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1. Introduction 

The goal of this work is to revise, integrate and enrich previous analyses found in related 
papers about recent developments in the design and implementation of an operational 
automatic multi-sensor multi-resolution near real-time two-stage hybrid stratified 
hierarchical remote sensing (RS) image understanding system (RS-IUS) (Baraldi et al., 2006; 
Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi, 2011a).  

For publication reasons this work consists of two companion papers, Part I and Part II 
respectively. In Part I related papers, concepts and definitions are revised from existing 
literature to provide this work with a significant survey value and make it self-contained. 
The survey of past works is completed in Part II Section 2, where differences at the 
architectural level between different families of existing RS-IUSs, namely, multi-agent 
hybrid RS-IUSs, two-stage segment-based RS-IUSs and two-stage stratified hierarchical 
hybrid RS-IUSs, are highlighted. 

The original contribution of Part II is to propose novel definitions of objective continuous 
sub-symbolic sensory data, continuous physical information, subjective discrete semi-
symbolic data structure, discrete semantic-square (semantic2) information (which is 
naturally generated from the simultaneous combination of three components: (I) an 
objective continuous sensory data set, (II) an external subjective supervisor (observer) and 
(III) his/her own subjective prior ontology equivalent to a model of the (3-D) world existing 
before looking at the objective sensory data at hand) and prior knowledge base.  

In practical contexts the aforementioned original definitions imply the following. 
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a. It is impossible to extract semantic2 information from objective continuous sensory data 
because the latter, per se, are provided with no semantics at all.  

b. It is possible to correlate discrete semantic2 information to objective continuous sensory 
data. Unfortunately, correlation between continuous sensory data and a finite and discrete 
set of categorical variables, corresponding to independent random variables generating 
separable data structures (data aggregations, data clusters, data objects), is low in real-
world RS image mapping problems at large data scale or fine semantic granularity, other 
than toy problems at small data scale and coarse semantic granularity. 

Some practical conclusions of potential interest to the RS, computer vision (CV), artificial 
intelligence (AI) and machine learning (MAL) communities stem from these speculations. 
Firstly, in operational contexts (e.g., RS image classification problems at national/ 
continental/ global scale), other than toy problems (e.g., RS image mapping at coarse spatial 
resolution and local/regional scale), inductive classifiers capable of learning from a finite 
labeled data set are considered structurally inadequate to correlate (rather than extract, see 
this text above) discrete semantic2 information with objective sensory data provided, per se, 
with no semantics at all.  

Secondly, to increase the operational quality indicators (QIs) of existing two-stage hybrid RS-
IUSs (namely, degree of automation, accuracy, efficiency, robustness to changes in input 
parameters, robustness to changes in the input data set, scalability, timeliness and economy), 
any first-stage inductive MAL-from-examples approach should be replaced by a deductive 
Machine Teaching (MAT)-by-rules capable of generating a preliminary classification first stage 
where small, but genuine image details are well preserved (Baraldi et al., 2006; Baraldi et al., 
2010a; Baraldi et al., 2010b; Baraldi, 2011a).  

Thirdly, in RS-IUSs, MAL-from-data algorithms, either labeled (supervised) or unlabeled 
(unsupervised), either context-insensitive (e.g., pixel-based) or context-sensitive (e.g., 2-D 
object-based), should be adapted to work on a driven-by-knowledge stratified (semantic 
masked, layered) basis and moved to the second stage of a novel two-stage stratified 
hierarchical hybrid RS-IUS architecture recently proposed in RS literature (Baraldi et al., 2006a; 
Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi et al., 2010c; Baraldi, 2011a; Baraldi, 2011b). 

As a proof of these concepts, the operational automatic multi-sensor multi-resolution near 
real-time Satellite Image Automatic Mapper™ (SIAM™), recently presented in RS literature1 
(Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi et al., 2010c; Baraldi, 
2011a; Baraldi, 2011b),  is adopted as first stage. 

The rest of Part II of this work is organized as follows. Part II Section 3 discusses theoretical 
inconsistencies and algorithmic drawbacks found in Diamant's works (discussed in Part I 
Section 2.2 and Part I Section 2.5). Revised/novel definitions of objective continuous sensory 
data, continuous physical information, discrete semantic2 information and prior knowledge 
are provided in Part II Section 4. In Part II Section 5 practical consequences of the novel 
definitions provided in Part II Section 4 are considered for CV, AI and MAL applications. 
Part II Section 6 presents the operational automatic multi-sensor multi-resolution near real-
time SIAM™ as a proof of the original concepts proposed in this work. Conclusions are 
reported in Part II Section 7. 

                                                 
1 SIAM™ - Patent pending - © Andrea Baraldi  University of Maryland. 
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2. Related works (continued): Taxonomy of hybrid RS-IUS architectures 

As reported in Part I Section 2.1, there is a new trend of research and development in both 
CV (Cootes & Taylor, 2004) and RS literature (Matsuyama & Shang-Shouq Hwang, 1990; 
Shunlin Liang, 2004) to outperform existing scientific and commercial image understanding 
systems. This novel trend focuses on the development of quantitative hybrid models for 
retrieving sub-symbolic continuous variables (e.g., LAI) and symbolic categorical discrete 
variables (e.g., land cover composition) from multi-spectral (MS) imagery. By definition, 
hybrid models combine both statistical and physical models to take advantage of the unique 
features of each and overcome their shortcomings (see Part I Section 2.1). The study of 
hybrid quantitative models is also called AI systems integration. In this section, the 
taxonomy of hybrid RS-IUSs is summarized in line with (Baraldi et al., 2010a). It consists of: 

 multi-agent hybrid RS-IUSs, 

 two-stage segment-based RS-IUSs, whose conceptual foundation is well known in RS 
literature as as geographic (2-D) object-based image analysis (GEOBIA), including a so-
called iterative geographic OO image analysis (GEOOIA) approach  (Baatz et al., 2008). 
and 

 two-stage stratified hierarchical hybrid RS-IUSs employing SIAM™ as preliminary 
classification first stage. 

2.1 Multi-agent hybrid RS-IUSs 

In existing literature multi-agent hybrid RS-IUSs provide application-specific combinations 
of inductive and deductive inference mechanisms (Matsuyama & Shang-Shouq Hwang, 
1990). A traditional multi-agent hybrid RS-IUS architecture comprises the following 
modules (see Fig. 1). 

1. (3-D) Scene domain knowledge, also called world model (Matsuyama & Shang-Shouq 
Hwang, 1990). It is represented as a semantic network consisting of classes of objects as 
nodes and relationships between classes as arcs between nodes (refer to Part I Section 
2.2.2). 

2. A Low-Level Vision Expert (LLVE, refer to Part I Section 2.4.1.2) (Matsuyama & Shang-
Shouq Hwang, 1990). In general, an LLVE can be applied either image-wide or within a 
local image area specified by a Specialized Object Model Selection Expert (SOMSE, see 
this text below) (Mather, 1994). LLVE includes a battery of low-level sub-symbolic (non-
semantic) general-purpose domain-independent inductive-learning (fine-to-coarse, 
bottom-up) driven-without-knowledge inherently ill-posed image processing 
algorithms called image segmentation for simplicity's sake (also refer to Part I Section 
2.4.1.2) (Matsuyama & Shang-Shouq Hwang, 1990). As output, the image segmentation 
first stage provides image features, namely points and regions (segments, [2-D] objects, 
parcel or blobs (Carson et al., 1997; Lindeberg, 1993; Yang & Wang, 2007), see Part I 
Section 2.3) or, vice versa, region boundaries, i.e., edges, provided with no semantic 
meaning (see Part I Section 2.4.1.2).  

3. A high-level interpretation second stage employing a combination of top-down (model-
driven) and bottom-up (data-driven) inference mechanisms to establish the 
correspondence between sub-symbolic (2-D) image features extracted from the image 
domain and symbolic (3-D) object models stored in the world model to construct 
plausible structural (semantic) description(s) of the depicted scene (refer to Part I Section 
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2.3). The combination of top-down with bottom-up inference strategies achieves two 
operational advantages: (a) provides better conditions for an otherwise ill-posed driven-
without-knowledge segmentation first stage (refer to Part I Section 2.3) and (b) allows 
restriction of intensive processing to a small portion of the image data (Matsuyama & 
Shang-Shouq Hwang, 1990), analogously to a focus of visual attention in pre-attentive 
biological vision (Mason & Kandel, 1991; Gouras, 1991; Kandel, 1991). The high-level 
processing second stage comprises (Matsuyama & Shang-Shouq Hwang, 1990): (I) a 
Spatial Reasoning Expert (SRE) whose aim is to trigger the instantiation, within a 
candidate local area, of plausible generic (3-D) object models found in the available world 
model, e.g., house, and (II) a SOMSE (refer to this text above) which uses domain-
dependent knowledge about specific applications to: (i) prune the search space of 
specialized (3-D) object models (e.g., rectangular house, L-shaped house, etc.) linked by A-
KIND-OF relations to the generic target (3-D) object model (e.g., house) provided by SRE; 
(ii) transform the 3-D appearance properties of the specialized (3-D) object model into a 
selected set of 2-D appearance properties based on the imaging sensor model; (iii) 
transform a target spatial relation in fuzzy terms (e.g., in front of) provided by SRE into a 
local area based on a trial-and-error heuristic search with no concrete theoretical basis and 
(iv) provide a consistency examination between quantitative absolute image features 
collected by LLVE in a local area and the target 2-D appearance constraints. In other 
words, the 2-D appearance properties must be satisfied by image features extracted by 
LLVE from a local area. Since the image structure in a local area is very simple compared 
with that of the entire image, image feature extraction performed by an object model-
driven and locational constrained LLVE can be very efficient and reliable compared with 
that performed by the same LLVE run image-wide at the first stage (Matsuyama & Shang-
Shouq Hwang, 1990) (p. 41). 

   
(3-D) World model 

1. 3-D object model appearance 

properties. 

2. Generalization / specialization hierarchy 

based on A-KIND-OF relations. 

3. Hierarchy based on PART-OF relations. 

4. Ontology of fuzzy spatial relations 

between different classes of objects. 

Low-Level Vision Expert 

(LLVE) 

Specialized Object Model 

Selection Expert 

(SOMSE) 

(2-D) Image 

Spatial Reasoning Expert 

(SRE) 

Query Answer 

Query Answer 

1÷4 

1, 2 

3-D scene features 

2-D image features 

 

Fig. 1. Multi-agent hybrid systems for RS image understanding (derived from Figure 2.1 in 
(Matsuyama & Shang-Shouq Hwang, 1990), p. 36). 
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Legenda. Y: Yes, N: No, C: Complete, I: Incomplete (radiometric calibration offset parameters are set to zero), (E)TM: (Enhanced) 

Thematic Mapper, B: Blue, G: Green, R: Red, NIR: Near Infra-Red, MIR: Medium IR, TIR: Thermal IR, SR: Spatial Resolution, Pan: 

Panchromatic. 

Blue columns: visible channels typical of water and haze. Green column: NIR band typical of vegetation. Brown columns: MIR channels 

characteristics of bare soils. Red column: TIR channel. 

 

SIAM™ 

system of 

systems 

 B –

(E)TM1, 

0.45-

0.52 

(m) 

G –

(E)TM2, 

0.52-

0.60 

(m) 

R –

(E)TM3, 

0.63-

0.69 

(m) 

NIR –

(E)TM4, 

0.76-0.90 

(m) 

MIR1 –

(E)TM5, 

1.55-1.75 

(m) 

MIR2 –

(E)TM7, 

2.08-2.35 

(m) 

TIR –

(E)TM6, 

10.4-12.5 

(m) 

SR 

(m) 

Rad. 

Cal. 

Y/N, 

C/I 

Pan 

SR 

(m) 

Notes 

L-SIAM™ 

(95/47/18 Sp. 

Cat.) 

Landsat-4/-5 

TM 

       30 Y-C  Refer to 

Table I in 

(Baraldi 

et al., 

2006a). 

Landsat-7 

ETM+ 

       30 Y-C 15 Same as 

above. 

MODIS         250, 

500, 

1000 

Y-C  Same as 

above. 

ASTER        15-

30 

Y-C  Same as 

above. 

CBERS-2B        N   

S-SIAM™ 

(68/40/15 Sp. 

Cat.) 

SPOT-4 

HRVIR  

    20 Y-I 10 Refer to 

Table II in 

(Baraldi 

et al., 

2006a). 

SPOT-5 HRG     10 Y-I 2.5 - 

5 

Same as 

above. 

SPOT-4/-5 

VMI 

    1100 Y-I  Same as 

above. 

IRS-1C/-1D 

LISS-III 

    23.5 Y-I   

IRS-P6 LISS-

III 

    23.5 Y-I   

IRS-P6 

AWiFS 

    56 Y-I   

AV-SIAM™ 

(82/42/16 Sp. 

Cat.) 

NOAA 

AVHRR 

    1100 Y  Refer to 

Table II in 

(Baraldi 

et al., 

2006a). 

MSG     3000 Y  Same as 

above. 

AA-SIAM™ 

(82/42/16Sp. 

Cat.) 

ENVISAT 

AATSR 

     1000 Y  Same as 

above. 

ERS-2 ATSR-

2 

     1000 Y   

I-SIAM™ 

(52/28/12Sp. 

Cat.) 

IKONOS-2     4 Y 1  

QuickBird-2     2.4 Y 0.61  

WorldView-2     2.0 Y 0.5  

GeoEye-1     1.64 Y 0.41  

OrbView-3     4 Y 1  

RapidEye-1 to 

-5 

    6.5 Y-I   

ALOS AVNIR-

2 

    10 Y   

KOMPSAT-2     4 N 1  

TopSat     5 N 2.5  

FORMOSAT-

2 

    8 N 2  

D-SIAM™ 

(52/28/12Sp. 

Cat.) 

Landsat-1/-2/-

3/-4/-5 MSS 

   79 Y   

IRS-P6 LISS-

IV 

   5.8 Y-I   

SPOT-1/-2/-3 

HRV 

   20 Y-I 10  

DMC    22-

32 

N   

  

Table 1. SIAM™ system of systems. List of spaceborne optical imaging sensors eligible for 
use as input. 
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Multi-agent hybrid systems typically suffer from two main limitations. 

 In addition to the intrinsic insufficiency of image features, e.g., due to occlusion and 
dimensionality reduction (refer to Part I Section 2.3), these systems are affected by the 
so-called artificial insufficiency caused by the inherent ill-posedness of the image 
segmentation problem (Matsuyama & Shang-Shouq Hwang, 1990) (see Part I Section 
2.4.1.2). This means that in RS common practice any first-stage image segmentation 
algorithm is simultaneously affected by both omission and commission segmentation 
errors. Although the inherent ill-posedness of image segmentation is acknowledged by 
a reasonable portion of existing literature (Burr & Morrone, 1992; Corcoran et al., 2010; 
Corcoran & Winstanley, 2007; Delves et al., 1992; Hay & Castilla, 2006; Matsuyama & 
Shang-Shouq Hwang, 1990; Petrou & Sevilla, 2006; Vecera & Farah, 1997), this is often 
forgotten by a large segment of the RS community where literally dozens of “novel” 
segmentation algorithms are published each year (Zamperoni, 1996) (refer to Part I 
Section 2.4.1.2).  

 Semantic nets lack flexibility and scalability to cope with changes in sensor 
characteristics and users’ changing needs, i.e., they are unsuitable for commercial RS 
image processing software toolboxes and remain limited to scientific applications. 

To overcome these limitations, an alternative two-stage stratified hierarchical hybrid RS-IUS 
architecture, such as that shown in Fig. 3, was proposed in recent literature (Baraldi et al., 
2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi, 2011a; Baraldi, 2011b; Baraldi et al., 
2010c). 

2.2 Two-stage segment-based RS-IUSs 

Two-stage segment-based RS-IUSs comprise an inductive driven-without-knowledge image 
segmentation first stage and a second-stage object-based classifier, see Fig. 2. The latter can 
be implemented based on deductive or inductive inference mechanisms, say, as a prior 
knowledge-based non-adaptive decision-tree or a supervised data learning classifier (e.g., a 
Support Vector Machine, SVM (Bruzzone & Carlin, 2006)).  

Due to the availability of a commercial GEOBIA software developed by a German company 
(Definiens Imaging GmbH, 2004; Esch et al., 2008), two-stage segment-based RS-IUSs have 
recently gained widespread popularity and are currently considered the state-of-the-art in 
both scientific and commercial RS image mapping application domains (Mather, 1994; 
Pekkarinen, Reithmaier & Strobl, 2009). In practice, under the guise of ‘flexibility’ current 
commercial 2-D object-based software provides overly complicated options to choose from 
(Hay & Castilla, 2006). This means that with their increasing diffusion commercial two-stage 
segment-based RS-IUSs show an increasing lack of productivity (Tapsall et al., 2010), 
consensus and research (Castilla et al., 2008; Hay & Castilla, 2006) (refer to Part I Section 
2.4.1.2). 

2.3 Two-stage stratified hierarchical hybrid RS-IUS employing SIAM™ as its 
preliminary classification first stage 

Accounting for the customary distinction between a model and the algorithm used to 
identify it (Baraldi et al., 2010a; Baraldi, 2011a),  an original two-stage stratified hierarchical 
hybrid RS-IUS architecture (see Fig. 3) was identified starting from several RS-IUS  
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(Ill-posed) Hierarchical piecewise constant 

image segmentation (includes no texture 

model)

Class 1-specific Fuzzy 

Rule-based Classifier

Inter-segment spatial 

non-topological 

relationships

Chromatic or 

achromatic Input 

Image

Segment-based 

color/achromatic 

features

Segment-based 

morphological 

features

Segment-based 

texture features

Segment-based 

geometric 

features

Inter-segment 

spatial topological 

relationships

Class 3-specific Fuzzy 

Rule-based Classifier

Defuzzification (Crisp 1-of-3 class label)

Class 2-specific Fuzzy 

Rule-based Classifier

2 31

 

Fig. 2. Two-stage segment-based hybrid RS-IUS architecture adopted, for example, by the 
eCognition commercial software toolbox (Definiens Imaging GmbH, 2004). Preliminary 
image simplification is pursued by means of an (ill-posed hierarchical) image segmentation 
approach which generates as output a segmented (discrete) map, either single-scale or 
multi-scale.  Worthy of note is that first-stage output sub-symbolic informational primitives, 
namely, labeled segments (2-D objects, parcels), e.g., segment 1, segment 2, etc., are 
provided with no semantic meaning. 

implementations proposed by Shackelford and Davis in recent years (Shackelford & Davis, 
2003a; Shackelford & Davis, 2003b). This novel RS-IUS architecture comprises the following 
phases (Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi et al., 2010c; 
Baraldi, 2011a; Baraldi, 2011b).  

a. A radiometric calibration pre-processing stage, where DNs are transformed into top-of-

atmosphere reflectance (TOARF) or surface reflectance (SURF) values, with TOARF  
SURF, the latter being an ideal (atmospheric noise-free) case of the former. This 
radiometric calibration constraint not only ensures the harmonization and 
interoperability of multi-source observational data in line with the Quality Assurance 
Framework for EO (QA4EO) guidelines (GEO/CEOSS, 2008), but  is considered a 
necessary, although not sufficient, condition for input Earth observation (EO) imagery 
to be automatically interpreted (see Part I Section 2.7.1). It is worth mentioning that a 
RS-IUS suitable for mapping TOARF values into surface categories makes the 
inherently ill-posed (therefore, difficult to solve) atmospheric correction problem an 
optional MS image pre-processing stage unlike competing classification approaches 
employing surface reflectance spectra, such as the ERDAS ATCOR3 (Richter, 2006) (see 
Part I Section 2.7.1). 
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Radiometric calibration of DNs 
into TOA reflectance values

Morpho. Top-hat open and 

close, Contrast Texture Feature,

Length-Width Local Feature

Morpho. Top-hat open and 

close, Contrast Texture 

Feature

SPOT-5 XS 10 m resolution or below Input Image

2
4 53

Stratum 1 

Two-class Fuzzy 

Rule-based 

Classifier 

(Semantic net)

Preliminary spectral rule-
based classification (SRC)

Grass/Tree 

Mask
Road/Building/Barren 

land Mask

Rest of the world 
(e.g., Snow Mask, 

Cloud Mask, Smoke 
plume Mask

Water/Shadow 

Mask

Stratum 4 

Three-class Fuzzy 

Rule-based 

Classifier 

(Semantic net)

Stratum 4 (better-

posed) 

Segmentation

Stratum 3 

Two-class Fuzzy 

Rule-based 

Classifier 

(Semantic net)

Defuzzification (Crisp 1-of-7 class label)

Stratum 2 

Fuzzy Rule-based 

Classifier 

(Semantic net)

1
7

6

SPOT-5 PAN 10 m resolution or below Input Image

8
 

Fig. 3. Novel hybrid two-stage stratified hierarchical RS-IUS architecture. This data flow 

diagram (DFD) shows processing blocks as rectangles and sensor derived data products as 

circles. In this example, a SPOT-5 MS image is adopted as input.  The panchromatic (PAN) 

image can be generated from the MS image. The MS image is input to the preliminary 

classification first stage and, if useful, to second-stage class-specific classification modules. 

The PAN image is exclusively employed as input to second-stage stratified class-specific 

context-sensitive classification modules, where color information is dealt with by 

stratification. For example, stratified texture detection is computed in the PAN image 

domain, which reduces computation time. 

b. A first-stage application-independent per-pixel (non-contextual) top-down (prior 
knowledge-based, see Part I Section 2.1) preliminary classifier in the Marr sense (Marr, 
1982). 

c. A second-stage battery of stratified hierarchical context-sensitive application-dependent 

modules for class-specific feature extraction and classification. 

In (Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi et al., 2010c; Baraldi, 

2011a; Baraldi, 2011b), the abovementioned first-stage pixel-based preliminary classifier was 

designed and implemented as an original operational automatic near-real-time per-pixel 

multi-source multi-resolution application-independent SIAM™. To employ as input a 

radiometrically calibrated MS image acquired by almost any of the ongoing or future 

planned satellite optical missions, SIAM™ is designed as an integrated system of systems. It 

comprises a “master” 7-band Landsat-like SIAM™ (L-SIAM™) together with five down-

scaled (“slave”, derived) versions of L-SIAM™ whose input is a MS image featuring a 

spectral resolution that overlaps with, but is inferior to, Landsat’s. To summarize, SIAM™ 

combines six sub-systems (refer to Table 1).  
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i. A “master” 7-band L-SIAM™ capable of detecting 95/ 47/ 18 spectral categories at 
fine/ intermediate/ coarse semantic granularity (see Fig. 4). The legend of the 
preliminary classification map generated by L-SIAM™ at fine semantic granularity is 
shown in Table 2. 

ii. A four-band Satellite Pour l'Observation de la Terre (SPOT)-like SIAM™ (S-SIAM™), 
which detects 68/ 40/ 15 spectral categories at fine/ intermediate/ coarse semantic 
granularity (see Fig. 5).  

iii. A four-band National Oceanic and Atmospheric Administration (NOAA) Advanced 
Very High Resolution Radiometer (AVHRR)-like SIAM™ (AV-SIAM™), which detects 
82/ 42/ 16 spectral categories at fine/ intermediate/ coarse semantic granularity.   

iv. A five-band ENVISAT Advanced Along-Track Scanning Radiometer (AATSR)-like 
SIAM™ (AA-SIAM™), which detects 82/ 42/ 16 spectral categories at fine/ 
intermediate/ coarse semantic granularity.  

v. A four-band IKONOS-like SIAM™ (I-SIAM™), which detects 52/ 28/ 12 spectral 
categories at fine/ intermediate/ coarse semantic granularity (see Fig. 6). The legend of 
the preliminary classification map generated by I-SIAM™ at fine semantic granularity 
is shown in Table 3. 

vi. A three-band Disaster Monitoring Constellation (DMC)-like SIAM™ (D-SIAM™), 
which detects 52/28/12 spectral categories at fine/intermediate/coarse semantic 
granularity.  

"High" leaf area index (LAI) vegetation types (LAI values decreasing left to right)

"Medium" LAI vegetation types (LAI values decreasing left to right)

Shrub or herbaceous rangeland

Other types of vegetation (e.g., vegetation in shadow, dark vegetation, wetland) 

Bare soil or built-up

Deep water, shallow water, turbid water or shadow

Thick cloud and thin cloud over vegetation, or water, or bare soil

Thick smoke plume and thin smoke plume over vegetation, or water, or bare soil

Snow and shadow snow

Shadow

Flame

Unknowns  

Table 2. Preliminary classification map legend adopted by L-SIAM™ at fine semantic 
granularity. Pseudo-colors of the 95 spectral categories are gathered based on their spectral 
end member (e.g., bare soil or built-up) or parent spectral category (e.g., "high" LAI 
vegetation types). The pseudo-color of a spectral category is chosen as to mimic natural 
colors of pixels belonging to that spectral category. 

 "High" leaf area index (LAI) vegetation types (LAI values decreasing left to right)

"Medium" LAI vegetation types (LAI values decreasing left to right)

Shrub or herbaceous rangeland

Other types of vegetation (e.g., vegetation in shadow, dark vegetation, wetland) 

Bare soil or built-up

Deep water or turbid water or shadow

Smoke plume over water, over vegetation or over bare soil

Snow or cloud or bright bare soil or bright built-up

Unknowns  

Table 3. Preliminary classification map legend adopted by I-SIAM™ at fine semantic 
granularity. Pseudo-colors of the 52 spectral categories are gathered based on their spectral 
end member (e.g., bare soil or built-up) or parent spectral category (e.g., "high" LAI 
vegetation types). The pseudo-color of a spectral category is chosen as to mimic natural 
colors of pixels belonging to that spectral category. 
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Fig. 4 to Fig. 6 show qualitatively that, in disagreement with a common opinion in the RS 
community where GEOBIA is considered indispensable for spaceborne VHR image 
understanding (Bruzzone & Carlin, 2006; Bruzzone & Persello, 2009; Persello & Bruzzone, 
2010), the pixel-based SIAM™ is very successful in the automatic mapping of RS imagery, 
including VHR images (Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi 
et al., 2010c; Baraldi, 2011a; Baraldi, 2011b). This means that SIAM™ is not affected by the 
well-known salt-and-pepper classification noise effect which traditionally affects ordinary 
pixel-based classifiers (e.g., maximum-likelihood classifiers (Cherkassky and Mulier, 2006)), 
which is tantamount to saying that SIAM™ is successful in modeling the within-spectral-
category variance.  

 

Fig. 4(a). Web-Enabled Landsat Data (WELD) Project (USGS & NASA, 2011). This is a joint 
NASA and USGS project providing seamless consistent mosaics of fused Landsat-7 
Enhanced TM Plus (ETM+) and MODIS data radiometrically calibrated into top-of-
atmosphere reflectance (TOARF) and surface reflectance. These mosaics are made freely 
available to the user community. Each consists of 663 fixed location tiles. Spatial resolution: 
30 m. Area coverage: Continental USA and Alaska. Period coverage: 7-year. Product time 
coverage: weekly, monthly, seasonal and annual composites. 
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Fig. 4(b). Including the map of Alaska at the top right. Preliminary classification map 
automatically generated by L-SIAM™ from the 2008 annual WELD mosaic shown in Fig. 
4(a). Output spectral categories are depicted in pseudo colors. Map legend: refer to Table 2. 
To generate this map at national scale L-SIAM™ was run overnight by L. Boschetti (Univ. of 
Maryland) in Dec. 2010. To the best of this author’s knowledge, this is the first example of 
such a high-level product automatically generated at both the NASA and USGS.  
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Fig. 5(a). 4-band GMES-IMAGE2006 Coverage 1 mosaic,  consisting of approximately two 
thousand 4-band IRS-P6 LISS-III, SPOT-4, and SPOT-5  images, mostly acquired during the 
year 2006, depicted in false colors: Red – Band 4 (Short Wave InfraRed, SWIR), Green – Band 
3 (Near IR, NIR), Blue – Band 1 (Visible Green). Down-scaled spatial resolution: 25 m. 

 

Fig. 5(b). Preliminary classification map automatically generated by S-SIAM™ from the 
mosaic shown in Fig. 5(a). Output spectral categories are depicted in pseudo colors. A map 
legend  similar to Table 2 is adopted: water and shadow areas are in blue, clouds in white, 
snow and ice in light blue, vegetation types in different shades of green, rangeland types in 
different shades of light green, barren land types in different shades of brown and grey. To 
the best of this author’s knowledge, this is the first example of such a high-level product 
automatically generated at the European Commission – Joint Research Center (EC-JRC).  
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Fig. 6(a). QuickBird-2 image, 2.4 m spatial resolution, acquisition date 2010-03-16, 
radiometrically calibrated into TOARF values, depicted in false colors (R: 3, G: 4, B: 1). 
Default image histogram stretching: ENVI linear stretching 2%.  

 

Fig. 6(b). Automatic Q-SIAM™ preliminary mapping of the QB-2 image shown in Fig. 6(a). 
Spectral categories are depicted in pseudo colors. Map legend: see Table 3. It is noteworthy 
that, within the Q-SIAM™ mutually exclusive and completely exhaustive classification 
scheme, cloud detection is per se an interesting operational product with relevant 
commercial applications and, to the best of these authors' knowledge, without alternative 
solutions in either commercial or scientific RS-IUSs. 
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Fig. 7(a). Zoomed area of a Landsat 7 ETM+ image of Virginia, USA (path: 16, row: 34, 
acquisition date: 2002-09-13), depicted in false colors (R: band ETM5, G: band ETM4, B: band 
ETM1), 30 m resolution, calibrated into TOARF values. 

 

Fig. 7(b). 2nd-stage stratified vegetated land cover classification map generated in series 
with the L-SIAM™ first stage from Fig. 7(a). This 2nd-stage map consists of 19 
vegetated/non-vegetated land cover classes, depicted in pseudo-colors, including: crop field 
or grassland, broad-leaf forest, needle-leaf forest and non-vegetated pixels (in black). Input 
features are: spectral layers generated by L-SIAM™, (achromatic) brightness and multi-scale 
isotropic texture features extracted from the brightness image. 
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To the best of this author’s knowledge no unifying automatic multi-sensor multi-resolution 
near real-time RS image classification platform alternative to SIAM™ can be found in 
existing literature. This is tantamount to saying that SIAM™ provides the first operational 
example of an automatic multi-sensor multi-resolution near real-time EO system of systems 
envisaged under on-going international research programs such as the Global EO System of 
Systems (GEOSS) conceived by the Group on Earth Observations (GEO) (GEO, 2005; GEO, 
2008a) and the Global Monitoring for the Environment and Security (GMES), which is an 
initiative led by the European Union (EU) in partnership with the European Space Agency 
(ESA) (ESA, 2008; GMES, 2011) (see Part I Section 1). 

Fig. 7 shows an example of an automatic 2nd-stage stratified rule-based vegetated land 

cover classification system in series with the L-SIAM™ first stage. The two-stage automatic 

classifier employing L-SIAM™ as preliminary classification first stage (refer to Fig. 3) is 

input with a 7-band Landsat image radiometrically calibrated into TOARF values, shown in 

Fig. 7(a). The 2nd-stage stratified rule-based vegetated land cover classification system in 

series with the L-SIAM™ first stage employs as input features: spectral-based layers (strata, 

generated by L-SIAM™ at first stage), (achromatic) brightness and multi-scale isotropic 

texture extracted from the brightness image. The 2nd-stage classifier provides as output a 

classification map consisting of 19 vegetated/non-vegetated land cover classes, depicted in 

pseudo-colors, including: crop field or grassland, broad-leaf forest, needle-leaf forest and 

non-vegetated pixels (in black), see Fig. 7(b).  

3. Inconsistencies and limitations of the Diamant computational theory and 
algorithms 

An original analysis of the Diamant definitions reported in Part I Section 2.2.3 and 
Diamant's image segmentation and contour detection algorithms summarized in Part I 
Section 2.5 is provided below. 

3.1 Comments on the Diamant definitions of data, information and knowledge 

According to this author, the Diamant definitions reported in Part I Section 2.2.3 are affected 
by three major drawbacks. 

i. Diamant states that "information elicitation (extraction) does not require incorporation 
of any high-level knowledge" (Diamant, 2010a; Diamant, 2010b), which is tantamount to 
saying that detection of non-semantic primary data structures (data objects), e.g., (2-D) 
image segments, in an unlabeled data set, e.g., a (2-D) image, does not require 
incorporation of any high-level (prior) knowledge. Based on this statement it is possible 
to conclude that despite his theoretical anti-conformism, namely, his willingness to 
replace the MAL-from-examples paradigm with the MAT-by-rules approach, Diamant 
is a conformist in practice. In fact, the Diamant image contour detection and image 
segmentation algorithms (see Part I Section 2.5) fit existing CV system architectures well 
established in literature, such as, respectively, the Marr CV system architecture, 
conceived in the 1980s and comprising a zero-crossings (contour detection) primal 
sketch, and RS-IUSs where an image segmentation first stage is adopted in agreement 
with the GEOBIA approach (see Part I Section 2.4.1.2). In other words, there is a clear 
contradiction in terms between the Diamant claim of replacing the MAL-from-examples 
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with a MAT-by-rules paradigm and his practical proofs of concept, consisting of image 
segmentation and contour detection algorithms 100% consistent with the same MAL-
from-examples paradigm he intends to overcome. 

ii. If the Diamant CV system coincides with a Marr CV system or an GEOBIA approach 
(refer to paragraph (i) above), then, in practical contexts, its operational QIs (see Part I 
Section 2.8) are expected to score as low as Marr's or OBIA's (refer to Part I Section 1, Part I 
Section 2.4.1.2 and Part II Section 2). At the level of understanding of an information 
processing system known as computational theory (system architecture, see Part I Section 
2.6), GEOBIA scores low in operational contexts because, according to the present author,  
it goes symbolic as late as possible, namely, at the output of its second and last stage (see 
Fig. 2). This is in contrast with an important intuition by Marr stating that “vision goes 
symbolic almost immediately, right at the level of zero-crossings (first-stage primal 
sketch)… without loss of information” (Marr, 1982) (p. 343) (see Part I Section 2.3).  

iii. To recover from the gap existing between Diamant's theoretical anti-conformism, but 
practical conformism  (refer to paragraphs (i) and (ii) above), it is sufficient to observe 
that statements such as "information elicitation (aggregation) does not require 
incorporation of any high-level knowledge" (Diamant, 2010a; Diamant, 2010b), are in 
clear contradiction with a relevant section of existing literature (see Part I Section 
2.4.1.2). In particular, Diamant considers primary data structures, equivalent to non-
semantic data objects (e.g., image segments), as "natural data structures which reflect 
some similarities among neighboring elements in the data. Therefore, defining them is 
certainly a well-grounded procedure that does not raise any objection, because objective 
(physical) laws underpin such a procedure" (Diamant, 2010a) (see Part I Section 2.2.3.2). 
In other words, "physical information, being a natural property of the data, can be 
extracted instantly from the data, and any special rules for such task accomplishment are 
not needed" (Diamant, 2010a). Unfortunately, no well-grounded (well-posed) inductive 
learning-from-unlabeled-data approach exists (see Part I Section 2.1). For example, both 
unlabeled data clustering and (2-D) image segmentation algorithms are inherently ill-
posed (see Part I Section 2.4.1). By adopting the Diamant terminology it is possible to 
state that detection of "discernable" data structures is not at all a physical problem of 
objective nature: it is rather a typical semantic problem of a qualitative (subjective) 
nature, where prior knowledge (provided by an external supervisor) must come into 
play to make the inherently ill-posed inductive learning-from-data problem better 
posed, although subjective (see Part I Section 2.1). This is tantamount to saying that the 
conceptual foundation of GEOBIA, i.e., the relationship between inherently ill-posed 
sub-symbolic (2-D) image segments and symbolic (3-D) landscape objects, remains 
affected by a lack of general consensus and research (Hay & Castilla, 2006) (see Part I 
Section 2.4.1.2). 

To conclude, Diamant appears to have totally misunderstood one of two facts about the 
MAL-from-examples paradigm. These two facts hold true for MAL from unlabeled data and 
MAL from labeled data algorithms, respectively, as described below. 

a. MAL from unlabeled (unsupervised) data (see Part I Section 2.1 and Part I Section 2.4.1). 
Any machine learning from unlabeled data approach (e.g., unlabeled data clustering, 
image segmentation) is inherently ill-posed and requires prior knowledge to become 
better posed. It means that any attempt to extract non-semantic primary data structures 
(data objects), e.g., image segments and unlabeled data clusters, from an unlabeled data 
set (e.g., an image) without incorporation of high-level knowledge provided by an 
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external supervisor is a fatal misconception, committed by Diamant himself, stemming 
from the fallacies (inherent ill-posedness) of the MAL-from-examples paradigm. 

b. MAL from labeled (supervised) data (see Part I Section 2.1 and Part I Section 2.4.2). It is 
true that, in Diamant's words, "knowledge about the rules that underpin (semantic) 
secondary (data) structures formation (from primary data structures considered as non-
semantic and driven-without-knowledge) is a property of human observers (or their 
artificial counterparts) and not an inherent property of the data... (therefore) attempts to 
extract semantics from data are a fatal misconception stemming from the fallacies of the 
data-processing paradigm..." (Diamant, 2010a). This quote implies that no semantic 
information can be extracted from objective sensory data, but a correlation function can 
be established between semantic concepts and objective data for toy data 
understanding problems exclusively (refer to Part I Section 1 and Part I Section 2.1). 

3.2 Comments on the Diamant image segmentation algorithm 

In practical terms, the image segmentation algorithm proposed by Diamant can be subjected 
to the following criticisms. 

 Not enough information is provided for the implementation to be reproduced. In 
practice the Diamant image segmentation algorithm cannot be duplicated and, 
therefore, cannot be tested by others. 

 Diamant does not provide his image segmentation algorithm with QIs such as those 
listed in Part I Section 2.8. For example, based on Diamant's paper it is impossible to 
assess the following operational QIs. 

 Degree of automation. The following questions remain unanswered. What is the 
number of the image segmentation-free parameters to be user-defined? Have these 
user-defined parameters a physical meaning? What is their range of change?  

 Robustness to changes in input parameters to be user-defined.  

 Robustness to changes in the input data set acquired across time, space and 
sensors. In his paper (Diamant, 2005) Diamant applies his image segmentation 
algorithm to a single toy problem whose input data set consists of a panchromatic 
image 640×480 pixels in size. What about color images? What about satellite 
imagery? What about synthetic images of known visual properties? 

 Scalability.  For example, does this image segmentation algorithm apply to data 
sets of different spatial scales, e.g., mosaics of hundreds of satellite images to 
generate classification maps at global scale where small but genuine image details 
(e.g., one pixel-wide roads) must be well preserved? I am afraid it does not... Does 
it apply to different sensors and users? 

 Efficiency in computation time and memory occupation. 

 Accuracy in terms of spatial quality of the segment boundaries (Baraldi et al., 2005; 
Persello & Bruzzone, 2010). 

The conclusion is that based on existing literature the overall quality of the Diamant 

image segmentation algorithm remains unknown, which is often the case with the 

dozens of alternative image segmentation algorithms published in RS and CV literature 

each year (refer to Part I Section 2.4.1.2). Perhaps it is also due to these implementation 

shortcomings that so many researchers and practitioners ignored or criticized 

Diamant's methodological speculations. 
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 The Diamant image segmentation algorithm is not quantitatively compared (see Part I 

Section 2.8) against at least one alternative approach in a test image set consisting of 

both real and synthetic images (Baraldi et al., 2010c). 

 The image segmentation algorithm proposed in (Diamant, 2005) is not technically 

sound. 

 In (Diamant, 2005) Diamant writes "segmentation/classification" and then "spatially 

connected regional groups (of pixels)" as "clusters" rather than segments, blobs or 

regions (see Part I Section 2.3). It is well known that (2-D) image  segmentation, 

labeled (supervised) data classification and unlabeled (unsupervised) data clustering 

are completely different inductive learning-from-data problems (see Part I Section 

2.4). Mixing these terms is a relevant conceptual mistake. 

 It is well known that image region extraction is the dual task of edge detection, in 

fact they are both inherently ill-posed inductive learning-from-unlabeled data 

problems (see Part I Section 2.4.1.2). In (Diamant, 2005), quite surprisingly Diamant 

acknowledges the ill-posedness of edge detection, but appears to ignore the 

inherent ill-posedness (subjective nature) of image region extraction acknowledged 

by a relevant portion of existing literature (see Part I Section 2.4.1.2). In fact, he 

states: "the efficiency of (my own) unsupervised top-down directed region-based 

(learning from unlabeled data) image segmentation is hard to disprove today" 

(Diamant, 2005). For example, by replacing pixels belonging to the same segment 

with their segment-based mean value (often called mean image), Diamant's image 

segmentation algorithm provides as output a piecewise constant approximation of 

the input image. Of course, researchers and practitioners interested in texture 

segmentation would find the Diamant piecewise constant image segmentation of 

little utility. In fact, the Diamant image segmentation algorithm incorporates no 

texture model. In practice, it detects texture elements (textons) rather than textures 

(made of textons) in the image. This accounts for the subjective nature of the image 

segmentation problem which is apparently ignored by Diamant. 

 Breaking points and failure modes of the implemented algorithm are not documented 

in the paper. 

 Conclusions are not properly supported by results contained in the manuscript. Indeed 

claims such as "the efficiency of (my own) unsupervised top-down directed region-

based (learning from unlabeled data) image segmentation is hard to disprove today" 

(Diamant, 2005) are completely unjustified in both theoretical and practical terms (see 

previous comments). 

To summarize, the Diamant image segmentation algorithm appears as "yet another image 

segmentation algorithm" (Baraldi et al., 2010a) based on heuristics whose superiority against 

alternative approaches is completely unproved. In other words, the image segmentation 

algorithm proposed by Diamant cannot be considered as adequate proof of his concepts (see 

Part I Section 2.2.3.2). 

3.3 Comments on the Diamant contour detector 

In practical terms, the contour detection algorithm proposed by Diamant can be subjected to 

the following criticisms. 
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 Status = Eq. (1-4), is nothing new, but a well-known isotropic zero dc-value mexican-hat 

operator for contrast detection (Canny, 1986; Burt, & Adelson,1983; Marr, 1982; Jain & 

Healey, 1998). 

 Intensity information, Iint = Eq. (1-3), is another contrast value. However, it does not 

feature zero dc-value. This means the following. 

 Correlation between Iint = Eq. (1-3) and status = Eq. (1-4) can be relevant, i.e., Iloc = 

Eq. (1-2) = Eq. (1-3) × Eq. (1-5) is the product of two correlated contrast values 

where one-of-two is absolute valued. 

 Term Iint = Eq. (1-3) is not consistent with the psychophysical phenomenon of the 

Mach bands: where a luminance (radiance, intensity) ramp meets a plateau, there 

are spikes of brightness (perceived luminance), whereas there are none in the 

luminance profile. This is the sole case of continuity in the luminance profile 

capable of generating spikes of brightness (Baraldi & Parmiggiani, 1996a). 

 The Diamant contour detection is single scale. On the contrary, it is known that the 

human visual system employs at least four spatial scales of analysis (Wilson & Bergen, 

1979) (see Part I Section 2.3). 

 The Diamant contour detector is not quantitatively compared (see Section 2.7) against at 

least one alternative approach in a test image set consisting of both real and synthetic 

images (Baraldi et al., 2010c). 

To summarize, the Diamant contour detector appears to be neither new nor biologically 

plausible. It can be considered as "yet another contour detector" (Baraldi et al., 2010a) based 

on heuristics whose superiority against  alternative approaches is completely unproved. In 

other words, the contour detector proposed by Diamant cannot be considered as adequate 

proof of his concepts (see Part I Section 2.2.3.2). 

4. Revised/novel definitions of objective continuous sub-symbolic sensory 
data, continuous physical information, subjective discrete semi-symbolic 
data structure, discrete semantic-square (semantic

2
) information and prior 

knowledge base 

As a revision of Diamant's works (Diamant, 2005; Diamant, 2008; Diamant, 2010a; Diamant, 

2010b), a new set of definitions of: (i) sub-symbolic objective primary data element in an 

objective sensory data set, (ii) semi-symbolic subjective secondary data structure, (iii) 

objective physical information, (iv) subjective semantic-square (semantic2) information and 

(v) subjective prior knowledge base (ontology or model of the 3-D world) provided by an 

external subjective supervisor (human, God or equivalent machine). 

4.1 Levels of aggregation of objective continuous sub-symbolic sensory data 

There are five fine-to-coarse possible levels of aggregation of objective continuous sub-

symbolic sensory data. These levels of aggregation are either sub-symbolic (non-semantic), 

semi-symbolic or symbolic. Semi-concepts are defined as stable concepts (percepts, classes 

of 3-D objects in the world) whose semantic meaning is adopted at the bottom level (layer 0) 

of an ontology (see Part I Section 2.2.2). The semantic information of semi-concepts (e.g., in a 

RS image, land cover semi-concepts are spectral categories such as water or shadow, snow or 

ice, bare soil or built-up, vegetation, etc.) is superior to that of objective data, whose semantic 
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information is null, but equal or inferior (i.e., not superior) to that of concepts belonging to 

higher levels of abstraction (aggregation) in the ontology at hand (e.g., in a RS image 

classification taxonomy such as the International Global Biosphere Programme (IGBP) land 

cover classification scheme (FAO, 2000), target (3-D) land cover classes are water bodies, snow 

or ice, barren, urban and built-up, needle-leaf forest, broad-leaf forest, mixed forest, shrubland, 

grassland, cropland, etc.) (Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi 

et al., 2010c; Baraldi, 2011a; Baraldi, 2011b). An ontology is a hierarchical abstract 

representation (model) of the (3-D) world. For example, well-known examples of RS data 

classification taxonomies are the aforementioned IGBP land cover classification scheme 

(FAO, 2000), the Co-ordination of Information on the Environment (CORINE) (European 

Commission Joint Research Center, 2005), the U.S. Geological Survey (USGS) classification 

hierarchy (Lillesand & Kiefer, 1994) and the Food and Agriculture Organization of the 

United Nations (FAO) Land Cover Classification System (LCCS) (Di Gregorio & Jansen, 

2000; Herold et al., 2006). An ontology can be modeled as a semantic network consisting of a 

hierarchical class taxonomy, represented as an inverted tree whose leaves are at the bottom 

layer 0, plus relationships between classes as arcs between nodes (refer to Part I Section 

2.2.2). 

The five fine-to-coarse possible levels of aggregation of objective sub-symbolic sensory data 

are listed below.  

1. An unlabeled objective continuous (quantitative) sub-symbolic (non-semantic) 
sensory scalar data element. For example, a one-band pixel value in an image, a 
character in a vocabulary, etc. This is a scalar (simple, atomic, elementary, primitive) 
fact (measurement, sign, symbol, character, element) resulting from an observation 
(examination, inspection, monitoring, measurement) of the (3-D) world.  

2. An unlabeled objective continuous sub-symbolic primary data vector / primary data 

n-tuple / primary data element, where n  1 is the vector dimensionality. Each primary 

data n-tuple consists of n  1 scalar data elements, e.g., a multi-spectral pixel value in an 
image, a word in a dictionary, etc. In the rest of this paper, if an unlabeled objective data 
set consisting of primary data elements is discrete and finite (e.g., an image as a 2-D 
data array), then its cardinality is identified as p (e.g., an image consists of p pixels). In 
this case primary data elements may be identified by integer numbers, e.g., a pixel is 
identified by a (row, column) coordinate pair in a (2-D) image domain. A set of sub-
symbolic primary data elements (e.g., an image) can be described according to a given 
mathematical vocabulary/language. For example, a 2-D array of pixels (image) can be 
encoded as a 2-D spatial frequency function by means of a 2-D fast Fourier transform 
(FFT).  

3. A finite set (e.g., a (2-D) image array) of p unlabeled objective continuous sub-

symbolic primary data elements (e.g., pixels), with p  {1, ). To be described in 
physical terms, a set of objective sub-symbolic primary data elements requires a 
mathematical vocabulary/language, e.g., a 2-D FFT of a (2-D) image. This is related to 
the concept of continuous physical information in an objective sensory data set (refer to 
this text below). 

4. A labeled subjective discrete semi-symbolic secondary data structure / secondary data 
object. It consists of one or more primary data elements of a given objective data set 
grouped together (based on any possible subjective aggregation criterion) and labeled 
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as one semi-symbolic secondary data structure. Each label belongs to a discrete and 
finite set of semi-concepts. The semantic meaning of semi-concepts (e.g., vegetation) is 
superior to zero (like that of unlabeled primary data elements) and not superior (i.e., 
equal or inferior) to that of concepts in the real (3-D) world. A discrete and finite 
quantitative data set consisting of p unlabeled objective primary data elements (e.g., a 
multi-spectral image consisting of p pixels, refer to point 3. above) always consists of a 
discrete and finite set of semi-symbolic secondary data structures whose cardinality is 

identified hereafter as s, such that inequality (s  p) always holds. It is noteworthy that if 
equality (s == p) holds, this does not correspond to a trivial case since secondary data 
structures are semi-symbolic while primary data elements are sub-symbolic. To the best 
of this author's knowledge, it is at the level of subjective semi-symbolic secondary data 
structures that the view of the present author starts diverging from all existing CV 
algorithms and implementations, including GEOBIA-based RS-IUSs and Diamant's 
image segmentation and contour detection algorithms. This degree of novelty is 
consistent with well-known evidence collected in CV and MAL domains. For example:  

 A large section of the scientific community acknowledges that detection of data 
structures in an unlabeled objective data set, such as the detection of unlabeled 
data clusters and unlabeled (2-D) image segments (see Part I Section 2.4.1), is an 
inherently subjective (which is tantamount to saying semantic, since words 
subjective and semantic are synonyms, refer to Part I Section 2.1) ill-posed problem, 
therefore difficult to solve, which requires prior (semantic) knowledge to become 
better posed (tractable) (refer to Part I Section 2.1).  

 According to Marr, "vision goes symbolic immediately, right at the level of zero-
crossing (primal sketch)... without loss of information" (Marr, 1982) (p. 343) (refer 
to Part I Section 2.3). Secondary semi-symbolic data structures (e.g., image 
segments labeled as vegetation) can be described (encoded) according to a given 
pair of one mathematical and one natural vocabulary/language to account for, 
respectively, their objective (quantitative) and subjective (semantic, qualitative) 
properties. For example, semi-symbolic image segments can be described by a 
segment description table whose columns consist of: (a) a segment-specific 
semantic label belonging to a discrete and finite set of semi-concepts (refer to this 
text above) and (b) segment-specific quantitative descriptors such as (Matsuyama 
& Shang-Shouq Hwang, 1990): (i) locational properties (e.g., minimum enclosing 
rectangle), (ii) photometric properties (e.g., mean, standard deviation, etc.), (iii) 
geometric/shape properties (e.g., area, perimeter, compactness, straightness of 
boundaries, elongatedness, rectangularity, number of vertices, etc.), (iv) texture 
properties, (v) morphological properties, (vi) spatial non-topological 
relationships between objects (e.g., distance, angle/orientation, etc.), (vii) spatial 
topological relationships between objects (e.g., adjacency, inclusion), etc. (Baraldi 
et al., 2010a).  

In practice, the following definition holds. 

Discrete semi-symbolic secondary data structure = Continuous sub-symbolic primary 
data element(s) + discrete semi-symbolic label belonging to a discrete and finite set of 
semi-concepts (e.g., in RS image understanding, possible semi-concepts are spectral 
categories equivalent to land cover class sets consisting of one or more land cover 
classes; examples of spectral categories are vegetation, water or shadow, bare soil or built-
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up, etc. (Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi, 2011a; 
Baraldi, 2011b; Baraldi et al., 2010c)). 

This also means that the set of discrete semi-symbolic secondary data structures 
incorporates the continuous objective sensory data set. 

5. A finite set of (s  p) labeled secondary subjective semi-symbolic data structures, 

which include the objective sensory data set (refer to point 4. above), with s  {1, p}. In 
this author's terminology, it is called preliminary classification map or primal sketch. 
These terms are: 

 in line with the CV system proposed by Marr at the level of computational theory 
(see Part I Section 2.6) when he states: "vision goes symbolic almost immediately, 
right at the level of zero-crossings (primal sketch)… without loss of information" 
(Marr, 1982) (p. 343) (refer to Part I Section 2.3) 

 In contrast with the CV system proposed by Marr at the level of algorithm design and 
implementation (see Part I Section 2.5), where the term primal sketch identifies the 
non-symbolic output of a zero-crossings algorithm, which is an instance of the 
unlabeled data learning class of image edge detectors/region extractors (Marr, 1982). 

It is noteworthy that in a (2-D) preliminary classification map domain, a labeled semi-
symbolic segment may be defined as a spatially connected set of secondary semi-
symbolic data structures featuring the same label, say, connected pixels featuring label 
vegetation. Therefore, in a (2-D) preliminary classification map domain, semi-symbolic 
pixels belong to semi-symbolic image segments which belong to semi-symbolic image 
strata (layers) defined as image-wide sets of semi-symbolic segments featuring the same 
semi-symbolic label. In other words, in the preliminary classification map domain, three 
spatial types co-exist: semi-symbolic pixels in semi-symbolic image segments in semi-
symbolic image strata. This would end the bad-faith antagonism between unlabeled 
pixels versus labeled non-symbolic segments (e.g., segment 1, segment 2, etc.) which 
affects traditional pixel-based versus object-based RS-IUSs and CV systems (refer to 
Part I Table 1). A labeled subjective semi-symbolic quantitative data set can be 
described (encoded) according to a given pair of one mathematical and one natural 
vocabulary/language capable of accounting for both the quantitative and semantic 
(qualitative, subjective) nature of labeled subjective semi-symbolic secondary data 
structures (refer to point 4. above).  

4.2 Continuous physical information 

Continuous physical (quantitative, objective, sensory) information. This is a hierarchical 
(i.e., multi-scale, including one-scale as a special case) description (representation), 
namely, down-scale encoding (decomposition), up-scale decoding (reconstruction) or one-
scale transcoding (from one data format to another at the same hierarchical level), of the 
physical objective data set based on a given mathematical non-natural 
vocabulary/language. This hierarchical description/ representation of the objective sensory 
data set can be either lossless or lossy, depending on the exact/non-exact reconstruction 
(decoding) of the original data set from its representation (encoding). For example, an FFT 
of a time-signal is a one-scale transcodification of the signal from the time to the frequency 
domain. A well-known example of down-scale encoding/up-scale decoding is the 
Gaussian-Laplacian image pyramid (Burt & Adelson, 1983). It means that physical 
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information stems from the combination of an objective data set with a mathematical non-
natural vocabulary/language. To summarize the concept of physical information, we can 
write the following definition. 

Continuous objective data set + (arbitrary) multi-scale down-scale encoding, up-scale 
decoding or one-scale transcoding/description/data format = hierarchical physical 
information encompassing down-scale/ fine-to-coarse resolution/ compression/ encoding, 
up-scale/ coarse-to-fine resolution/ decompression/ decoding, and/or one-scale 
transcodification (from one data format to another at the same hierarchical level), either 
lossless or lossy.  

4.3 Discrete semantic-square information 

Discrete semantic-square (semantic2) (where semantic is a synonym of categorical, 
symbolic, subjective, abstract, qualitative, vague, but persistent, stable, see Part I Section 2.1) 
information (concepts, percepts) stems from the semantic2 labeling of an objective data 
set performed by an external subjective supervisor (human, God or equivalent machine) 
provided with a subjective hierarchical prior knowledge base (ontology or model of the 
(3-D) world, equivalent to an inverted tree with leaves at the bottom level 0, see Part I 
Section 2.2.2). Semantic2 labeling occurs when a subjective supervisor (first source of 
subjectivity), provided with his/her own subjective ontology (second source of 
subjectivity), observes and scrutinizes the objective data set, consisting of p sub-symbolic 
primary data elements (refer to point 3. in Section 4.1), to achieve the following. 

a. At the bottom level 0 of the inverted tree (ontology, see Part I Section 2.2.2), a 
semi-symbolic label, belonging to a discrete and finite set of semi-concepts (e.g., 
in a RS image, spectral categories are vegetation, water or shadow, bare soil or built-
up, etc.), is assigned to each sub-symbolic primary data element (e.g., each pixel 
in a RS image) of a set of p sub-symbolic primary data elements to form a finite 

and discrete set of s semi-symbolic secondary data elements, with s  p (refer to 
point 5. in Section 4.1). 

b. At hierarchical levels  1 of the inverted tree (see Part I Section 2.2.2), a hierarchical 
symbolic label is assigned to the set of s semi-symbolic secondary data elements 
based on symbolic reasoning (Matsuyama & Shang-Shouq Hwang, 1990). 

This definition of semantic2 labeling disagrees at the level of the aforementioned point a. 
with the traditional definition of semantic labeling provided by MAL, which encompasses 
existing CV systems (e.g., Diamant's (Diamant, 2005)) and RS-IUSs (e.g., (Definiens Imaging 
GmbH, 2004; Matsuyama & Shang-Shouq Hwang, 1990)). In fact, point a. above states that 
semantic2 information stems naturally (automatically, instantaneously) from the 
simultaneous interaction of three necessary and sufficient components. 

i. An objective sensory data set (consisting of facts, measures, etc.) described in terms of 
continuous physical information (representation, description) based on a mathematical 
vocabulary/language. 

ii. A subjective supervisor/actor (human, God or equivalent machine). He/she acts as the 
first source of subjectivity in the labeling (mapping) process. To be considered as such, a 
supervisor must be the carrier of a prior semantic knowledge base (ontology). He/she 
acts as follows: 
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 observes the objective data set and 

 interprets/scrutinizes the objective data set to match (label) data with his/her own 
ontology. 

iii. A subjective hierarchical (multi-scale) prior ontology which exists before looking at the 
data. Since it deals with semantic information, a prior knowledge base is subjective by 
definition (since subjective and semantic are synonyms, refer to Part I Section 2.1). In 
practice, this ontology acts as the second source of subjectivity in the labeling 
(mapping) process. According to Diamant this hierarchical ontology is equivalent to a 
narrative story or tale which requires a natural language to comprise, in a top-down 
representation: the story title, index, sections, paragraphs, sentences and words. It is 
graphically represented and implemented as a semantic net or inverted tree whose 
leaves are at the bottom level 0 where physical information is incorporated (refer to this 
text above and Part I Section 2.2.2). 

The aforementioned points i.-iii. imply that objective sensory data, per se, do not possess 

any semantic2 information, but physical information exclusively. Rather, semantic2 
information incorporates objective data as one-of-three components. This also means that 
nobody should disagree with Diamant when he repeats over and over that sensory data do 
not possess semantic information, therefore semantic information cannot be extracted from 
sensory data (Diamant, 2010a). On the contrary, Diamant's statement should not be 
considered original at all because it has been perfectly acknowledged in philosophy for 
hundreds of years, as well as in psychophysical studies of perception (Matsuyama & Shang-
Shouq Hwang, 1990) and MAL in the last 50 years (Cherkassky & Mulier, 2006). This 
concept is summarized below. 

 Philosophy and psychophysical studies of perception. The statement that sensory 
data do not possess semantic information is tantamount to saying there is an 
information gap between physical information and semantic information, which is 
the well-known information gap between (sensory and varying) sensations and 
(vague, but stable) perceptions. In practice, “we are always seeing objects we have 
never seen before at the sensation level, while we perceive familiar objects 
everywhere at the perception level” (Matsuyama & Shang-Shouq Hwang, 1990) 
(see Part I Section 1 and Part I Section 2.2.2).  

 MAL. In unlabeled data learning algorithms (e.g., unlabeled data clustering), no 
semantics is detected as output (e.g., unlabeled data cluster 1, unlabeled data cluster 
2), see Fig. 1. In labeled data learning algorithms for classification applications (see 
Part I,Fig. 1), no semantic information is extracted from a finite set of training data 
pairs consisting of an (objective data vector, subjective discrete label), but a 
correlation function can be estimated between continuous sensory data and a discrete 
and finite set of subjective labels (refer to Part I Section 2.1 and Part I Section 2.4.2). 

The foregoing comments also mean that Diamant is right, although vague, when he states 

that "semantics is a property of a human observer" (Diamant, 2010a). To state this more 

precisely, since semantic2 information naturally (automatically, instantaneously) stems 
from the interaction of three necessary and sufficient components i.-iii. (see above in this 
text), then semantic2 information cannot be separated from any of its three components. 

For example, let us think of a piano (symbolic data structure) whose objective presence (fact) 

requires the simultaneous presence of a subjective human actor (or equivalent machine) to 
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generate whatever sound (semantic information). The sound (generated semantic 

information) is neither in the piano, nor in the piano player, nor in his/her prior knowledge 

of what a piano is all about, but in the instantaneous combination of these three factors. This 

also means that semantic2 information quite obviously changes with the objective data set, 

the subjective human supervisor and his/her own subjective ontology. In particular (refer 

to this text above), semantic2 information means there are two subjective actors in the 

semantic labeling of objective sensory data, namely, the subjective external observer and 
scrutinizers (or equivalent machine) and his/her own ontology or semantic (abstract) 

model of the world. In fact, it is well known that all humans do not adopt the same 

ontology and two humans who adopt the same ontology do not apply this ontology the 

same way through time in interpreting a given observation. For example, two players will 

never generate the same music when playing the same musical score on the same piano. Not 

even the same player will ever generate the same music when playing twice the same 

musical score on the same piano. To summarize these concepts we can write the following 

definition. 

Objective sensory data set + subjective supervisor provided, as such, with a subjective prior 
hierarchical knowledge base (ontology) = hierarchical semantic2 (subjective2) information, 
which includes physical information at the bottom level 0 of the inverted tree which deals with 
the semantic granularity of semi-concepts assigned to semi-symbolic secondary data 
structures. 

4.4 Subjective hierarchical (multi-scale) prior knowledge base 

Subjective hierarchical (multi-scale) prior knowledge base (ontology, model of the (3-D) 
world) equivalent to a semantic net or inverted tree with leaves at the bottom level 0 

where physical information is incorporated. Refer to this text above.  

4.5 Intelligence 

Intelligence (cognition) is the system’s ability to aggregate bottom-up (from-data-to-concepts) 

and disassemble top-down (from-concepts-to-data) semantic information (which incorporates 

physical information) across the hierarchical levels of a subjective prior knowledge base. 

4.6 Information processing system 

An information processing system, cognitive system or intelligent system transforms an 

input sensory data set into an output instantiation of a story in natural language whose 

hierarchical structure is provided by an ontology or inverted tree retained in the system’s 

memory before looking at the sensory data. 

To summarize, the aforementioned novel definitions sketch a RS-IUS where information 
goes symbolic during the pre-attentive vision phase to generate a semi-symbolic primal 
sketch (preliminary classification map). This is in line with the CV system proposed by Marr 
at the level of computational theory (see Part I Section 2.6) when he states: "vision goes 
symbolic almost immediately, right at the level of zero-crossings (primal sketch)" (Marr, 
1982), p. 343 (see Part I Section 2.3). However, it differs from the CV system proposed by 
Marr at the level of primal sketch implementation (see Part I Section 2.6) consisting of a sub-
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symbolic zero-crossing algorithm (Marr, 1982). In addition, the novel RS-IUS sketched above 
differs at the level of both computational theory and algorithm design and implementation 
from existing CV systems such as GEOBIA systems (Definiens Imaging GmbH, 2004; Esch et 
al., 2008), including Diamant's (Diamant, 2005; Diamant, 2008; Diamant, 2010a; Diamant, 
2010b), where an unlabeled data learning (driven-without-knowledge) algorithm is adopted 
at the first stage. 

5. Practical consequences of the proposed definitions on CV, AI and MAL 
system design and implementation strategies 

Practical consequences of the definitions proposed in Part II Section 4 on CV, AI and MAL 
system design and implementation strategies are several, more detailed, better posed and, 
therefore, far more relevant than Diamant's (Diamant, 2010a). Thus, they should benefit 
from more favorable consideration by the scientific community. 

1. Definitions provided in Part II Section 4 are consistent with the Marr statement: "vision 
goes symbolic almost immediately, right at the level of zero-crossings (primal sketch)… 
without loss of information” (Marr, 1982) (p. 343) (refer to Part I Section 2.3). This is 
tantamount to saying that exploitation of the deductive subjective prior knowledge-
based inference paradigm must regard the preattentive visual phase whose output, the 
so-called primal sketch (Marr, 1982), must be as follows: 

 semantic in nature (see Part I Section 2.3), therefore it is called preliminary 
classification map;  

 capable of preserving small, but genuine image details (high spatial frequency 
image components). This requirement is inconsistent with existing image 
segmentation algorithms which are inherently affected by the uncertainty principle 
according to which, for any contextual (neighborhood) property, we cannot 
simultaneously measure that property while obtaining accurate localization 
(Corcoran & Winstanley, 2007; Petrou & Sevilla, 2006) (see Part I Section 2.4.1.2). 

Although he stated that vision goes symbolic right at the output of the preattentive 
vision phase, which has to affect the architectural level of understanding of a CV system 
(see Part I Section 2.6), Marr selected a sub-symbolic edge detection (zero-crossing) 
algorithmic for primal sketch generation (Marr, 1982). By embracing the Marr 
computational theory rather than his algorithmic solutions, the present author 
concludes that, as output, the preattentive visual phase no longer generates sub-
symbolic image primitives, namely, non-semantic points and edges or, vice versa, 
image regions (which is what was implemented by Marr (Marr, 1982)), but semi-
symbolic secondary data structures, namely, semi-symbolic pixels in semi-symbolic 
segments in semi-symbolic strata (see Part II Section 4) (Baraldi et al., 2006; Baraldi et 
al., 2010a; Baraldi et al., 2010b; Baraldi et al., 2010c; Baraldi, 2011a; Baraldi, 2011b). 

2. It is impossible to extract semantic2 information from objective continuous sensory 
data because the latter, per se, are provided with no semantics at all. This is the well-
known information gap between semantic2 information and physical information (refer 
to Part I Section 2.2.2 and Part I Section 2.3).  

3. Although it is impossible to extract semantic2 information from objective continuous 

sensory data, it is possible to correlate discrete semantic2 information to objective 
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continuous sensory data. This conclusion is by no means novel as it is well known in 

literature. For example, Shunlin Liang summarizes this concept in a few words: 

statistical pattern recognition systems are based on correlation relationships between 

objective sensory (e.g., RS) data and either continuous (e.g., LAI) or categorical (e.g., 

land surface) variables (see Part I Section 2.1) (Shunlin Liang, 2004). Unfortunately, low 
or no correlation can be found between continuous sensory data and a finite and 
discrete set of categorical variables, corresponding to independent random variables 
generating "distinguishable" data structures (data aggregations, data clusters) in real-
world data mapping problems at large data scale or fine semantic granularity, other 

than toy problems at small data scale and coarse semantic granularity. This low 

correlation effect is due to the combination of two factors. 

 According to the central limit theorem, the distribution of the sample average of g 

independent and identically distributed (iid) random variables (corresponding to, 

say, g categorical variables) approaches the normal distribution, featuring no 

"distinguishable" data sub-structure, as the sample size g increases. In other words, 

the separability of "distinguishable" data structures in a given objective sensory 

data set belonging to a given measurement space is monotonically non-increasing 

with (i.e., it decreases with or remains equal to) the finite number of discrete 

semantic concepts involved with the cognitive (classification) problem at hand. 

 Within-class variability (vice versa, inter-class separability) is monotonically non-
decreasing (i.e., it increases or remains equal) (vice versa, non-increasing) with the 
magnitude of the sample set per categorical variable when this variable-specific 
sample set size is "large" according to large-sample statistics (although large 
sample is a synonym for 'asymptotic' rather than a reference to an actual sample 

magnitude, a sample set cardinality of 3050 samples per random variable is 
typically considered sufficiently large that, according to a special case of the central 
limit theorem, the distribution of many sample statistics becomes approximately 
normal). For example, in (Chengquan Huang et al., 2008), where an SVM training 
and classification model selection strategies are applied to every image in a RS 
image mosaic at global scale to separate forest from non-forest pixels, a so-called 
training data automation (TDA) procedure identifies a forest peak in a one-band 
first-order statistic (histogram) of a local image window. The size of this local 
image window must be fine-tuned based on heuristics because inter-class spectral 
separability between classes forest and non-forest (vice versa, within-class 
variability) decreases (vice versa, increases) monotonically with the local window 
size above a certain (empirical) threshold (minimum window size, below which the 
collected sample is not statistically significant). 

4. As an extension of points 2. and 3. above, unlabeled (unsupervised) data learning 

algorithms, namely, driven-without-knowledge image segmentation algorithms and 

unlabeled data clustering algorithms (see Part I Section 2.4.1), should be considered 

highly inappropriate (like using a fork for cutting food: unless the food is particularly 

soft, it will never work) when the objective sensory data acquisition occurs in the 
domain of  real-world data mapping problems at large data scale or fine semantic 

granularity (where the separability of "distinguishable" data structures in a given 

objective sensory data set belonging to a given measurement space is expected to be 

low), other than toy problems at small data scale and coarse semantic granularity. 
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Does this mean the relevant effort spent by the MAL community to develop driven-

without-knowledge image segmentation algorithms (Castilla et al., 2008) or, say, self-

organizing topology-preserving unlabeled data clustering algorithms (Fritzke, 1997; 

Martinetz & Schulten, 1994), has been worthless? Fortunately, not. It rather means the 

following. 

i. The main application domain of, say, self-organizing topology-preserving 
unlabeled data clustering algorithms should remain the modeling of stationary and 
non-stationary distributions, see Part I Fig. 1. 

ii. When an unlabeled (unsupervised) data learning algorithm, either a driven-
without-knowledge image segmentation algorithm or an unlabeled data clustering 
algorithm (see Part I Section 2.4.1), is adopted as the first stage of a two-stage 
hybrid cognitive system, CV system or RS-IUS, it should be considered highly 
inappropriate. In particular: 
I It should be replaced by a deductive MAT-by-rules approach where 

community-agreed prior knowledge is conveyed to generate as output a 

lossless semi-symbolic product (consisting of semi-concepts).  For example, in 

a RS-IUS, the MAT-by-rules first stage should generate a preliminary 

classification map (see Part II Section 4) where small, but genuine image details 

are well preserved (refer to this text above). 

II If useful,  it should be: 
a. adapted to work on a driven-by-knowledge stratified (semantic masked) 

basis and  
c. next, moved to the second stage of a two-stage stratified hierarchical 

hybrid cognitive system. For example, a two-stage stratified hierarchical 

hybrid RS-IUS architecture has been proposed in recent literature, see Fig. 

3 (Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi et 

al., 2010c; Baraldi, 2011a; Baraldi, 2011b). 

5. As an extension of points 2. and 3. above, labeled (supervised) data learning classifiers 
(see Part I Section 2.4.2) should be considered highly inappropriate (like using a fork 
for cutting food; unless the food is particularly soft, it will never work) in real-world 

data mapping problems at large data scale or fine semantic granularity (where within-
class variability is monotonically non-decreasing (i.e., it increases or remains equal) 
with the cardinality of the objective sensory data set), other than toy problems at small 
data scale and coarse semantic granularity. This conclusion is by no means novel. 
Rather, it is well known in literature. For example, Shunlin Liang summarizes this 
concept in few words: statistical model are usually site-specific  (see Part I Section 2.1) 
(Shunlin Liang, 2004). Does this mean the relevant effort spent by the MAL community 
to develop supervised data learning classifiers has been worthless? Fortunately, no. It 
rather means the following. 
i. The main application domain of supervised data learning algorithms should be 

considered function regression where input and output variables are continuous 
non-semantic, see Fig. 1. 

ii. When a supervised data learning classifier (see Part I Section 2.4.2) is adopted as 
the first stage of a two-stage hybrid cognitive system, CV system or RS-IUS, it 
should be considered highly inappropriate. An experimental proof of this concept 
is that supervised MAL algorithms (say, SVMs), either context-insensitive (e.g., 
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pixel-based) or context-sensitive (Bruzzone & Carlin, 2006; Bruzzone & Persello, 
2009; Persello & Bruzzone, 2010), considered successful in terms of operational QIs 
(refer to Part I Section 2.7.2) at local/regional scale, become impracticable in 
mapping RS image mosaics consisting of hundreds of images at 
national/continental/global scale (Chengquan Huang et al., 2008). In these real 
world problems the cost, timeliness, quality and availability of adequate reference 
(training) data sets derived from field sites, existing maps and tabular data are 
currently considered the most limiting factors on RS data product generation and 
validation (Gutman et al., 2004). In particular, the first-stage supervised data 
learning classifier of a two-stage hybrid RS-IUS should be: 
I replaced by a deductive MAT-by-rule approach where community-agreed 

prior knowledge is conveyed to generate a preliminary classification map (see 

Part II Section 4) where small, but genuine image details are well preserved 

(refer to this text above); 

II if useful,  it should be: 
a. adapted to work on a driven-by-knowledge stratified (semantic masked) 

basis and  
d. next, moved to the second stage of a two-stage stratified hierarchical 

hybrid RS-IUS architecture proposed in recent literature, see Fig. 3 

(Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi, 

2011a; Baraldi, 2011b; Baraldi et al., 2010c). 

6. SIAM™ as a proof of the efficacy of the required shift of learning paradigm 
from MAL-from-examples to MAT-by-rules at the first stage of two-stage 
hybrid RS-IUSs 

To the best of this author's knowledge SIAM™ provides the first experimental proof of the 
efficacy of the required switch of learning paradigm from MAL-from-examples to MAT-by-
rules at the first stage of a two-stage hybrid RS-IUS architecture (refer to Part II Section 2.3), 
see Table 4. SIAM™ is an operational (good-to-go, press-and-go, turnkey) software button 
(executable). In particular, SIAM™ is automatic, efficient, scalable, accurate and robust to 
changes in the input data acquired across time, space and sensors. For example, the 
automatic SIAM™ is consistent and accurate across sensors at the national/ continental/ 
global scale (refer to Part II Section 2.3) (Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et 
al., 2010b; Baraldi et al., 2010c; Baraldi, 2011a; Baraldi, 2011b), whereas semi-automatic 
inductive data learning neural network approaches, such as SVMs, require to be re-trained 
(supervised) image-wide (Chengquan Huang et al., 2008).  

SIAM™ belongs to the family of physical models that follow the physical laws of the real 

(3-D) world to represent an abstract of the reality (see Part I Section 2.1) (Shunlin Liang, 

2004). In particular, SIAM™ follows the physical laws of spaceborne optical imaging 

devices to provide a two-stage hybrid RS-IUS with a first-stage deductive prior 

knowledge-based inference mechanism. Unfortunately, it takes a long time for human 

experts to learn physical laws of the real (3-D) world and tune physical models based on 

human intuition, domain expertise and evidence from data observations (Mather, 1994; 

Shunlin Liang, 2004). For example, the development of the SIAM™ dates back to the year 

2002 (Baraldi, 2011a). 
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Quality Indicators (Qis) State-of-the-art RS-IUSs SIAM™

Degree of automation: (a) number, physical meaning 

and range of variation of user-defined parameters, 

(b)collection of the required training data set, if any.

VL, L VH (fully automatic, it cannot be 

surpassed)

Effectiveness : (a) semantic accuracy and (b) spatial 

accuracy.

M, H, VH VH

Semantic information level Land cover class (e.g., deciduous 

forest)

Spectral semi-concept (e.g., 

vegetation)

Efficiency: (a) computation time and (b) memory

occupation.

VL, L in training (hours per images) VH (5 m to 30 s per Landsat image 

in a laptop)

Robustness to changes in input image VL (specific training per image) VH

Robustness to changes in input parameters VL VH (it cannot be surpassed)

Scalability to changes in the sensor’s specifications

or user’s needs.

VL VH (it works with any existing 

spaceborne sensor)

Timeliness (from data acquisition to high-level 

product generation, increases with manpower and 

computing power).

VH (e.g., the collection of reference 

samples is a difficult and expensive

task)

VL, i.e., timeliness is reduced to 

almost zero

Economy (inverse of costs increasing  with 

manpower and computing power).

VL, L, high costs in manpower and 

also computing power

VH, i.e., costs in manpower and 

computing power are reduced to 

almost zero  

Table 4. QIs of SIAM™ versus state-of-the-art RS-IUSs' (refer to Part I Section 2.8). Legend of 

fuzzy sets: Very low (VL), Low (L), Medium (M),  High (H), Very High (VH). Legend of 

colors: Red-Bad, Blue-Average, Green-Good 

Part I Section 2.2.2 reported the question: is human biology as irrelevant to AI research as 

bird biology is to aeronautical engineering? Actually, biological vision has always 

represented a fundamental source of inspiration for the CV community. While SIAM™ 

considers its degree of biological plausibility as a value added, straightforward imitation of 

biological vision solutions is not always possible. This is the reason why SIAM™ cannot be 

considered highly plausible in biological terms although it is very useful in practice. For 

example, SIAM™ cannot work with panchromatic imagery whereas the human visual 

system is perfectly able to interpret gray-tone images. 

7. Conclusions 

It is well known that semantic information is not in objective sensory data, which is 

tantamount to saying there is a well-known information gap between semantic2 information 

and physical information. This conceptual work observes that semantic2 information is 

naturally (automatically, instantaneously) generated by the simultaneous interaction of a 

subjective external supervisor who observes and scrutinizes an objective sensory data set 

based on his/her own subjective prior knowledge base (ontology, model of the 3-D world). 

Semantic2 information resulting from this interaction takes the intermediate form of semi-

symbolic secondary data structures that incorporate physical information at the bottom level 

(layer 0) of an ontology represented as an inverted tree.  

A shift of learning paradigm from MAL-from-examples to MAT-by-rules in the first stage of 

two-stage hybrid RS-IUSs is recommended. Experimental proof of this concept is provided 

by the operational automatic SIAM™ recently proposed in RS literature. 
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The practical conclusion of this conceptual work is twofold. 

1. In line with a relevant section of existing literature (Shunlin Liang, 2004), labeled 

(supervised) data learning classifiers (see Part I Section 2.4.2) should be considered 

highly inappropriate, being affected by low operational QIs (see Part I Section 2.8), in 

dealing with real-world data mapping problems at large data scale (e.g., RS image 

mapping at national/ continental/ global scale) or fine semantic granularity, except in 

the case of toy problems at small data scale and coarse semantic granularity (e.g., RS 

image mapping at coarse spatial resolution and local/regional scale). This awareness 

should be divulged among the RS, CV, AI and MAL communities.  

2. Any inductive MAL-from-examples algorithm, whether labeled (supervised, e.g., 

SVMs) or unlabeled (e.g., image segmentation, unlabeled data clustering), whether 

context-insensitive (e.g., pixel-based) or context-sensitive (e.g., (2-D) object-based), 

employed as the first stage of a two-stage hybrid cognitive system, CV system or RS-

IUS, should be: 

a. replaced by a deductive MAT-by-rules approach where community-agreed prior 

knowledge is conveyed and,   

b. if useful, adapted to work on a driven-by-knowledge stratified (semantic masked) 

basis and moved to the second stage of a two-stage stratified hierarchical hybrid 

cognitive system. For example,  a two-stage stratified hierarchical hybrid RS-IUS 

architecture has been proposed in recent literature, see Fig. 3 (Baraldi et al., 2006; 

Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi et al., 2010c; Baraldi, 2011a; 

Baraldi, 2011b). 

This required shift of the learning paradigm from MAL-from-examples to MAT-by-rules 

adopted in the first stage of a two-stage hybrid RS-IUS is similar in nature to previous 

conceptual shifts occurring between deductive coarse-to-fine (from symbolic concepts to 

sub-symbolic data) AI/MAI and inductive fine-to-coarse (from sub-symbolic data to 

symbolic concepts) Cybernetics/MAL, see Part I Section 2.2. What is novel about the 

proposed shift of the learning paradigm from MAL-from-examples to MAT-by-rules at the 

first stage of a two-stage hybrid RS-IUS is the following. 

 Its aim is to accomplish the following fundamental observation by Marr: “vision 

goes symbolic almost immediately, right at the level of zero-crossings (primal 

sketch)… without loss of information” (Marr, 1982) (p. 343) (see Part I Section 1, 

Part I Section 2.2.2 and Part I Section 2.3), which means that exploitation of the 

deductive subjective prior knowledge-based inference paradigm must regard the 

preattentive visual phase whose output product, known as primal sketch, must be: 

(i) semantic in nature (in disagreement with the Marr algorithmic solution of zero-

crossings), therefore it is called preliminary classification map (see Part II Section 4) 

and (ii) capable of preserving small, but genuine image details, unlike existing 

image segmentation algorithms affected by the uncertainty principle (Corcoran & 

Winstanley, 2007; Petrou & Sevilla, 2006) (see Part I Section 2.4.1.2). 

 It comes together with a novel conceptual framework consisting of explicit 

definitions of: (i) sub-symbolic objective primary data element in an objective 

sensory data set, (ii) semi-symbolic subjective secondary data structure, (iii) 

objective physical information, (iv) subjective semantic2 information and (v) 
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subjective prior knowledge base (ontology or model of the 3-D world (Matsuyama 

& Shang-Shouq Hwang, 1990)) provided by an external subjective supervisor 

(human, God or equivalent machine), refer to Part II Section 4.  

 It affects exclusively the inductive learning-from-data first stage of traditional two-

stage hybrid CV systems (e.g., Marr's (Marr, 1982), Diamant's (Diamant, 2005; 

Diamant, 2008; Diamant, 2010a; Diamant, 2010b)) or RS-IUSs, whether or not this 

first stage is implemented as an inductive algorithm capable of learning from either 

unlabeled (unsupervised) or labeled (supervised) data, whether context-insensitive 

(e.g., pixel-based) or context-sensitive (e.g., (2-D) object-based). If useful, these 

inductive data learning algorithms may be adapted to run on a driven-by-

knowledge stratified (semantic masked, layered) basis and moved to the second 

stage of a novel two-stage stratified hierarchical hybrid RS-IUS architecture 

proposed in recent literature, see Fig. 3 (Baraldi et al., 2006; Baraldi et al., 2010a; 

Baraldi et al., 2010b; Baraldi et al., 2010c; Baraldi, 2011a; Baraldi, 2011b). 

 It comes together with a novel two-stage stratified hierarchical hybrid RS-IUS 

architecture employing a first-stage spectral rule-based preliminary classification 

algorithm based on prior spectral knowledge, see Fig. 3 (Baraldi et al., 2006; Baraldi 

et al., 2010a; Baraldi et al., 2010b; Baraldi et al., 2010c; Baraldi, 2011a; Baraldi, 

2011b). 

 It comes together with an operational (namely, automatic, efficient, accurate, 

robust, scalable, see Part I Section 2.8) Satellite Image Automatic Mapper™ 

(SIAM™) implementation (software executable), equivalent to an automatic (good-

to-go, press-and-go, turnkey) software button, provided as an experimental proof 

of the efficacy of the required shift in learning paradigm from MAL-from-examples 

to MAT-by-rules at the first stage of a two-stage hybrid RS-IUS architecture, see 

Fig. 3 (Baraldi et al., 2006; Baraldi et al., 2010a; Baraldi et al., 2010b; Baraldi et al., 

2010c; Baraldi, 2011a; Baraldi, 2011b).  

To summarize, to the best of this author's knowledge this is the first time a novel 

computational theory (RS-IUS architecture) is supported by operational (good-to-go, press-

and-go, turnkey) algorithmic and implementation solutions as proofs of concept. For 

example, this was not the case of the Marr (Marr, 1982) or the Diamant CV systems 

(Diamant, 2005; Diamant, 2008; Diamant, 2010a; Diamant, 2010b), whose computational 

theories (see Part I Section 2.6) are both inconsistent with algorithmic solutions adopted by 

their authors. As a consequence, these two CV systems become two more instances of the 

well-known class of two-stage segment-based hybrid CV systems, also termed GEOBIA 

systems, traditionally affected by a lack of general consensus and research (Hay & Castilla, 

2006; Matsuyama & Shang-Shouq Hwang, 1990). 

The proposed conclusions of potential interest to the RS, CV, AI and MAL communities are 

supported by unquestionable independent sources of evidence listed below.  

 Since the late 1950s, the original ambitious goals of AI/MAI and Cybernetics/MAL 

have been fragmented into “practical” and “manageable” problems equivalent to "a 

family of relatively disconnected efforts” (Diamant, 2005; Diamant, 2008; Diamant, 

2010a; Diamant, 2010b). 
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 It is well-known in literature that inductive learning-from-examples "is an inherently 

difficult (ill-posed) problem and its solution requires a priori knowledge in addition to 

data” (Cherkassky & Mulier, 2006) (p. 39) (see Part I Section 2.1). In practical contexts 

this means the following. 

 Unlabeled (unsupervised) data learning algorithms, namely, unlabeled data 
clustering (Backer & Jain, 1981; Baraldi & Alpaydin, 2002a; Baraldi & Alpaydin, 
2002b; Cherkassky & Mulier, 2006; Fritzke, 1997) and unlabeled (2-D) image 
segmentation algorithms (Burr & Morrone, 1992; Corcoran et al., 2010; Corcoran & 
Winstanley, 2007; Delves et al., 1992; Hay & Castilla, 2006; Matsuyama & Shang-
Shouq Hwang, 1990; Petrou & Sevilla, 2006; Vecera & Farah, 1997), are recognized 
as inherently ill-posed problems subjective in nature by a relevant portion of 
existing literature. 

 Labeled (supervised) data learning classifiers are unable to establish correlation 
relationships between objective sensory (e.g., RS) data and categorical variables 
(e.g., land cover classes) at large data scale or fine semantic granularity. For 
example, in (Chengquan Huang et al., 2008) a forest/non-forest one-class SVM 
battery of classifiers must be re-trained and re-selected for every image in an image 
mosaic at global scale. Vice versa, labeled data learning classifiers are exclusively 
suitable for finding correlation relationships between objective sensory data and 
categorical variables at small data scale and coarse semantic granularity (e.g., in RS 
data mapping problems at coarse spatial resolution and local/regional scale). In 
fact, in practical RS data applications where supervised data learning algorithms 
are employed at large spatial scale, fine spatial resolution or fine semantic 
granularity (Chengquan Huang et al., 2008), the cost, timeliness, quality and 
availability of adequate reference (training/testing) datasets derived from field 
sites, existing maps and tabular data have turned out to be the most limiting factors 
on RS data product generation and validation (Gutman et al., 2004). 

 The prior knowledge-based SIAM™ is provided with unsurpassed operational QIs (see 
Part I Section 2.8) in the mapping of RS image mosaics at national/ continental/ global 
scale (e.g., refer to Table 4). 

To the best of this author's knowledge, while the proposed practical conclusions of potential 
interest to the RS, CV, AI and MAL communities are supported by the aforementioned 
independent sources of evidence, these conclusions are not contradicted by any practical 
achievement gained by the RS, CV, AI and MAL communities in recent years. Thus, rather 
than being agreed or disagreed upon, these conclusions ought to be accepted by the 
scientific community unless proved otherwise when the increasing rate of collection of RS 
data of enhanced spatial, spectral and temporal quality will no longer outpace our capability 
of generating (rather than extracting) semantic2 information from RS data provided, per se, 
with no semantics at all. 
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