiFS spectra
using the ocean color model (equation 1) and the constrained LMA technique. The values of
s and y are set to 0.021 nm−1 and 1.7 respectively. The actual RMSE values are computed
from the posterior PD and measured IOPs. The total error on derived IOPs is estimated
by applying the stochastic method using (Bates & Watts, 1988, pp.59, cf. 1.36) radiometric
confidence interval. The estimated errors are expressed as standard deviation using equation
(30) and plotted against RMSE values in figure (3). The reproduced total error values are
strongly correlated to the known RMSE values with r2 between 0.67 and 0.9 and >90% of valid
retrievals. Estimated errors from the deterministic technique (Bates & Watts, 1988), however,
did not correspond to the actual values of RMSE.

Errors are computed for the ocean color model and SeaWiFS visible bands centered at [412,
443, 490, 510, 555, 670] nm. The average values of the derived standard deviation are 1.7802,
1.1431 and 1.6177 m−1 for aph(440), adg(440) and bspm(550), respectively.

6. Uncertainty sources

6.1 Description

The total remote sensing reflectance received at the sensor altitude can be written as the sum
of several components (Gordon, 1997):

Rst(λ) = Rspath(λ) + T(λ)Rssfc(λ) + T(λ)Rsw(λ) (31)
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Fig. 2. Derived versus known errors of the IOPs estimated from the IOCCG data set for: (a)
Chl-a absorption at 440 nm; (b) CDOM and detritus absorption at 440 nm; (c) SPM scattering
at 550 nm; and (d) the total absorption at 440 nm. The data on the plots are log transformed.
The coefficients of determination r2

s and r2
d are for stochastic and deterministic method

respectively.

The subscript of the remote sensing reflectance Rs represents the contribution from: (i) the
atmosphere (path), i.e. air molecules and aerosol multiple scattering; (ii) sea-surface (sfc); and
(iii) water (w). T(λ) is the diffuse transmittance.

The contribution of air molecules, i.e. the Rayleigh scattering, to the atmospheric path
is well described in terms of geometry and atmospheric pressure (Gordon et al., 1988).
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Fig. 3. Derived versus known errors of the IOPs estimated from the NOMAD data set for: (a)
Chl-a absorption at 440 nm; (b) CDOM and detritus absorption at 440 nm; (c) SPM scattering
at 550 nm; and (d) the total absorption at 440 nm. The data on the plots are log transformed.
The coefficients of determination r2

s and r2
d are for stochastic and deterministic method

respectively.

The contribution of sea-surface reflectance Rssfc can be estimated using the probabilistic
formulations of Cox & Munk (1954) and ancillary data on wind field. Gaseous transmittance
can be calculated from ancillary data on ozone and water vapor concentrations using the
transmittance models of Goody (1964) and Malkmus (1967). For viewing angles < 60◦

the diffuse transmittance T is weakly dependent on aerosol and can be approximated
following Gordon et al. (1983). Following the aforementioned approximations will basically
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leave two unknowns; the aerosol and the water remote sensing reflectance. In other words,
the errors in Rsw can be attributed to errors in aerosol estimation and any noise in the sensor,
i.e. noise equivalent radiance (NER).

Radiometric errors in Rsw, beside to model-inversion intrinsic errors, will accumulate and
propagate to the IOPs during the retrieval. The total error of the derived IOPs can therefore
be decomposed into three major components, namely model-inversion error, sensor noise and
error in aerosol estimation. These errors are originated by various mechanisms during the
processing chain of ocean color data as explained hereafter.

Each error component, x, will be expressed as the variance σ2
x of IOPs caused by this error

x. The subscript x will be replaced by inv, ner and a to represent the contribution of
model-inversion, noise equivalent radiance and aerosol, respectively.

6.2 Model-inversion error, σ2
inv:

The employed approximations in the forward-model (equation 1) may not precisely describe
the optical processes that have caused the observed signal (Zaneveld, 1994). Moreover, the
numerical technique used for inversion provides an ambiguous solution, i.e. the derived IOPs
are not unique (Sydor et al., 2004). These assumptions and ambiguity will generate error that
is, at the one hand, inherent to the employed ocean color forward model and, on the other
hand, dependent on the accuracy of the inversion scheme which could be related to the optical
complexity of the water. Model-inversion error is quantified as a lumped sum of errors due to
the approximation in (1), the parametrization of IOPs and inversion and abbreviated as model
error.

6.3 Noise equivalent radiance, σ2
ner:

Noise equivalent radiance (NER) depends on sensor specifications and performance over
time, i.e. sensor degradation. This fluctuation could either increase or decrease the observed
remote sensing reflectance and could also be wavelength dependent or random. The effects
of NER is inversely proportional to the value of signal-to-noise ratio. Sensor degradation,
i.e. sensitivity losses over time, will cause decrease in the signal-to-noise ratio of the sensor
leading to low signal reading. Low signal can also be observed over clear water at the near
infrared part of the spectrum or over turbid water, with high CDOM, detritus and Chl-a
contents, at the blue part of the spectrum. The propagated error from NER to IOPs will
therefore be dependent on sensor specification, sensor degradation over time, water turbidity
and observing wavelength.

6.4 Variations of aerosol type and optical thickness, σ2
a :

Atmospheric correction errors are, generally, caused by unknown aerosol type and optical
thickness (AOT). The residual signals from atmospheric correction will have spectral and
spatial dependency. The spectral dependency is due to the error about the aerosol type e.g.
absorbing aerosol, while the spatial dependency is, on the one hand, related to the error
about AOT spatial variations and, on the other hand, to water turbidity (Hu et al., 2004).
It is assumed that aerosol optical thickness has a higher spatial variability than aerosol type,
so that aerosol type can be assumed to be known and homogenous. Within the validity of
this assumption, the residual signals from atmospheric correction will be caused by errors in
estimating the aerosol optical thickness.
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6.5 Decomposition

The total error of the derived IOPs, expressed as the variance σ2
t
(

σ2
inv, σ2

ner, σ2
a
)

, is thus
described as a function of the three error components, σ2

inv, σ2
ner and σ2

a . Assuming that this
function is continuous in its variables, we can approximate it by a first order Taylor series as:

σ2
t ≈ σ2

t0 +
∂σ2

t

∂σ2
inv

σ2
inv +

∂σ2
t

∂σ2
ner

σ2
ner +

∂σ2
t

∂σ2
a

σ2
a (32)

where, σ2
t0 is the value of the function σ2

t (0, 0, 0). According to the assumption that the total
error is caused by three components, the value of σ2

t0 is negligible, i.e. σ2
t0 ≃ 0. In other

words, if we have perfect measurements, accurate atmospheric correction and exact model
parameterizations and inversion then the total error on the derived IOPs will be negligible.
The total error of the derived IOPs can thus be approximated as a weighted sum of the
individual error components as:

σ2
t ≈ w2

invσ2
inv + w2

nerσ2
ner + w2

aσ2
a (33)

where the weights winv, wner, and wa are the partial derivatives in equation (32). The
functionality in σ2

t , however, is commonly unknown and it is therefore difficult to find proper
estimates of the weights winv, wner and wa. An intuitive approach would be setting all the
weights in equation (33) to unity and check its validity:

σ2
t ≈ σ2

inv + σ2
ner + σ2

a (34)

Figure (4) depicts the relationship between the sum of the righthand side of equation (34)
and the total error on the derived IOPs. On the X axis is the total error of the IOPs as
calculated from all possible error sources σ2

t . We then calculated each error component
apart and summed their variances in the Y axis as: σ2

a + σ2
ner + σ2

a . As anticipated from
equation (33) there is a linear relationship between the actual variance and the linear sum
of individual variances with R2 values above 0.75 for the absorption coefficients of Chl-a and
detritus-CDOM. The value of R2 decreases to 0.69 for SPM scattering and 0.64 for the total
absorption. The dispersion value as measured with RMSE is large for all IOPs. The results
in figure (4) indicate that the linear sum in equation (34) is an acceptable approximation
to the total variance. Due to the large values of RMSE in figure (4), the computed relative
contribution should be treated with caution.

While model-induced error can directly be estimated from the techniques described in Brad
(1974) and Bates & Watts (1988), noise and atmospheric-induced errors should be inferred
from the available information. This information forms the prior knowledge that we will
use in the following section to derive the error of the IOPs. Prior information is obtained
from known sensor’s noise, variation in aerosol optical thickness and ocean-color model’s
approximations and inversion accuracy.

6.5.1 IOCCG

The noise is estimated based on NER values of the Medium Resolution Imaging Spectrometer
(MERIS) (Doerffer, 2008; Hoogenboom & Dekker, 1998). The variation in aerosol optical
thickness (AOT) is set to be ±0.02. This value is estimated from the variation of recorded
aerosol optical thickness by a newly calibrated sunphotometer (CIMEL) and cloud free
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Fig. 4. Sum of variances versus the total variance of the IOCCG data set for: (a) Chl-a
absorption at 440 nm; (b) absorption of detritus and CDOM at 440 nm; (c) SPM scattering at
550 nm; and (d) total absorption coefficient at 440 nm.

condition (Holben et al., 2000). The values of aerosol optical thicknesses are obtained
from sunphotometer measurements situated at (51.225 N, 2.925 E) at the 8th of June 2006.
The atmospheric paths are estimated with radiative transfer computation (Vermote et al.,
1997) using maritime aerosol model with a nadir looking sensor at 30◦ sun-zenith and 203◦

sun-azimuth angles.

The relative contribution of model, noise and atmospheric errors are shown in table (1) and
quantified for each of the derived IOP as follow. First we computed the total error, i.e. the
total error in Rsw(λ) is due to aerosol estimation and sensor noise, inversion error will add
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up during the inversion. The same step is repeated for each error source in three steps: (i)
model error is estimated from the error-free Rsw(λ); (ii) atmospheric-induced error σ2

a is
computed from Rsw(λ) that contains errors due to aerosol estimation only; (iii) noise error
is calculated from Rsw(λ) that contains sensor noise only. Note that model error will add
up during the inversion in the last two steps. Now we can use equation (34) to estimate the
relative contribution of each error component to the total error of the IOPs.

Errors due to atmospheric correction are the major source of errors in the derived IOPs.
Imperfect atmospheric correction, due to the variability of aerosol optical thickness, is
responsible for more than 50% of the total error and up to 82%. One fifth of the total
errors on derived IOPs (except for the SPM scattering: one tenth) is attributed to noise-error.
Model-error has the lowest contribution (≈7%) to the total error on derived bspm(550) values,
but it has a significant contribution (≈ 16%) to y. This can be attributed to the assumed
parametrization. On the one hand, the absorption of other constituents than water molecules
is negligible at the near infrared (NIR) which will cause stability (one-to-one relation) in the
derived SPM scattering coefficient, leading to a significant contribution from the atmosphere
at the NIR region. On the other hand, the error in bspm(λ) will decrease towards the NIR
region due to the assumed exponential spectral dependency. In general, model-induced
errors are large for the spectral shape coefficients y and s. Note that the spectral shape of
chlorophyll-a absorption is imbedded in coefficient aph(440).

error components
IOPs Model Noise Aerosol
aph(440) 17 22 61
adg(440) 9 19 72
bspm(550) 7 11 82
y 16 24 60
s 28 21 51

Table 1. The average relative contribution (%) of error components on IOCCG data set.

6.5.2 NOMAD

The total error on estimated IOPs from the NOMAD data is derived from the values presented
in figure (3). Model induced errors are subtracted from the total error using equation (33)
to deduce atmospheric and noise-induced errors. The results are shown as percentages in
table (2). Main uncertainty is due to atmospheric and noise-induced errors for aph(440) and
bspm(550), while model inversion is the main source of error to adg(440) in this data set. These
results are within the validity of the linear assumption expressed in equation (33) and the
imposed values of s and y.

error components
IOPs Model Aerosol and Noise
aph(440) 10 90
adg(440) 57 43
bspm(550) 19 81

Table 2. The average relative contribution (%) of error components on SeaWiFS observations
in the NOMAD data set.
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6.5.3 Model-sensor error table

The linear sum of individual variances in equation (34) can describe about 70%, the value
of R2, of the total variance of the IOPs. This linearization of the total variance is a simple
yet effective approach. It allows us to estimate the relative contribution of the different error
components to the total error budget on the IOPs. The relative contribution of model, noise
and atmospheric errors to the total error budget using IOCCG data set are 20-40%, 10-25% and
40-80%, respectively. Model-induced errors, due to approximation and inversion, are inherent
to the derived IOPs and inversely proportional to model-inversion degree-of-freedom, while
atmospheric-induced errors are the major contributor to the total error budget on IOPs. These
results are for assumed levels of noise and atmospheric fluctuations. This suggests that error
table can be generated for specific model, sensor and range of IOPs. This model-sensor error
table can serve as a benchmark to estimate the atmospheric-induced errors in the derived
IOPs. The merit of this argument is based on the fact that the computations of model
and noise-induced errors can be quantified using water radiative transfer simulations, for
a specific range of IOPs, and known sensor’s NER. The magnitude of these errors are in
principle known for the ocean color model and the used sensor. An example of such a
table for the MERIS sensor and the ocean color model is shown in table (3). This table is
computed from table (1) for the MERIS visible bands centered at [412, 443, 490, 510, 560,
620, 665, 708, 778] nm, i.e. we simply reduced the spectral bands of IOCCG data set to fit
those of MERIS. Table (3) shows that the reduced number of spectral bands for MERIS setup
has increased model contribution to the total error approximately two fold. This will reduce
noise and atmospheric contribution to the total error, since the relative contributions of all
error components should sum to 1. Note that for weak radiometric signals, the lower bound
might end up to negative values which will lead to further reduction in the number of bands
(negative values are set to zero). This approach is demonstrated for ocean color observations
obtained from NOMAD data set. Model and noise-induced errors are simulated from the
IOCCG data set and subtracted from the total error of IOPs estimated from the NOMAD data
set. The simulation is carried out simply by selecting IOCCG wavelengths that correspond
to NOMAD spectral set-up. The simplicity of this approach can pose a limitation on the
accuracy of equation (34). On the one hand, the method shows that model approximation
and inversion are main contributors, ≈57%, to the total error of adg(440). On the other
hand, the presented stochastic method quantified these errors most efficiently. Atmospheric
and noise-induced errors are significant for aph(440) and bspm(550). This may suggests that
model-induced errors are better quantified with the current method. However, errors of SPM
scattering coefficient, which are mainly due to atmospheric residuals, are reproduced with
high accuracy.

error components
IOPs Model Noise Aerosol
aph(440) 40 13 47
adg(440) 41 13 46
bspm(550) 45 5 50
y 42 19 39
s 42 16 42

Table 3. The average relative contribution (%) of error components on derived IOPs using the
ocean color model (equation 1) and simulated MERIS bands from IOCCG data set.
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7. Spectral propagation of errors and error correlation

The presented errors of IOPs were for two wavelengths: 440 nm for the absorption coefficients
and 550 nm for the scattering coefficient, as defined by equation (7). We can use the
parameterizations in equations (4), (5) and (6) to derive analytical description of error
propagation to other wavelengths. Here below we provide an analytical derivation of error
propagation and numerical examples for two wavelengths one at the blue, 400 nm, and the
other at the red, 680 nm.

The errors of the IOPs will propagate to shorter and longer wavelengths following the
parameterizations in equations (4), (5) and (6). For example, the error in bspm(550) has
two components; one in bspm(550) itself and the other in the spectral shape y. Using the
parametrization in equation (6) we will have:

∆bspm(λ) =
∂bspm(λ)

∂bspm(550)
∆bspm(550) +

∂bspm(λ)

∂y
∆y +

∂bspm(λ)

∂λ
∆λ (35)

Carrying the derivation of the palatial derivatives, equation (35) can be written as:

∆bspm(λ) =

(

550
λ

)y

∆bspm(550)

+ bspm(550)
(

550
λ

)y

ln
550
λ

∆y (36)

−
y

λ
bspm(550)

(

550
λ

)y

∆λ

In this exercise we will neglect the error in the wavelength, i.e. ∆λ ≈ 0 and we will show that
the derivative ∂/∂λ is negligible.

Let us take the two reference wavelengths: the blue 400 nm and the red 680 nm and assume
y = 1.7, we will have:

∆bspm(400) = 1.718∆bspm(550) + 0.547bspm(550)∆y (37)

∆bspm(680) = 0.697∆bspm(550)− 0.148bspm(550)∆y (38)

The wavelength variation term ∂/∂λ in equations (37) and (38) is neglected. It takes the values,
with λ expressed in nanometer, 7.3 × 10−3bspm(550)∆λ and 1.74 × 10−3bspm(550)∆λ for the
blue and the red wavelengths, respectively.

Equations (37, 38) show that the error in SPM scattering coefficient at the blue wavelength is
larger than that at the red wavelength if the relative error in the scattering coefficient satisfies
the condition:

∆bspm(550)
bspm(550)

> −0.681∆y (39)

In a similar approach we can quantify the propagated errors of adg(440) to other wavelengths:

∆adg(λ) = exp [−s (λ − 440)]∆adg(440)

− adg(440) (λ − 440) exp [−s (λ − 440)]∆s (40)

− s × adg(440) exp [−s (λ − 440)]∆λ
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If we assume the value s = 0.021 nm−1 and take our reference bands to be the blue (400 nm)
and red (680 nm) wavelengths we will have, with λ in meter:

∆adg(400) = 2.316∆adg(440) + 92.654 × 10−9adg(440)∆S (41)

∆adg(680) = 6.47 × 10−3∆adg(440)− 1.554 × 10−9adg(440)∆S (42)

The wavelength variation term ∂/∂λ is also negligible. It takes the values −4.86 ×
10−11adg(440)∆λ and −1.36 × 10−13adg(440)∆λ for the blue and the red wavelengths,
respectively. The error at the blue will be larger than that at the red if the relative error of
adg(440) satisfies the condition (from equations 41 and 42):

∆adg(440)

adg(440)
> 4.08 × 10−8∆s (43)

The parametrization of Chl-a absorption is based on the tabulated values a0 and a1, see
equation(4). These tabulated values are taken to be constant per wavelength, i.e. aph(λ) is
function of aph(440) only. The error in aph(440) will propagate to other wavelengths following
the derivative of equation (4):

∆aph(λ) = a1(λ) + a0(λ) + a1(λ) log aph(440)∆aph(440) (44)

For the two reference bands, 400 nm and 680 nm, we will have:

∆aph(400) = 0.731 + 0.012 log aph(440)∆aph(440) (45)

∆aph(680) = 0.945 + 0.149 log aph(440)∆aph(440) (46)

From equations (45, 46) it can be shown that the error at the blue band is larger than that at
the red if the following condition is satisfied:

log aph(440)∆aph(440) < −1.562 (47)

The analytical expressions in equations (36), (40) and (44) show that the errors are related
to absolute values of the IOPs. Therefore, the three error components are expected to be
correlated to water turbidity, and hence to each others. The results of the numerical examples
also demonstrate that the errors of bspm(λ) and adg(λ) will be larger at the blue than that at the
red if the relative errors of bspm(550) and adg(440) satisfy equations (36) and (40), respectively.
Whereas the error in aph(440) will propagate to other wavelengths following equation (44)
and will be larger at the blue if the condition in (47) is satisfied.

8. Advantages and limitations of error estimation methods

Estimated errors from the deterministic method (Bates & Watts, 1988) did not correspond to
the actual values of RMSE. This is due to the atmospheric and noise radiometric fluctuations.
These fluctuations are imbedded in the observed signal and do not vary with IOPs values,
i.e. different response function. Their large fluctuations may cause an ill-conditioned Jacobian
matrix that produces erroneous estimates, see (Bates & Watts, 1988, pp.59, cf. 1.36 ). It should,
nevertheless, be emphasized that the deterministic method is a well established technique to
estimate retrieval errors. It can be used for the quantification of the combined accuracy of
ocean color models and the parameterizations of IOPs, or model-parametrization setup. Its
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application produces a single (or ensemble) uncertainty measure for the collective errors in
the derived IOPs relative to the radiometric uncertainty without the need for model inversion
or prior information on the radiometric errors.

Error decomposition exercise shows that atmospheric and NER induced errors can be better
quantified when prior knowledge is available. This is important for ocean color band ratio or
single band algorithms, e.g. (Austin & Petzold, 1981; Salama et al., 2004). These algorithms are
empirical in nature, i.e. Jacobian matrix is not available. In this case, deterministic methods
to derive the error are not applicable. In contrary, the presented stochastic method is generic
and can be applied to quantify the error of any derived bio-geophysical parameter regardless
of the used derivation method. This is true if, beside to the derived quantity, two other values
are known a priori so the IOP-triplet can be constructed.

The prior values were inferred from the quantiles of the populations. In practice this
information is not available but it could be estimated from historical measurements or high
temporal observations. The later, high temporal sampling, can be realized using sensors on
board of geostationary satellites to quantify marine bio-geophysical parameters. For instance,
the visible band of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board of
the METEOSAT second generation satellite (MSG) can be used to quantify the concentrations
of SPM (Neukermans et al., 2008). With MSG 15 minutes of repeated sampling cycle, the
stochastic method can be applied on three consecutive acquisitions, i.e. each 45 minutes, to
produce SPM concentration and related-error maps. This error map provides vital input to
the recently developed SPM assimilation model (Eleveld et al., 2008). Moreover it can be used,
as weights, for ocean color products merging (Pottier et al., 2006). This generality aspect of
the presented stochastic method expands its applicability to different fields other than ocean
color. For example, Velde van der et al. (2008) developed a basis for Synthetic Aperture Radar
(SAR)-based soil moisture downscaling methodologies.

One limitation of the presented stochastic method is the choice of the acceptance-rejection
method. Although it facilitates the search for a unique pair of N(0,1) values, the derived σ
become sensitive to the ratio in (23), i.e. sensitive to the lower and upper pair (iopu,iopl) in
the IOP-triplet. This may caused the 7∼10% failure to reproduce the values of the standard
deviation. This can be attributed to the small values of α ≪ 1 which produce large values of
σ. These large values will further be magnified by equation (30).

Using equation (Bates & Watts, 1988, pp.59, cf. 1.36) to estimate the total error as a linear
sum of all other error components is another limitation. Atmospheric or noise radiometric
fluctuations can be interpreted, by model inversion, as high/low IOPs values with high
goodness-of-fit. Using the same reasoning, bad fit to very complex signal (turbid water with
high SPM, CDOM and Chl-a contents) can be attributed to atmospheric and sensor noise
errors, although the observed signal might be error-free.

Model-sensor error tables were simulated from IOCCG data set without accounting for
sensor’s band width and response function. A more detailed simulations that includes band
width, response function of the sensor and a specific range of the IOPs should be carried out
to establish a more accurate model-sensor error tables.

Although we showed that equation (34) is an acceptable approximation to the total variance,
the computed relative contribution of errors should be treated with caution.
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9. Summary and future developments

In this chapter we reviewed the recent advances in uncertainty estimation of the earth
observation products of water quality. Both deterministic and stochastic methods are
presented and their results are inter- compared. The stochastic method is more appropriate
to estimate actual errors of ocean color derived products than the deterministic methods,
however, it is still limited to few studies and as the deterministic approach requires prior
information. The uncertainties could be decomposed only if additional information is
provided a priori. Using a simple exercise it was shown that atmospheric-induced errors
are major contributors to the total error of IOPs whereas model-induced errors are inherent to
the derived IOPs depending on the used derivation method and number of spectral bands.

The error in this chapter was estimated as the difference between ground truth measurement
and satellite derived products. Direct matching between earth observation data and just
above the water field measurements imbed, however, an inherent scale difference. This
scale difference between in-situ observation and a pixel of ocean color satellite is at least
three to four orders of magnitude for nadir match-up sites and much larger for off-nadir
ones. This huge scale difference, means that point measurement is sampling a tiny fraction
of the water body which is observed by a satellite pixel. Few studies were carried out to
address the scale difference between point and aerospace measurements directly. Most of
these studies have used re-sampling to smooth out the scale differences in the match-up
sites, see (Bailey & Werdell, 2006; Bissett et al., 2004; Harding Jr. et al., 2005; Hu et al.,
2000). For example, Hyde et al. (2007) applied a correction algorithm to SeaWiFS products of
chlorophyll-a to overcome the mismatch which was partially due to sampling size differences.
Although this assumption of spatial homogeneity have resulted in good matches for most
open ocean matchup data (Carder et al., 2004; Garcia et al., 2005; Karl & Lukas, 1996; McClain
et al., n.d.), it lowers the percentage of usable match-up points considerably (Hooker &
McClain, 2000; Mélin et al., 2005) and should be avoided for productive waters (Chang &
Gould, 2006; Darecki & Stramski, 2004; Harding Jr. et al., 2005). Salama & Su (2010; 2011),
used the differences between the earth observation products and in situ data to quantify
the sub satellite pixel spatial viabilities using both the deterministic and stochastic methods,
respectively and neglecting the error. In principle the mismatch between earth observation
derived products and in situ measured quantities is attributed to the scale difference and errors
due to noise, correction and retrieval accuracy. Current uncertainty estimation methods do not
consider the spatial dependency of errors and their relationships to the actual distribution of
IOPs. Understanding the spatial characteristics of errors is necessary to resolve the smallest
sub-scale variability of the IOPs. This aspect should be investigated in the future to define
spatial-thresholds of measurable physical processes based on their errors. Moreover, the
dependency of both deterministic and stochastic methods on the radiometric uncertainties
limit their accuracy and application to cases where such data are available with an acceptable
degree of confidence. A self-consistent and operational method is still required to estimate
the uncertainties of IOPs without additional inputs or assumptions on the radiometric
fluctuations.
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