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1. Introduction 

Despite current research progress, preterm birth (delivery before 37 weeks gestation) remains 
a significant problem in maternal-child health because of its high prevalence rate and 
association with severe adverse health consequences (March of Dimes, 2009; Goldenberg et al., 
2000; Sibai et al., 2005; Ventura et al., 2000). Globally, an estimated 13 million babies are born 
preterm each year representing a 9.6% prevalence of preterm birth (March of Dimes, 2009). 
The incidence and consequences of preterm birth (PTB) are particularly high and harsh in 
Africa and Asia where over 11 million (85%) of all preterm births occur. Preterm birth is the 
leading cause of infant morbidity and mortality. About one million deaths in the first month of 
life (or 28 percent of total newborn deaths) are attributable to preterm birth. 
In the United States (US) preterm birth occurs in 10-15% of all pregnancies and the rate  has 
increased by 35% in the past 25 years (March of Dimes, 2009; Institute of Medicine, 2006). 
There is a significantly higher rate of preterm birth among African-American women 
(17.8%) compared to Caucasian women (8.8%) (Institute of Medicine, 2006). In the US, 
preterm births are associated with 75% of perinatal mortality (Adams & Barfield, 2008; 
Nathanielsz, 1995; Novy et al., 1995). Long term follow-up indicates that between one-third 
to one-fifth of preterm children have moderate to severe sensory handicaps by age two 
(including cerebral palsy, mental retardation, epilepsy, blindness or deafness) (Escobar et 
al., 1991; Kramer, 2009; Kuban & Leviton, 1994). Because of this the economic consequences 
of PTB are of similar magnitude as smoking, alcohol abuse and AIDS (Novy et al., 1995). An 
Institute of Medicine (2006) report estimated the cost of PTB to be $26.2 billion in 2005 with 
daily NICU costs exceeding $3,500 per infant, and it is not unusual for costs to top $1 million 
for a prolonged stay (Catlin, 2006). Despite the magnitude of this problem, the etiology of 
preterm birth remains poorly understood. 
The precise mechanisms by which human parturition is initiated spontaneously, either at 
term or preterm, are not well understood (Kramer et al., 2009). It is established that 
microbial colonization and inflammation in the maternal genital tract is one cause of 
preterm birth (Gibbs et al., 1992) and account for the majority of preterm births between 21 
and 24 weeks. As gestation progresses to 33 weeks, however, the incidence of preterm birth 
due to infection drops below 10%. Thus, in the large majority of preterm births there is no 
known etiological agent. While the exact causes of preterm labor are not known, they may 
include behavioral, environmental, biological and psychosocial factors, medical conditions 
and genetics. As described above, there are striking racial-ethnic and socioeconomic 
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differences in preterm birth rates that are largely unexplained (Kramer & Hogue, 2009; 
Institute of Medicine, 2006). At the physiological level, it is clear that many factors are 
involved in the onset of labor, including hormonal metabolism and structural changes to the 
uterus and myometrium (Petraglia et al., 1996) but the effects and interactions among these 
factors are not fully understood (Challis, 1994). Research from our group (Wadhwa et al., 
2004; Sandman et al., 2006; Sandman et al., 1995, 1999b; Wadhwa et al., 1996; Wadhwa et al., 
2004; Wadhwa et al., 1998) and many others (Braastad, 1998; Lindsay & Nieman, 2005; 
Makrigiannakis et al., 2007; Neumann et al., 1998) indicates that a primary pathway of the 
effects of stress on the human fetus is the HPA stress axis. This review will focus on the role 
that stress plays in determining preterm birth. 

2. Stress: Definitions 

In physics, stress historically was defined as the  degree of distortion in a malleable metal 
when it is subjected to an external load. A similar concept of systemic stress was introduced 
to the life sciences by Hans Selye in the 1930s. He defined stress as "the non-specific 
response of the body to any demand for change" (Selye, 1936). In connecting stress to 
disease states, Selye emphasized the non-specificity of stressful events--it could be heat, 
cold, exercise, bacterial infection, and a host of other agents (Selye, 1959). Selye refined and 
broadened his initial definition over the years by adding to the concept the idea that stress 
included an inadequate physiological response to any demand that resulted in "wear and 
tear on the body" (Selye, 1956). He recognized that individuals adapted to, and developed 
defenses against, stress (Selye, 1955). His General Adaptation Syndrome was characterized 
by an alarm reaction or shock phase, a stage of resistance and finally, if defenses fail, an 
exhaustion stage placing the organism at risk for ill health.  

2.1 Endocrine stress system 

Systemic stress activates the expression of the master stress hypothalamic (H) hormone, 
corticotrophic releasing hormone (CRH), which stimulates the cascade of events preparing 
the organism for “fight or flight”. CRH, a 41-amino acid neuropeptide, is synthesized 
primarily in the paraventricular nucleus of the hypothalamus and has a major role in 
regulating pituitary (P)-adrenal (A) function and the physiological response to stress 
(Chrousos, 1992; Vale et al., 1981). CRH stimulates the synthesis of a bioinactive 31K dalton 
prohormone, proopiomelanocortin (POMC) in the pituitary which is converted by enzymes 
into adrenocorticotrophic hormone, ACTH and other active peptides. ACTH enters the 
blood stream and elicits secretion of glucocorticoids (cortisol in humans) from the adrenal 
gland. There is negative feedback between the adrenal gland and both the hypothalamus 
and pituitary gland that shuts down the stress response under normal conditions. In 
addition, cortisol crosses the blood–brain barrier and activates specific receptors in limbic 
brain structures and in the cortex. The limbic structures, especially the hippocampus, 
prefrontal cortex (PFC) and amygdala have both excitatory and inhibitory connections with 
the HPA axis (Avishai-Eliner et al., 2002). 
The amygdala activates the HPA axis. Stimulation of the amygdala promotes synthesis and 
release of CRH from the hypothalamus and begins the sequence of events which ultimately 
results in corticosteroid biosynthesis and secretion in the adrenal gland. In contrast to the 

amygdala, the hippocampus is involved in terminating the HPA axis responses to stress. 
Hippocampal lesions are associated with basal hypersecretion of glucocorticoids (Knigge & 
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Hays, 1963), enhanced basal CRH mRNA expression (Herman et al., 1995; Herman et al., 
1989), increased ACTH secretion in paraventricular nucleus (PVN) and prolonged 
corticosterone and ACTH release following  exposure to a variety of stressors (Herman et 
al., 1998; Nettles et al., 2000). Like the hippocampus, the prefrontal cortex also plays an 
important role in negative feedback regulation of the HPA axis (Meaney et al., 1996). Studies 
in rats (Bagley & Moghaddam, 1997; Feldman & Conforti, 1985; Moghaddam, 1993) and 
humans (Murros et al., 1993; Shimizu et al., 1997) show that the PFC is a significant target 
for the negative-feedback actions of circulating corticosteroids. Direct implants of 
corticosterone into the medial prefrontal region decrease stress-induced ACTH and 
corticosterone secretion following acute or repeated restraint (Akana et al., 2001; Diorio et 
al., 1993). Administration of CRH enhances CRF1 RNA expression throughout the medial 
prefrontal cortex. There is evidence that the CRH peptide interacts with CRH neurons in the 
PFC to inhibit the hypothalamic–pituitary adrenal axis via indirect pathways reducing CRH 
release from the PVN (Brunson et al., 2002). 

2.2 Psychological stress 

In our work we adopt an umbrella concept (Lazarus, 1966, 1968) to characterize prenatal 
stress. This view includes both stress exposures and responses under the same framework of 
prenatal stress. The overarching concept is divided into stressors (environmental exposures) 
and responses. Exposures include new, intense or rapidly changing conditions, or 
conversely, absence of expected stimulation, fatigue, boredom and even misperceptions. 
Responses include biological, emotional, cognitive, and behavioral reactions. A further 
theoretical component is cognitive appraisals of stress, which operate as a critical mediator 
between stressors and responses in human research (Lazarus & Folkman, 1984). 

3. Stress and pregnancy 

3.1 Endocrine stress system during pregnancy 

The endocrine stress or "fight or flight" system is profoundly altered during human 
pregnancy. The pituitary gland doubles in size and the output of pituitary peptides 
increases severalfold as gestation progresses. But it is the growth and development of  a 
new organ, the placenta, in primates that is primarily responsible for the profound 
changes in the stress circuit (Figure 1). CRH immunoreactivity in the plasma of non-
pregnant women is very low or undetectable. The human placenta and amniotic 
membrane expresses the genes for the major stress hormones, CRH (hCRHmRNA) and 
POMC by the seventh week of gestation. All of the HPA and placental stress hormones 
increase as pregnancy advances, but the exponential increase in placental CRH in 
maternal plasma is especially dramatic, reaching levels observed only in the hypothalamic 
portal system during physiological stress (Lowry, 1993). The levels of hCRHmRNA 
increase more than 20-fold in the five weeks preceding delivery (Frim et al., 1988) 
resulting in a significant elevation in maternal CRH plasma concentrations during the 
second half of pregnancy. Levels rise exponentially as pregnancy advances, peaking 
during labor, and falling to very low or undetectable levels within 24 hours after delivery 
(Campbell et al., 1987; Chan et al., 1993; Goland et al., 1992; Sasaki et al., 1987; Wolfe et al., 
1988). Placental CRH is identical to hypothalamic CRH in structure, immunoreactivity 
and bioactivity (Petraglia et al., 1989; Sasaki et al., 1988). However, in contrast to the 
inhibitory influence on the promoter region of the CRH gene in the hypothalamus, 
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Fig. 1. The regulation of the HPA axis changes dramatically over the course of gestation 
with profound implications for the mother and the fetus. One of the most significant 
changes during pregnancy is the development of the placenta, a fetal organ with significant 
endocrine properties. During pregnancy CRH is released from the placenta into both the 
maternal and fetal compartments.  In contrast to the negative feedback regulation of 
hypothalamic CRH, cortisol increases the production of CRH from the placenta. Placental 
CRH (pCRH) concentrations rise exponentially over the course of gestation. Rapid 
acceleration of CRH, especially between weeks 25 and 30 GA increase the risk of shortened 
gestation. 
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maternal stress signals (cortisol) from the adrenal glands activate the promoter region in the 
placenta and stimulate the expression of hCRHmRNA establishing a positive feedback loop 
that allows for the simultaneous increase of CRH, ACTH and cortisol over the course of 
gestation. The difference in behavior of the CRH gene in the placenta and hypothalamus is 
due to the expression of different transcription factors, co-activators and co-repressors in 
these two tissues (King et al., 2002). The increase of CRH especially over the latter part of 
human gestation plays a fundamental role in the organization of the fetal nervous system 
(Sandman et al., 1999b), influencing the timing of the onset of spontaneous labor and 
delivery (McLean et al., 1995; Sandman et al., 2006; Smith et al., 2002; Smith & Nicholson, 
2007; Tyson et al., 2009) and in maternal adaptation during pregnancy, including 
dampening psychological stress (Glynn & Sandman, in press). 

3.2 Alterations in stress responding during pregnancy 

The dramatic maternal endocrine alterations that accompany pregnancy have implications 
not only for the maintenance of gestation, successful parturition and optimal 
fetal/infant/child development, but also have ramifications for the maternal brain and 
behavior. HPA axis, blood pressure, heart rate and catecholamine responses to stress are 
dampened as pregnancy progresses (de Weerth & Buitelaar, 2005). These changes in 
physiological responding are mirrored by changes in psychological responding. Exposures 
to stress are found to be less distressing when they occur later in pregnancy compared to 
when they occur early in pregnancy or in the non-pregnant state (Glynn et al., 2008; Glynn 
et al., 2004). The changes in stress responding as gestation advances may be adaptive and 
promote survival (Glynn et al., 2008). Specifically, down-regulated psychological and 
physiological maternal stress responding provides protection for mother and fetus from the 
effects of adversity as pregnancy progresses toward term. For instance, stress experienced 
early in gestation, but not later, is associated with preterm birth (Glynn et al., 2004; 
Lederman et al., 2004). Moreover, women who fail to show the expected decrease in 
generalized stress and anxiety or dampening in the cortisol awakening response during 
pregnancy are at increased risk for preterm delivery (Buss et al., 2009b; Glynn et al., 2008). 

4. Risk for preterm birth 

Because each developing organism plays an active role in its own construction, the embryo 
and the fetus must acquire information about the environment that guide its development. 
The human placenta is both a sensory and effector organ that incorporates and transduces 
information from its maternal host environment into the fetal developmental program. The 
fetal/placental unit’s early detection of stress signals from the maternal environment 
“informs” the fetus that there may be a threat to survival. If the nature of the environment is 
perceived to be stressful or hostile, it may promote developmental trajectories that ensure 
survival. Compelling evidence from the desert-dwelling Western spadefoot toad illustrates 
this conserved function (Boorse & Denver, 2002; Denver, 1997, 1999; Seasholtz et al., 2002). 
This toad lays its eggs in pools of desert rainwater. Tadpoles exposed to rapidly evaporating 
pools, accelerate their metamorphosis to escape imminent peril. This highly adaptive 
function allows the tadpole to reach maturity before the life-sustaining environment 
desiccates. If stress hormones are blocked during environmental desiccation, then the rate of 
development is arrested and the tadpole’s survival is compromised. Survival under these 
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circumstances, however, is associated with long-term costs. Tadpoles that survived by 
accelerating their development were smaller than normal at emergence as toads and had 
reduced capacity to forage for food and to mate (Denver, 1997; John-Adler & Morin, 1990; 
Newman, 1989; Smith, 1987). 
 

 

Fig. 2. The BLUE panel shows the normal activity of the HPA axis during pregnancy. One of 

the most significant changes during pregnancy is the development of the placenta, a fetal 

organ with significant endocrine properties. CRH is released from the placenta into both the 

maternal and fetal compartments. In contrast to the negative feedback regulation of 

hypothalamic CRH, cortisol increases the production of CRH from the placenta. Placental 

CRH (pCRH) concentrations rise exponentially over the course of gestation. The RED panel 

illustrates (by the thicker lines) that the normal changes are exaggerated under conditions of 

high stress that results in accelerated release of CRH and increasing the risk for preterm 

birth. H=Hypothalamus; P= pituitary; A=adrenal cortex 
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4.1 Endocrine risk 

There is substantial in vitro and in vivo findings indicating that the placenta detects and 

responds to a variety of maternal physiological and psychological stress signals. The human 

placenta integrates numerous sources of maternal stress signals, including cortisol, and 

responds with a dose-dependent release of CRH.  The surge in CRH is produced by 

syncytial cells which can be created in vitro by fusion of purified cytotrophoblast cells 

(Petraglia et al., 1989). The exponential increase in CRH observed during the course of 

human pregnancy can be reproduced using a model which incorporates positive feed 

forward between cortisol and CRH (Emanuel et al., 1994). In contrast to the inhibition of 

hypothalamic CRH, cortisol stimulates the release of CRH from the placenta. The postitive 

relation between cortisol and CRH release from the placenta is similar to the positive effect 

of cortisol observed in the amygdala (Schulkin, 1999). Using transfections of CRH promoter 

constructs, the stimulatory mechanism has been partially explained. In placental tissue, 

glucocorticoids stimulate CRH gene expression by interacting with proteins that bind to the 

cAMP response site of the CRH promoter (Cheng et al., 2000).  

Evidence suggests that the normal trajectory of placental CRH production over the course of 

gestation may be accelerated by an adverse intrauterine environment characterized by 

physiological stress. For example, elevated placental CRH has been observed in pregnancies 

complicated by pre-eclampsia, reduced utero-placental perfusion, intrauterine infection, and 

in cases where fetal distress has led to elective preterm delivery (Giles et al., 1996). A series 

of in vitro studies (Petraglia et al., 1987; Petraglia et al., 1989; Petraglia et al., 1990) have 

shown that CRH is released from cultured human placental cells in a dose-response manner 

in response to all the major biological effectors of stress, including cortisol, catecholamines, 

and pro-inflammatory cytokines. We have shown that elevated levels of maternal cortisol 

early in gestation are associated with a more rapid rise in placental CRH  concentrations 

(Sandman et al., 2006). Not only is placental CRH responsive to stress related increases in 

maternal cortisol, but the administration of synthetic glucocorticoids for fetal lung 

maturation to pregnant women at risk for preterm delivery is similarly associated with 

significant increases in circulating placental CRH. Placental CRH concentrations increase 1.5 

fold within 12 hours in response to the administration of synthetic glucocorticoids such as 

betamethasone (Korebrits et al., 1998; Marinoni et al., 1998). Further, placental CRH 

concentrations remain elevated for at least one week after a single course of treatment. 
These finding are consistent with the report of decreased gestational length among women 

administered corticosteroids during their first trimester (Gur et al., 2004) probably by 

stimulating synthesis and release of placental CRH.  
The placental detection of stress or adversity may prime or advance the "placental clock" 

by activating the promoter region of the CRH gene and increase the placental synthesis of 

CRH. The rapid increase in circulating CRH begins the cascade of events influencing 

myometria (Tyson et al., 2009) and in extreme cases, precipitating preterm birth. Placental 

CRH has been shown to increase the placental production of estrogens and to inhibit the 

synthesis of progesterone (Yang et al., 2006; You et al., 2006). Placental CRH is 

additionally released into the fetal compartment where it stimulates the fetal adrenal 

gland to release dehydroepiandrosterone sulfate (DHEAS) an obligate precursor for 

placental estriol production (Smith et al., 1998). Alterations in the production of 

progesterone and estriol may be one pathway by which placental CRH regulates the 
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timing of delivery (Smith et al., 2009). Data indicate that it is the trajectory of placental 

CRH production over gestation, rather than the absolute hormone concentration that best 

predicts preterm delivery, suggesting that target cells are highly responsive to relative 

changes in placental CRH concentrations. The effects of HPA and placental axis hormones 

on gestational length are modulated by the activities of binding proteins and enzymes. 

For example, concurrent with increases in circulating levels of placental CRH, a CRH-

binding protein (CRH-BP) is produced in the liver and also in the trophoblast and 

intrauterine tissues during pregnancy, and binds to circulating CRH, reducing its 

biological action (Orth & Mount, 1987; Petraglia, et al., 1996; Petraglia et al., 1993). In 

contrast to the exponentially increasing levels of circulating CRH over the course of 

gestation, CRH-BP levels, which are constant in the first, second, and early third trimester 

and are not significantly different from non-pregnant levels, fall by approximately 30% as 

birth approaches (Linton et al., 1993). The net effect of these changes in levels of CRH and 

CRH-BP is a sharp increase in the availability of free and bioactive CRH during this last 

part of gestation. There is some evidence that women who deliver preterm have lower 

levels of CRH-BP (Hobel et al., 1999). Maternal plasma cortisol binding globulin (CBG) 

levels also change across pregnancy. CBG is stimulated by estrogen and these levels 

increase progressively with advancing gestation until the end of gestation when there is a 

significant decline in CBG leading to an increase in bioactive cortisol (Ho et al., 2007). The 

activity of placental 11β-HSD2 (which oxidizes cortisol into its inactive form, cortisone) 

(Sun et al., 1999) increases as gestation progresses before falling precipitously near term. 

Both the decrease in CBG and the decrease in activity of  placental 11β-HSD2 increase 

fetal exposure to maternal cortisol ensuring maturation of the fetal lungs, CNS and other 

organ systems in full term births (Ma et al., 2003; Murphy & Clifton, 2003). 

The association between maternal plasma concentrations of CRH and preterm 

labor/delivery has been examined in many published studies (Markovic et al., 2007). During 

pregnancy, maternal stress threatens the fetal nervous system (Coe et al., 2003; Insel et al., 

1990; Poland et al., 1999; Sanchez et al., 1993; Sandman et al., 2003; Sandman et al., 1999a; 

Sandman et al., 1999b; Weinstock, 1996) and shortens the length of gestation (Campbell et 

al., 1987; McLean et al., 1995; Wadhwa et al., 2004; Wadhwa et al., 1998; Wadhwa et al., 1993; 

Warren et al., 1992; Wolfe et al., 1988). The general findings are that plasma CRH 

concentrations of women in preterm labor are significantly higher than those of gestational-

age matched controls and the rate of change of CRH over gestation is accelerated in women 

destined to deliver early. Studies measuring CRH at a single point during gestation produce 

equivocal findings because there are wide individual differences that can only be assessed 

with longitudinal designs (Sibai et al., 2005) and because it is the trajectory of placental CRH 

production over gestation that best predicts preterm birth (Smith et al., 2009).  The most 

convincing early support for the role of CRH in the timing of human delivery was 

demonstrated by McLean et al (1995). In a prospective, longitudinal study, CRH levels were 

assessed between one and four times from 16-20 weeks gestation to term. Plasma CRH 

levels at 18-20 weeks gestation were significantly higher in women delivering preterm 

(N=24) than at term (N=308), and were significantly lower in women delivering post-term 

(N=29). These findings demonstrated that patterns of plasma CRH are associated with the 

timing of delivery, both early and late, and may be established as early as the beginning of 

the second trimester of gestation. 
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4.2 Psychological risk 

Early work examining psychological risk was plagued by methodological issues rendering a 
definitive answer about the role of psychological stress in preterm birth difficult to assess. 
An early careful review by Savitz & Pastore (1999) of 20 of the more rigorous studies, stated 
that it was difficult to draw conclusions due to methodological limitations. Study designs 
until that time had been a mix of retrospective and case-control studies, with relatively few 
prospective studies and approximately half of the studies reviewed found associations of 
stress and length of gestation.  However, more recent work with more methodologically 
sound approaches, including reports from our own group (Campos et al., 2008; Dominguez 
et al., 2008; Glynn et al., 2008; Glynn et al., 2001; Hilmert et al., 2008; Rini et al., 1999; 
Wadhwa et al., 1993) have consistently demonstrated significant associations between 
prenatal stress and adverse birth outcomes. In a recent comprehensive review, Dunkel 
Schetter and Glynn (2011) concluded that prenatal stress represents a significant risk for 
preterm birth or shortened gestation. However the findings also indicated that stress was 
not a unitary construct and some characterizations of stress were stronger predictors of birth 
outcome than others. For instance, of the fourteen studies of exposure to stressful life events 
during pregnancy, eight found a significant influence on the risk for shortened gestation, 
and another form of episodic stress, catastrophes, also were consistently identified as risk 
factors. High levels of chronic forms of stress (chronic strain, perceived racism, and 
neighborhood or community stressors) showed consistent links with decreased gestational 
length. Inconsistent and very modest effects are detected with instruments targeting 
appraised or perceived stress (all twelve studies used Cohen’s Perceived Stress Scale [Cohen 
et al., 1983], and only four found an association). Similarly, depression is not a reliable 
predictor of shortened gestation. Perhaps the most compelling pattern was the finding that 
anxiety related to pregnancy outcomes, mostly reflecting fears, concerns and beliefs, 
significantly shortened gestation in ten of eleven studies. 
Viewed collectively, the evidence is quite clear that stress conceived of as a general 
multidimensional concept contributes to the etiology of preterm birth. There are at least 
three emerging themes, however, that dictate future directions and refinement of models 
examining the role of stress in preterm birth. First, some conceptions or dimensions of stress 
now are emerging as more potent predictors than others, suggesting a need for further 
theoretical specificity. By far the most consistent results are found for pregnancy-related 
stress and anxiety, and a close second is major life events. Also notable are chronic strains, 
catastrophes, community stressors, and racism, but these literatures still are in the early 
stages. Second, the predictable changes in maternal stress responding (both psychological 
and physiological) represent a critical moderating variable (Glynn, 2010). Normative 
changes in stress responding have important implications both for the impact of exposures 
to stress and also for interpreting the relations between stress, measured at different points 
in gestation, and adverse outcomes. It is worth noting that from a methodological 
standpoint, it is difficult if not impossible, to understand timing without prospective, 
longitudinal study designs. Last, an additional moderating variable worth considering 
relates to ethnic and cultural differences. Some stress concepts do not generalize well across 
ethnic, cultural and foreign populations and some dimensions of stress apply only to 
specific groups. For example, lifetime exposures to racism are predictive of restricted fetal 
growth, but only among African American women (Dominquez et al., 2008). Similarly, 
anxiety in pregnancy has been shown to characterize Latina women in particular, especially 
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new and unacculturated immigrants from countries with poor medical care (Rini et al., 1999; 
Zambrana et al., 1997). Adding further complexity to this issue is the fact that the relevance 
of biological mediators and the physiological pathways to preterm birth may differ 
depending on race/ethnicity. For example, the threshold of CRH exposure that is associated 
with preterm birth is lower among African American women (Holzman et al., 2001), and 
others have shown that elevated prenatal cortisol is more likely to be associated with an 
accelerated CRH trajectory in African American and Latina women than among white 
women (Glynn et al., 2007). Even more recently it was shown that among Latinas, perceived 
discrimination is associated with elevated prenatal cortisol trajectories, which predict 
reduced fetal growth, but this is not the case for non-Hispanic white women (Glynn, 2011). 
These findings highlight the importance of developing population-specific concepts and 
measures of stress. In addition, stress concepts and measures that generalize well over 
ethnic, cultural, and international populations are needed. The emergence of pregnancy-
specific validated measures of stress and anxiety represents a promising avenue to achieve 
this goal (Huizink et al., 2004; Lobel et al., 2008). 
In recent years, many more studies have been published on this topic, often with 

prospective designs, large sample sizes, and appropriate controls. Recent reviews concur 

that the evidence regarding stress as a significant independent risk factor for spontaneous 

preterm labor and delivery is now clearer (Beydoun & Saftlas, 2008; Institute of Medicine, 

2006). Beydoun and Saflas (2008) report that nine of eleven studies between 2000 and 2006 

found significant effects of prenatal maternal stress on length of gestation or risk of preterm 

labor or birth, although not all studies adjusted for appropriate control variables. 

5. Our approach 

Our research team has been exploring the effects of stress and specifically the HPA axis on 
developmental processes for over 30 years (Glynn & Sandman, in press; Sandman & Davis, 
2010; Sandman et al., 2011a; Sandman et al., 2011b). The initial studies were among the first 
to describe the long lasting (perhaps permanent and programming) effects of neonatal 
exposure to ACTH on the brain and behavior of rats (Beckwith et al., 1977; Champney et al., 
1976; Sandman & O'Halloran, 1986). In another comprehensive project, we discovered that 
in utero exposure of rats to high levels of beta endorphin (BE) delayed developmental 
milestones, permanently altered pain threshold, exploration, and both active and passive 
avoidance responding (Sandman & Kastin, 1981). We found that fetal exposure to BE 
increased the expression of opioids (Moldow et al., 1981) and down-regulated dopamine 
(D2) receptors (Sandman & Yessaian, 1986) in the brains of these animals as adults. During 
the past 15+ years our group has been examining the effects of stress and activation of the 
HPA/placental axis on birth outcomes and on the human fetus. As described below, our 
findings contribute to the growing acceptance that maternal stress is a risk factor for adverse 
outcomes. Our studies also have made significant contributions to understanding the 
mechanisms of the effects of stress on gestational length. Other findings were the first to 
indicate that very high levels of CRH are associated with both preterm delivery and infants 
who are small for gestational age. Moreover, we discovered that very low levels of CRH 
were associated with post-term birth adding strong support to the suggestion that CRH 
primed a “placental clock” controlling the timing of delivery. We published evidence that a 
maternal stress message early in pregnancy may prime a subsequent fetal/placental CRH 
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response and increase the risk for preterm birth and that racial/ethnic differences may exist 
in this priming process (Glynn et al., 2007). Other studies from our project were the first to 
show that elevated levels of CRH in the maternal circulation influences the human fetal 
nervous system and fetal exposure to elevated levels of CRH persist into infancy and 
childhood.  

5.1 Assessment 

We have developed a prospective protocol for the assessment of prenatal exposure to 

maternal stress and stress hormones on fetal, infant and child development (Figure 3). 

Maternal psychosocial and biological stress measures are collected at five gestational 

intervals beginning between 14 and 16 weeks. Maternal/fetal dyads are assessed at 15, 20, 

25, 31 and 36 weeks of gestation. At ~25, ~31 and ~36 gestational weeks, fetal 

neurodevelopment is evaluated with a measure of startle and habituation. At delivery, 

information on length of gestation and birth weight is abstracted from medical records. 

Infant assessments begin 24 hours post delivery with the collection of cortisol and 

behavioral responses to the painful stress of the heel-stick procedure and measures of 

neonatal neuromuscular maturity. Infant cognitive, neuromotor development, stress and 

emotional regulation are evaluated at 3, 6, 12 and 24 months of age. Maternal psychosocial 

stress and demographic information is collected in parallel with infant assessments. Child 

neurodevelopment is assessed with cognitive tests, measures of adjustment and brain 

imaging. 

 

 

Fig. 3. Schematic representation of the psychobiological stress model that guides our 

research program. Multiple endocrine and psychological assessments are made during 

gestation and mother and infant are followed from birth to late childhood. 

Over 800 adult women have participated in our studies of prenatal psychobiological stress. 

The majority of our women are married and high school educated. Our sample is 

racially/ethnically diverse with a small majority that is White/Non-Hispanic. All subjects 

presented with a singleton intrauterine pregnancy, a normal uterus and cervix and for the 
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majority the current pregnancy is their first. A comprehensive structured medical interview 

and thorough chart review is conducted to exclude subjects if they present with prior or 

present obstetric risk conditions including systemic maternal disease (cancer, cardiac 

disease, seizure history, autoimmune diseases and blood disorders), placental or cord 

abnormalities, uterine anomalies, infection, congenital malformations or chromosomal 

abnormalities determined in the first trimester. Women also are excluded if they present 

with any condition that could disregulate neuroendocrine function such as endocrine, 

hepatic or renal disorders or the use of corticosteroid medications. Interviews assessed 

health behaviors to exclude women who smoked or consumed alcohol or drugs of abuse six 

months before and during the index pregnancy. A clinical ultrasound performed early in 

gestation (15 or 20 weeks) confirms gestational age. Blood is collected at each interval for 

assessment of neuroendocrine profiles. To control possible circadian influences, subjects are 

evaluated each session between 14:00 and 16:00. Women were followed to term and birth 

outcome information is abstracted from medical charts. 

5.2 Findings 

In addition to the well known increase in infant and toddler mortality and morbidity 
associated with preterm birth, there are other longer term risks associated with abbreviated 
gestation. Retrospective studies have concluded that fetuses born early or small for 
gestational age are at greater subsequent risk for later cardiovascular disease, hypertension, 
hyperlipidemia, insulin resistance, non-insulin dependent diabetes mellitus, obesity, higher 
serum cholesterol concentrations, shortened life span, and other poor health outcomes 
(Barker et al., 1993; Barker, 1998; McCormack et al., 2003; Richards et al., 2001; Roseboom et 
al., 2000). Our program of research is guided by the assumption that birth phenotype itself 
(that is preterm birth) is not the only source of risk but instead reflects adverse in utero 
exposures that influence fetal development and contribute to poor birth outcomes. These 
influences on the fetus have been described as “programming” (Barker, 1998). Thus, 
findings from our prospective studies of early human development, consistent with our 
assumptions and the assessment protocol in Figure 3, include the effects of endocrine and 
psychological stress on the fetus, birth outcome and subsequent development. 

5.2.1 Findings: Endocrine stress 

5.2.1.1 Fetal behavior 

Measures of fetal responses to external stimulation have been used in our projects to directly 
assess the developmental consequences of exposure to psychobiological stress (Sandman et 
al., 1997). We discovered that fetuses of women with elevated pCRH during the third 
trimester were less responsive to the presence of a novel stimulus (Sandman et al., 1999b). In 
a subsequent study we reported that fetal heart rate habituation was delayed when fetuses 
were exposed to over-expression of maternal endogenous BE (Sandman et al., 2003). To 
evaluate programming influences on the fetus, we assessed the consequences of gestational 
stress during the early second trimester on fetal behavior in the early third trimester.  We 
found that low CRH at 15 gestational weeks, but not later, predicted a more mature fetal 
heart rate pattern at 25 gestational weeks (Class et al., 2008). This is evidence that endocrine 
stress exerted influence, on the developing nervous system and that these effects may 
influence directly or indirectly, birth outcome (Sandman et al., 2011a; Sandman et al., 2011b).  
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5.2.1.2 Birth outcome 

In our initial prenatal endocrine study of gestational length we found that early third 
trimester levels of maternal CRH were inversely and significantly correlated with 
gestational age at delivery after adjusting for biomedical correlates of outcome including 
parity and antepartum medical risk (Wadhwa et al., 1998). Moreover, subjects who 
delivered preterm had significantly higher levels of CRH in the early third trimester of 
gestation than those who delivered at term.  These results were the first to suggest that this 
association was independent of the effects of antepartum medical risk on the timing of 
delivery and supported the premise that placental CRH was implicated in the normal 
physiology of human parturition. Moreover, these findings supported the sparse literature 
that premature or accelerated activation of the maternal-placental-fetal neuroendocrine axis 
was associated with earlier delivery. 
We confirmed and extended these findings in a sample of 232 pregnant women at 
approximately 32 weeks gestation (Wadhwa et al., 2004). Women who delivered preterm 
had significantly higher CRH levels at 32 weeks gestation than those who delivered at term 
(215.0 + 31.5 vs. 139.6 + 11.7 pg/ml +SEM), respectively. Conversely women who delivered 
post-term had significantly lower CRH levels at 32 weeks gestation than those who delivered 
at term (62.0 + 11.4 vs. 139.6 + 11.7 pg/ml +SEM). We also reported that women who 
delivered growth-restricted infants (SGA) had significantly higher CRH levels at 32 weeks 
gestation than those who delivered average or large for gestational age infants. Both of these 
effects on gestational age and birth weight were independent from medical risk. These 
findings are the first to indicate that fetal growth restriction is associated with elevated 
CRH. Moreover, extremely elevated maternal levels of the stress hormone were associated 
with both early birth and growth restriction. Infants with both of these outcomes have been 
found to have highly significant risk for motor, sensory and cognitive handicaps and may be 
at “double biological jeopardy” for developmental complications. 
In a recent study of 203 pregnant women the HPA and placental stress axis was evaluated 
by assessing levels of BE, ACTH, cortisol and CRH at regular intervals from 15 to 36 weeks 
gestation (Sandman et al., 2006). Consistent with our previous studies, placental CRH levels 
in women destined to deliver preterm (before 37 weeks) had faster rates of increase and 
significantly higher levels of CRH confined to the beginning of the early third trimester than 
women who subsequently delivered at term (Figure 2).  
Maternal levels of cortisol, ACTH and BE also increased significantly with advancing 
gestation. The two-fold increases in maternal ACTH and BE and the three-fold increase in 
maternal cortisol were considerably less than the twenty-five fold increase in placental CRH 
through 31 weeks of gestation. Of these maternal measures, only cortisol distinguished 
women delivering term and preterm. This was the first evidence that levels of cortisol are 
higher as early as 15 weeks in women who subsequently delivered preterm compared with 
women delivering after 37 weeks. However, statistical models that accounted for the 
independent and shared variance of CRH and cortisol indicated that only CRH between 26 
and 31 weeks gestation predicted gestational length. 
Because CRH level at 31 weeks was the best predictor both of preterm birth and gestational 
length, a model to predict its precipitous rise during gestation was constructed using all 
endocrine stress markers collected from the beginning of the second trimester (15 weeks) 
through week 26 of gestation. The prediction of CRH levels at 31 weeks using all the 
endocrine markers was highly significant but the single best and highly significant 
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independent predictor of third trimester CRH was cortisol at 15 weeks gestation. Our 
longitudinal study of human pregnancy provided evidence that the earliest, and perhaps 
critical, period for the effects of CRH on gestational length was the interval between weeks 
26 and 31. The rate of increase during this interval is faster and the level of CRH at 31 weeks 
is higher in women destined to deliver preterm. Serial sampling of maternal plasma 
provides no support for the possibility that CRH earlier in pregnancy influenced gestational 
length. New findings from this study indicated that a plausible stress-related endocrine 
signal, elevated cortisol from the mother very early in pregnancy, predicts the precocious 
rise in CRH leading to an abbreviated gestation. The pattern of findings supports the 
argument that the effect of elevated cortisol early in pregnancy on gestational length reflects 
a priming or programming (Barker, 1998; McLean et al., 1995; McLean & Smith, 2001) effect 
on the eventual fetal/placental CRH response. 
A recent study further assessed the association of prenatal levels of cortisol with gestational 
length using a naturally occurring circadian challenge, the cortisol awakening response 
(CAR) (Buss et al., 2009b). Complete data from a home-based awakening cortisol response 
were obtained from 51 women  early (~17 weeks gestation) and late (~31 weeks gestation). 
The CAR progressively declined over the course of gestation. A larger CAR in late 
pregnancy and reduced attenuation of the CAR from early to late gestation were associated 
with shorter gestational length. Thus, women who exhibited high HPA responsiveness in 
late gestation and showed reduced dampening of the CAR over gestation were at an 
increased risk to deliver early. 

5.2.1.3 Neonatal and infant outcomes 

In a study from our group (Ellman et al., 2008) the New Ballard Maturation Score was used 
to assess physical and neuromuscular maturation of 158 newborns within 24 hours after 
birth. Specifically, the neuromuscular and physical characteristics of the newborn were 
rated and consisted of measures of muscle tone, distinct posture, and angles of resistance in 
key muscle groups. The results of this study provided evidence that fetal exposure to 
increases in levels of maternal cortisol at 15 and at 19 weeks gestation and increases in levels 
of pCRH at 31 weeks gestation were associated with significant decreases in newborn 
physical and neuromuscular maturation. These effects were observed after adjusting for 
length of gestation, indicating that fetal exposure to stress hormones programs neonatal 
neuromuscular maturation independent of gestational age.  
Prenatal exposure to maternal stress hormones similarly programs the development of the 
fetal HPA axis with consequences for neonatal functioning. Recently we reported (Davis et 
al., 2011b) in a sample of 116 mothers and their healthy full term infants assessed at five 
gestational intervals and at 24 hours after birth, that prenatal maternal cortisol and 
psychosocial stress each exerted influences on neonatal stress regulation and these 
influences were dependent upon the gestational period during which the fetus was exposed. 
Specifically elevated maternal cortisol early in gestation was associated with slower 
neonatal behavioral recovery from the painful stress of a heel-stick procedure. Elevated 
maternal cortisol during the second half of gestation was associated with a larger and more 
prolonged neonatal cortisol response to stress. The data from this study are consistent with 
evidence that prenatal exposure to synthetic glucocorticoids during the late second and 
early third trimester is associated with an amplified cortisol response to stress among 
healthy full term neonates (Davis et al., 2011c). Together, these data provide evidence that 
gestational exposure to excess glucocorticoids alters the developmental trajectory of the fetal 
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HPA axis with consequences for postnatal stress regulation. Alterations to neurological 
systems at different times during fetal development resulting from prenatal exposures may 
determine the neonate’s ability to respond behaviorally and physiologically to stressors in 
the postnatal environment. It is plausible that neonates who are more reactive may carry a 
greater risk for developmental and other health risks independent from birth outcome. 
In a sample of over 200 mother child pairs we have shown that elevations in both maternal 
and placental hormones are associated with fearful infant temperament after controlling for 
the influence of postpartum maternal state. Specifically, elevated placental CRH at 25 
gestational weeks and elevated maternal cortisol during the third trimester independently 
predicted fearful temperament (Davis et al., 2005; Davis et al., 2007). The increased report of 
fearful temperament observed in infants exposed to elevated cortisol and placental CRH 
may have implications for subsequent behavioral problems. The temperament measure 
included in these studies assesses infants’ reactivity to novel stimuli. Infants who are easily 
aroused by varied stimulation are more likely to become behaviorally inhibited as young 
children (Kagan et al., 1998; Pfeifer et al., 2002). Furthermore, difficulty adapting to the 
presentation of novel sensory stimuli in infancy is predictive of later behavioral problems 
such as adolescent social anxiety (Schwartz et al., 1999).  
In a large study (125 subjects) with repeated evaluations at five prenatal intervals and three 
intervals during infancy we reported that fetal exposure to cortisol early in pregnancy 
resulted in significantly lower scores on measures of mental development at 12 months of 
age (Davis & Sandman, 2010). Conversely, elevated maternal cortisol late in gestation was 
associated with significantly higher scores on measures of mental development. These 
findings linking cortisol to infant cognitive development are consistent with its function in 
the maturation of the human fetus. The fetus is partially protected from maternal cortisol 
because it is oxidized and inactivated by 11β-HSD2. However, because 11β-HSD2 is only a 
partial barrier, excessive synthesis and release of maternal cortisol exposes the fetus to 
concentrations that may have detrimental neurological consequences. As pregnancy 
advances toward term, fetal exposure to elevated cortisol is necessary for maturation of the 
fetal nervous system and lungs. Fetal exposure to cortisol during the third trimester is 
facilitated by the sharp drop in 11β-HSD2 which allows a greater proportion of maternal 
cortisol to cross the placental barrier (Giannopoulos et al., 1982; Murphy et al., 2006). 

5.2.2 Findings: Psychological stress 

5.2.2.1 Birth outcomes 

In our initial study of the association between psychological stress and birth outcome, 
ninety women were self-administered questionnaires to obtain measures of prenatal 
psychosocial stress, sociodemographic factors, and health practices (Wadhwa et al., 1993). 
Independent of biomedical risk, life event stress and pregnancy anxiety significantly 
predicted infant birth weight and gestational age at birth, respectively. Each unit increase of 
prenatal Life Event Stress (from a possible sample range of 14.7 units of Life Event Stress) 
was associated with a 55.03 gram decrease in infant birth weight, and with a 1.32 times 
increase in the likelihood of occurrence of low birth weight (< 2500 g). Each unit increase of 
prenatal Pregnancy Anxiety (from a possible sample range of 5 units of Pregnancy Anxiety) 
was associated with a 3 day decrease in gestational age at birth. 
In a diverse sample of 230 women we examined the effects of stress and personal resources 
(self-esteem, optimism, etc) and sociocultural factors on birth outcomes (Rini et al, 1999). 
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Resources and prenatal stress had independent influences on outcomes. Greater personal 
resources were related to higher birth weight babies and women who reported more 
prenatal stress had shorter gestations. 
Our model of the effects of stress in pregnancy (Sandman et al., 1999a) predicts that stress 
early during gestation has greater consequences on outcomes than stress that is closer to 
term. To explore this possibility, we focused on the acute effects of a 6.8 earthquake that 
occurred during our study (Glynn et al., 2001). We identified forty women in our project 
who had experienced this uncontrollable stressful event while pregnant. We discovered that 
the ratings of stress were highest if the earthquake occurred during first trimester and 
lowest if it occurred during third trimester. Consistent with predictions from our model, the 
timing of the earthquake also was related to gestational age at birth. The earlier during 
pregnancy the stress occurred, the earlier the delivery occurred. The relation between the 
timing of stress and gestational age remained unchanged when taking into account medical 
risk, maternal age, marital status, race, and parity. These findings suggest both that stress, 
and when stress occurs are critical factors in determining its impact on birth outcomes. 
Timing effects and length of gestation were explored by our group (Glynn et al., 2008) in a 
more recent study of 415 pregnant women  in whom prenatal stress assessed at 18–20 and 
30–32 weeks gestation. At neither assessment did levels of anxiety or perceived stress 
predict gestational length. However, patterns of anxiety and stress were associated with 
gestational length. Although the majority of women who delivered at term exhibited 
declines in stress and anxiety over the course of gestation as expected, those who delivered 
preterm exhibited increases. The elevated risk for preterm delivery associated with an 
increase in stress or anxiety persisted when adjusting for obstetric risk, pregnancy related 
anxiety, ethnicity, parity, and prenatal life events. These findings suggest that women who 
do not show the expected or normative decline in stress responding are at increased risk for 
early delivery, an assumption that was confirmed by the findings from the study examining 
changes in the CAR across gestation described above (Buss et al., 2009c).  

5.2.2.2 Infant and child outcomes 

We have shown that prenatal measures of maternal psychological stress are associated with 
infant and child behavioral regulation and temperament. Elevated gestational anxiety and 
depression were associated with slower behavioral recovery from the painful stress of the 
heel-stick blood draw at 24 hours of age (Davis et al., 2011b). These measures of 
psychological distress were additionally predictive of more fearful and reactive 
temperament during early infancy (Davis 2007; Davis et al., 2004). More recently we have 
shown that pregnancy specific anxiety (PSA) is associated with negative child temperament 
at 3 months and 2-years of age (Blair et al., in press; Sandman et al., 2011a). Furthermore, 
pregnancy specific anxiety is a more potent predictor of child temperament as compared to 
general anxiety. These findings underscore the growing recognition that PSA may be a 
particularly potent influence on adverse birth and infant outcomes. 
In the study of the effects of exposure to maternal cortisol on infant cognition described 
above, we also assessed the influence of maternal stress and anxiety on mental development 
(Davis & Sandman, 2010). Our results for PSA were similar as they were for cortisol; high 
levels of anxiety early in pregnancy (~15 weeks gestation) were associated with poorest 
performance on tests of cognition at one year of age. Despite the similar effects of maternal 
cortisol and anxiety on infant cognition, these two measures of prenatal stress were not 
related and exerted independent effects on developmental outcomes. The consequences for 
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the infant were confined to cognitive outcomes. Motor performance was unaffected by 
either exposure to cortisol or maternal anxiety.  
Low birth weight and preterm birth have been related to reductions in regional brain 
volumes (Abernethy et al., 2002; Beauchamp et al., 2008; Buss et al., 2007; Nosarti et al., 
2002; Peterson et al., 2000). However, because adverse birth outcomes may be markers of 
in utero stress exposure, it has been difficult to separate the effects of fetal stress exposures 
on brain morphology from perinatal complications. Recently, our group published the 
first study to show that fetal exposure to PSA was related to specific changes in brain 
morphology at six to nine years of age independent of birth phenotype (Buss et al., 2010). 
Specifically, serial assessment of PSA in 35 women was conducted at 19, 25 and 31 weeks 
gestation and then their children were followed up with structural MRI at 6-9 years of 
age. We found that elevated PSA early in gestation but not other times was associated 
with gray matter volume reductions in the prefrontal cortex, the premotor cortex, the 
medial temporal lobe, the lateral temporal cortex, the postcentral gyrus as well as the 
cerebellum extending to the middle occipital gyrus and the fusiform gyrus. These brain 
regions are associated with a variety of cognitive functions. Specifically, the prefrontal 
cortex is involved in executive cognitive functions such as reasoning, planning, attention, 
working memory, and some aspects of language. We found that the reduction in brain 
volumes in children exposed to elevated PSA early in gestation (Buss et al., 2010) 
primarily were observed in girls (Sandman et al., 2011a). These are the first prospective 
studies in healthy children to show that fetal exposure to maternal anxiety is related to 
distinctive patterns of structural brain development.  

6. Conclusions 

Fetal exposure to endocrine and psychological stress profoundly influences the developing 
human fetus and birth outcome and with consequences that persist into childhood. It is 
important to acknowledge the independent and joint influences of psychosocial and 
endocrine stress on development. The human placenta integrates numerous sources of 
maternal stress signals and responds with a dose-dependent release of stress hormones. As 
we reviewed here, placental CRH concentrations are observed in pregnancies characterized 
by high levels of maternal stress  and those complicated by pre-eclampsia, reduced utero-
placental perfusion, intrauterine infection, and in cases where fetal distress has led to 
elective preterm delivery. However, because the HPA and placental system is responsive to 
both psychosocial and physiological stress, these two sources can exert independent 
influences on the fetus and birth outcome. Thus, maternal psychosocial stress does not 
exclusively determine fetal exposure to biological stress signals and elevated levels of stress 
hormones do not necessarily reflect the experience of increased maternal stress. The 
evidence indicates that both biological and psychosocial sources of stress, especially 
pregnancy specific stress, have significant influences on the fetus and birth outcomes with 
long term consequences in the infant and child. Moreover, several studies reported in this 
review found that pregnancy specific anxiety was a stronger predictor of various outcomes 
than generalized anxiety. The experience of pregnancy presents unique fears and concerns 
and these dimensions are captured by items that are included in our measures (e.g., “I am 
fearful regarding the health of my baby;” “I am concerned or worried about losing my baby;” “I am 
concerned or worried about developing medical problems during my pregnancy”). 
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There are plausible routes of maternal biological stress influencing birth outcome and the 
fetal nervous system. One possible endocrine route discussed here posits that the placental 
detection of stress or adversity primes or advances the "placental clock" by activating the 
promoter region of the CRH gene and increases the placental synthesis of CRH. The rapid 
increase in circulating CRH begins the cascade of events influencing myometria (Tyson et 
al., 2009) and may precipitate preterm birth. As such, fetal exposure to pCRH may be a final 
common pathway for the “programming” effects of some stressors on birth outcome and the 
developing fetus.  The precise mechanism by which the pregnant woman communicates her 
psychological state of stress or adversity to her fetus and influences birth outcome, however, 
is less clear. As discussed here fetal exposure to stress hormones alone is not the mechanism 
of communication. We did not discuss other possible pathways, such as vascular or 
immunological, or even other endocrine systems, but these are areas that deserve further 
study. 
One new area of research that we only briefly acknowledged was sex differences in birth 
and developmental outcomes. We have reported that (i) female fetuses displayed more 
mature responses than males at 31 and 36 gestational weeks (Buss et al., 2009a), (ii) delayed 
neuromotor development associated with fetal exposure to cortisol early in gestation and 
CRH late in gestation was confined to males (Ellman et al., 2008) and (iii) the reduction in 
brain volumes in children exposed to elevated PSA early in gestation primarily were 
observed in girls (Sandman et al., 2011a). These findings are consistent with findings of sex 
specific trajectories of fetal development and the sexually dimorphic risk of neurological 
impairment associated with neonatal complications (Kesler et al., 2008).  
There is evidence that sexually specific patterns are formed very early in development and 
are reflected in the function and response to stress of the placenta. Clifton (2010) has argued 
that sexually dimorphic placental sensitivity to signals of adversity (elevated 
glucocorticoids) results in different patterns of response and in particular in different 
patterns of growth. Male fetuses, Clifton suggests, do not alter their patterns of development 
in response to adversity and continue to grow despite reduced resources. Because the male 
fetus has not adjusted to the initial adversity and has not conserved its resources, it is more 
susceptible to later stress with increases in morbidity and mortality. In contrast, the female 
placenta responds or adjusts to an adverse maternal environment in multiple ways resulting 
in reduced growth. If exposed to stress that reduces nutrients and resources later in 
gestation, the female fetus has conserved its energy needs which increases the probability of 
survival. By this mechanism, sexually specific patterns of response to stress may be 
determined very early in fetal development. 

7. Future perspectives 

Despite the fact that this area of research is in its embryonic stage, the findings have created 
a paradigm shift. It is now essential to consider fetal experience (or exposure) and birth 
outcomes in order to fully understand human development.  There are several areas of 
research that must continue to evolve. First, a more comprehensive understanding of the 
fetal experience is critical. This review focused on stress-related exposures and primarily 
endocrine and psychological markers. However there is growing interest in vascular and 
immune exposures that exert both independent and additive influences on fetal health and 
developmental outcomes. It is important that the field of fetal neurology/psychology 
explores the mechanisms of communication of stress and adversity between the host 
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(mother) and the fetus. The precise mechanisms of communication are largely unknown and 
in some cases the most plausible candidates have been ruled out. New results from our 
studies indicate that fetuses receive neurodevelopmental benefit from longer gestation even 
after 37 weeks (Davis et al., 2011a). Neurodevelopment was evaluated with structural 
magnetic resonance imaging in 100 healthy right-handed 6- to 10-year-old children born 
between 28 and 41 gestational weeks with a stable neonatal course. We found that longer 
duration of gestation was associated with region-specific increases in gray matter brain 
density. Further, the benefit of longer gestation for brain development was present even in 
children born after 37 weeks. The significant linear association between gestational age at 
birth and brain development in young children challenges the commonly held assumption 
of a “non-linear” developmental course that defines fetal maturity as occurring at 37 
gestational weeks. Our findings emphasize that there is a benefit for the developing brain of 
increased gestational length throughout the course of fetal development. In addition to 
providing new information about the importance of longer gestation beyond 37 gestational 
weeks for brain development, this finding has implications for medical decisions involving 
assisted deliveries. The decision about when to deliver a fetus, especially after 37 weeks, 
rarely involves concerns about the fetal nervous system. The findings reported here suggest 
that the neurological maturity of the fetus should enter the decision algorithm because even 
modest increases in gestational length have significant and long-lasting influences on the 
structure and function of the nervous system. 
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