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1. Introduction 

In 1931, estrogen was originally discovered as a female sex hormone by Marrian and 

Butenandt (1931). Estrogen is responsible for maintaining female reproductive organs and 

functions. Beyond the effects on reproductive organs, the neuroprotective activities of 

estrogen have been identified by Simpkins et al. (1994) and thereafter by numerous other 

researchers (Viscoli et al., 2001). The simple classification of the mechanisms of estrogen is 

genomic and non-genomic processes. The genomic mechanisms of estrogen involve 

estrogen receptors located in DNA. Upon binding its receptors, estrogen stimulates the 

synthesis of a variety of neuro-modulatory proteins. A body of evidence indicates that 

estrogen receptors are not necessary for certain neuroprotective effects of estrogen. For 

example, estrogen scavenges harmful reactive free radical species (Dhandapani & Brann, 

2002), inhibits apoptotic process (a certain type of cell death), and modulates signal 

transduction, all of which do not require nucleic estrogen receptors. Estrogen’s 

neuroprotective properties may be the end result of well-orchestrated genomic and non-

genomic processes. 

There are three major forms of endogenous estrogens; 17ǃ-estradiol, estrone, and estriol 

based on the hydroxyl or ketone ligand attached to the C17 position of the rightmost ring (D 

ring). Among these estrogens, 17ǃ-estradiol (Figure 1) is the most potent, naturally 

occurring estrogen. Accordingly, 17ǃ-estradiol has been the subject for neuroprotective 

properties in major neurodegenerative disorders such as stroke, Alzheimer’s disease, 

Parkinson’s disease, and ethanol withdrawal, and thus a topic of this book chapter. 

 

 

 
 

Fig. 1. Chemical structures of 17ǃ-estradiol, estriol, and estrone. Notice that 17ǃ-estradiol 
has two hydroxyl (OH) groups, estriol has three hydroxyl groups, and estrone has one 
hydroxyl and one ketone group.  
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2. Estrogen and ischemia 

2.1 Introduction 

Stroke is the sudden loss of brain function that is attributed to ischemia which indicates a 
disturbance in the blood supply to the brain. The affected brain area is unable to function, 
resulting in an inability to move limbs, understand or formulate speech, or an inability to 
see the visual field. It is the leading cause of adult disability in the United States and Europe 
and the second leading cause of death worldwide (Feigin, 2005). Women have a higher risk, 
due to their longer lifespan and are also more likely to have fatal strokes than men 
(Bushnell, 2008). Especially women in the 45−54 age range (perimenopause) are reportedly 
at a higher risk for stroke (Towfighi et al., 2007). This study suggests that declining levels of 
ovarian hormones perpetuate the risk for this neurovascular disease. The depletion of 
ovarian hormones also alters stroke outcomes. In postmenopausal women, stroke-associated 
disability and fatality are worse compared to men (Niewada et al., 2005). If ovarian 
hormones influence stroke, it is not surprising to see sex differences in the severity of stroke. 
For instance, a smaller area of tissue death was found in young adult female mice (Park et 
al., 2006) compared to their age-matched males. Furthermore, the sex difference in stroke 
infarct (area of tissue death) was abolished when the female mice were ovariectomized, 
suggesting that ovarian steroids mediate the neuroprotection seen in younger females 
(Selvamani et al., 2010). 
Among ovarian hormones, 17ǃ-estradiol seems to possess greater protective properties than 
other ovarian hormones. 17ǃ-estradiol mitigated brain inflammation (Suzuki et al., 2009) 
and blood-brain barrier dysfunction (R. Liu et al., 2005). 17ǃ-estradiol increased the blood 
flow of the cerebrum (Pelligrino et al., 1998), the ability of neurons to transmit signals 
(synaptic plasticity), and cognitive function (Sherwin, 2007). By comparison to these 
protections in animal studies, human studies showed somewhat inconsistent results. In 
large clinical trials, such as the Women Estrogen Stroke Trial and the Women’s Health 
Initiative, estrogen treatment failed to exert the beneficial effects on stroke incidence (Viscoli 
et al., 2001). Rather, the clinical study showed that estrogen treatment increased the stroke 
risk and worsened neurological outcomes in postmenopausal women (Viscoli et al., 2001). 
Similarly, the Women’s Health Initiative study reported an increased risk for stroke 
following the treatment with estrogen or another female hormone progestin (synthetic 
progesterone) (Wassertheil-Smoller et al., 2003). Notably, many women in these clinical 
trials were postmenopausal for several years prior to the hormone treatment. The 
unexpected negative results might have been due to prolonged estrogen-withdrawal before 
estrogen was reintroduced (De et al., 2009). Other researchers suggested that differences in 
the duration of treatment, timing of administration, sex, age, and an ischemia model 
contributed to the inconsistent outcome of estrogen therapy (J. Li, 2011; Sherwin, 2009). 

2.2 Apoptosis 

Apoptosis is a type of cell death that normally occurs to replace aged or injured cells with 

newer cells. However, excessive or defective apoptosis is often present at regions affected by 

stroke (Dirnagl et al., 1999). Fas is a receptor protein that triggers apoptotic cell death upon 

the binding of its ligand (Fas ligand). The structure of Fas contains a particular region, called 

‘death domain’. There is a cytoplasmic protein that favors to associate with the death 

domain of Fas. Therefore, it is called Fas-associated death domain adaptor protein. When 

this adaptor protein binds to the death domain of Fas, it subsequently activates 
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another apoptotic protein, caspase-8. An increasing body of work has shown that Fas and 
Fas Ligand play an important role in the pathology of ischemic stroke (L. Liu et al., 2008; 
Rosenbaum et al., 2000). Both Fas and Fas ligand were upregulated by cerebral ischemia in 
brains of developing, as well as adult mice (Felderhoff-Mueser et al., 2000, 2003). 
Intriguingly, estrogen significantly reduced the level of Fas and the adaptor protein in mice 
undergoing post-ischemic stress (Jia et al., 2009). Furthermore, estrogen reduced the 
downstream apoptotic effectors such as caspase-8 and caspase-3. These findings suggest that 
estrogen protects against ischemia, in part, through its inhibitory effects on apoptosis 
associated with Fas (Jia et al., 2009). 
Estrogen also protects neurons from ischemia (Petito et al., 1987). Estrogen administered at 

physiological levels for two weeks before ischemia rescued the hippocampal neurons and 

ameliorated ischemia-induced cognitive deficits in female rats (Lebesgue, 2009). This study 

provides direct evidence that estrogen is neuroprotective against ischemia. There are at least 

two estrogen receptors in the brain, estrogen receptor-ǂ and -ǃ (Shughrue, 2004). Estrogen 

receptors are intracellular proteins which activate genomic as well as nongenomic effectors in 

neural cells (Maggi et al., 2004). Selective agonists for estrogen receptor-ǂ or estrogen receptor-

ǃ was to were able to spare hippocampal neurons following ischemia. In addition, ICI 182780, 

a competitive antagonist for both estrogen receptors-ǂ and -ǃ, completely blocked estrogen’s 

protection against post-ischemic stress (Miller et al., 2005). On the other hand, Lebesgue et al. 

(2009) found that a single injection of estrogen into the brain ventricle immediately after an 

ischemic event reduced both neuronal death and cognitive deficits. The genomic mechanism 

of estrogen is typically a slow process because it involves estrogen’s receptors in the nuclei, 

affecting protein synthesis. Therefore, the rapid protection achieved by acute estrogen in 

Lebesgue’s study may indicate the non-genomic effects of estrogen.  

Above studies suggest that estrogen exerts neuroprotection against ischemia through its 
anti-apoptotic property and the mechanisms associated with estrogen receptors.  

2.3 Oxidative stress 

When ischemic patients receive blood supply (reperfusion), the introducing blood itself can 

induce significant damage to the brain. The damage is largely attributable to very active 

harmful oxygen species such as the reactive superoxide anion (Peters et al., 1998; Sugawara 

et al., 2005). These oxygen species give rise to other damaging oxygen species, for example, 

hydroxyl ion and peroxynitrite (Mattson et al., 2000). Estrogen contains profound 

antioxidant properties that mediate its protective effects on neurons. Estrogen directly 

scavenges free radicals by oxidizing its hydroxyl group attached to the C3 position of A ring 

(left most ring) through an enzyme, NADPH. The A ring then becomes the phenoxyl radical 

ring, a certain type of a ring structure containing free radicals. The phenoxyl radical ring is 

converted to para-quinol ring by scavenging further free radicals like -OH. This para-quinol 

ring structure finally becomes the original A ring of 17ǃ-estradiol through NADPH (Prokai 

et al., 2003; Prokai-Tatrai et al., 2008). The important point of this cyclic reaction is that 17ǃ-

estradiol is rejuvenated after it absorbs harmful free radicals (Figure 2). Indeed, estrogen 

attenuated superoxide production in hippocampal neurons after stroke (Q.G. Zhang et al., 

2009). In addition to this directly scavenging of free radicals, estrogen upregulates 

antioxidant enzymes and chelates redox-active metal ions. In terms of estrogen receptor, 

Zhang et al. (2009) suggested that the antioxidant effect of estrogen is independent of 

estrogen receptor-ǂ. They found that estrogen deprivation abolished the antioxidant and 
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neuroprotective effects on the hippocampus without affecting estrogen receptor-ǂ mediated 

effect on the uterus. At the very least, these findings indicate that estrogen protects against 

ischemia through antioxidant properties. 

 

 

Fig. 2. Schematic illustration of the free radical scavenging antioxidant activity of 17ǃ-
estradiol. 17ǃ-estradiol captures �OH, producing the phenoxyl radical and then 
bioreversible quinol. The quinol is rapidly converted to the parent estrogen via a NAD(P)H-
dependent reductive aromatization to perpetuate the antioxidant action. During this 
process, �OH is detoxified to H2O (Prokai et al., 2003; Prokai-Tatrai et al., 2008).  

2.4 Inflammation\Immune response 

Inflammation is a critical event that occurs upon ischemic insults. Post-stroke events include 

the stimulation and subsequent degeneration of lymphoid organs such as the spleen and 

thymus (Offner et al., 2009). The activation of these lymphoid organs likely leads to 

immunocyte translocation into brain, exacerbating the evolving brain ischemia (Ajmo et al., 

2008). Proinflammatory genes are rapidly induced in brain after ischemic injury, including 

genes synthesizing TNF-ǂ (X. Wang et al., 1994), IL-6 (X. Wang et al., 1995), IL-1ǃ (X. Wang 

et al., 1994), and interferon inducible protein-10 (IP-10) (X. Wang et al., 1998). The 

subsequent degeneration of lymphoid organs leads to immunodepression. Humans who 

survive the initial brain insult, may succumb to fatal infection due to the immunodepression 

(Dirnagl et al., 2007; Meisel et al., 2005). 

Estrogen deficiency during menopause is associated with a proinflammatory phenotype, 
namely ‘T cell expansion’ in bone marrow that secretes inflammatory proteins such as IL-1, 
TNF-ǂ, and IL-6 (Pfeilschifter et al., 2002). In a study done by Zhang et al. (2010), estrogen 
partially restored immune reactivity in ovariectomized females by increasing spleen cell 
population and cytokine responses (B. Zhang et al., 2010). In agreement, estrogen induced 
anti-inflammatory cytokines in the spleen after traumatic brain injury (Bruce-Keller et al., 
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2007). In lipopolysaccharide-induced brain inflammation, estrogen suppressed both resident 
microglial activation and the recruitment of peripheral T and B cells (Vegeto et al., 2001). 
These studies provide empirical evidence that the anti-inflammatory effect of estrogen plays 
a protective role in immune responses to stroke. 
Collectively, cumulative evidence indicates that the convergence of endocrine changes, 
especially estrogen, impacts the pathophysiology of stroke and ischemic injury. It appears 
that estrogen protects against ischemia through multiple factors associated with apoptosis, 
inflammation, redox, and estrogen receptors. Understanding these mechanisms may 
ultimately contribute to better research and therapeutic strategies for stroke therapy. 

3. Estrogen and Alzheimer’s disease 

3.1 Introduction 

Alzheimer's disease is characterized as a gradual failure of memory, cognition, and bodily 
functions, ultimately leading to death. Although the exact etiology and mechanisms are 
unknown, the abnormal accumulation of a particular protein, called Amyloid ǃ, has long 
been proposed as the most likely culprit in the pathogenesis of this disease (Hardy & Selkoe, 
2002; Tanzi & Bertram, 2005). In a healthy brain, Amyloid ǃ remains at a steady-state level 
as a result of the metabolic balance between production of Amyloid ǃ from amyloid 
precursor protein and removal by cellular uptake and proteolytic degradation (Saido, 1998; 
Selkoe, 2000). Such a dynamic equilibrium, however, could be altered by genetic or 
environmental factors that may lead to Alzheimer’s disease. It has been hypothesized that 
Amyloid ǃ is folded into a oligomeric form or a fibrillar (cable-like strings) form (Yamin et 
al., 2008), both of which are more neurotoxic than Amyloid ǃ itself. Of several different 
Amyloid ǃ peptides produced, products of Amyloid ǃ-40 and Amyloid ǃ-42 residues are the 
most common constituents of amyloid plaques, and are widely accepted as the primary 
trigger for Alzheimer's disease (St George-Hyslop, 2000). In brains with early onset 
Alzheimer's disease, Amyloid ǃ excessively accumulates. This may be due to the mutations 
of presenelin genes, which provoke the overproduction of Amyloid ǃ from amyloid 
precursor protein (Hardy, 2004). In late-onset Alzheimer’s disease, which constitutes more 
than 90% of the disease, the excess accumulation of Amyloid ǃ has been associated with 
abnormal Amyloid ǃ degrading proteases (Nalivaeva et al., 2008).  
Women are more likely to develop Alzheimer's disease after adjusting for age (Andersen et 
al., 1999). After menopause, the decline of estrogen levels in the brain may render neurons 
more susceptible to age-related neurodegenerative processes (Coffey et al., 1998). Estrogen 
therapy, when initiated at the onset of menopause, has reduced the risk or delayed the onset 
of Alzheimer's disease in women (LeBlanc et al., 2001; Zandi et al., 2002). A recent 
randomized control trial indicated that estrogen treatment had a beneficial effect on verbal 
memory in men with mild cognitive impairment (Sherwin et al., 2011 in press). However, 
clinical studies of estrogen therapy in non-demented and menopausal women have yielded 
inconclusive results (Craig & Murphy, 2010; Sano et al., 2008). In addition, estrogen 
administration induced beneficial effects on neuronal function and survival through 
improving mitochondrial function in healthy neurons (Brinton, 2008). When neurons became 
unhealthy, estrogen exposure had a detrimental effect (Brinton, 2008). This discrepancy may 
be due to differences in neurological health, age, hormonal status, the severity of symptoms, 
the type of menopause (surgical vs. natural), and the type of estrogen compound used 
(Brinton, 2009). Also, the age when estrogen therapy is initiated, may in part determine the 
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outcome of estrogen therapy and probably estrogen treatment during the peri-menopause has 
the highest efficacy (Craig & Murphy, 2010; Genazzani et al., 2007). 
In diverse animal models of Alzheimer's disease, estrogen has prevented or delayed the 
development of Alzheimer’s disease pathology in particular Amyloid ǃ accumulation and 
plaque formation (Carroll et al., 2007; Zheng et al., 2002). Mechanistically, estrogen may 
regulate the production of Amyloid ǃ and in turn, sustain an improved Amyloid ǃ 
homeostasis by increasing the metabolism of amyloid precursor protein and destabilization 
of Amyloid ǃ fibrils (Greenfield et al., 2002; Morinaga et al., 2007). Estrogen’s bioenergetic 
protection may also influence Alzheimer's disease. For instance, estrogen prevented the 
brain from using alternative fuel sources, such as the ketones (Brinton, 2008, 2009). 
Aromatase catalyzes the conversion of testosterone to estrogen. Not surprisingly, mice 
lacking aromatase genes (low estrogen production) showed the loss of hippocampal 
neurons in response to neurotoxins more severely than wild type mice (Azcoitia et al., 2001), 
suggesting that estrogen spared those neurons. Indeed, the levels of estrogen and aromatase 
were significantly reduced in the brains of Alzheimer's disease women (Yue et al., 2005). The 
view of brain estrogen deficiency as a risk factor for developing Alzheimer's disease 
pathology is consistent with genetic studies showing an association between the aberration 
of aromatase gene and the risk for Alzheimer's disease (Iivonen et al., 2004). All these 
studies suggest that estrogen may have the capacity to interfere with the pathways 
mediating Alzheimer's disease.  

3.2 Estrogen synthesis in Alzheimer’s disease 

Since estrogen has a potential capacity to control Alzheimer's disease, one therapeutic 

strategy might be to target the biosynthesis of estrogen. Indeed, numerous studies have 

tested whether Alzheimer's disease alters the endogenous synthesis of estrogen. While the 

levels of estrogens were unchanged in the prefrontal cortex of Alzheimer's disease patients 

(Rosario et al., 2011), the estrogen biosynthetic enzymes such as aromatase and 17ǃ-

hydroxysteroid dehydrogenase type 1 were upregulated in the late stages of Alzheimer's 

disease (Luchetti et al., 2011). Studies using immunohistochemistry showed that aromatase 

expression was upregulated in astrocytes in later stages of Alzheimer's disease (Azcoitia et 

al., 2003). Another immunochemistry study also detected an increase in the level of 

aromatase in the hypothalamic neurons of Alzheimer's patients (Ishunina et al., 2005). The 

increase was especially profound in the Nucleus basalis of Meynert, a nucleus that is 

strongly affected in Alzheimer's disease (Ishunina et al., 2005). These findings suggest that 

during Alzheimer's disease, there is an attempt to increase the biosynthesis of estrogen. The 

aromatase upregulation may be a defense mechanism of brain areas that undergo 

neurodegeneration. In support of this notion, the reduced levels of testosterone were found 

in the aging brain of male and female Alzheimer's patients (Rosario et al., 2011; Weill-

Engerer et al., 2002). This seems in line with the idea of a compensatory mechanism, since 

testosterone is used up after it is locally metabolized into neuroprotective estrogen. 

3.3 Amyloid β 

Cumulative evidence indicates that estrogen protects against Amyloid ǃ and its toxicity 

through mechanisms involving Amyloid ǃ degradation and signaling changes. Estrogen 

deficiency accelerated the formation of Amyloid ǃ plaque in mice (Yue et al., 2005). Estrogen 

treatment reduced the level of Amyloid ǃ (Jaffe et al., 1994; Xu et al., 1998) and its 

www.intechopen.com



 
Estrogen and Brain Protection 

 

145 

availability through enhancing the uptake of Amyloid ǃ by microglia (R. Li et al., 2000). In 

vitro estrogen treatment inhibited the formation of toxic Amyloid ǃ oligomers (Morinaga et 

al., 2007). Finally, estrogen activated Neprilysin, the primary enzyme that degrades 

Amyloid ǃ, thereby facilitating Amyloid ǃ degradation in human neuroblastoma cells 

(Liang et al., 2010). It is possible that this effect of estrogen is preceded by estrogen’s action 

on amyloid precursor protein. Several studies support this notion that estrogen treatment 

profoundly decreased the levels of amyloid precursor protein by enhancing the degradation 

of this precursor through the ǂ- and ǃ-secretase pathways (Amtul et al., 2010). Alternatively, 

estrogen may reduce available amyloid precursor protein by stimulating the formation of 

vesicles that uptake this precursor-protein, thereby precluding maximal generation of 

Amyloid ǃ (Greenfield et al., 2002). These findings suggest another mechanism underlying 

estrogen’s protection against Alzheimer's disease involving Amyloid ǃ degredation (Liang 

et al., 2010). Estrogen may also protect the signaling function of protein kinases from 

Amyloid ǃ. For example, Amyloid ǃ oligomer inhibited the activity of calcium/calmodulin-

dependent protein kinase II and extracellular signal-regulated kinase in a manner 

ameliorated by estrogen treatment (Logan et al., 2011). In agreement with the protective 

effect of estrogen on protein kinase, Szego et al. (2011) reported that the function of protein 

kinases correlated with avoidance learning behavior. In that study, the treatment with 

Amyloid ǃ oligomers impeded the learning in a manner that was protected by estrogen. 

These studies suggest a diverse mechanism by which estrogen protects against Amyloid ǃ 

as an attempt to cope with Alzheimer's disease.  

3.4 Neuroinflammation 

The neurotoxicity of Alzheimer's disease is in part mediated by inflammatory processes 
(McGeer et al., 2006). Glial cells (non neuronal cells) are involved in this process such that 
Amyloid ǃ activates glial cells to produce pro-inflammatory cytokines like IL-1ǃ, IL-6, and 
TNF-ǂ. Activated glial cells have the potential to produce large amounts of reactive oxygen 
species/nitrogen species by various mechanisms (Zhu et al., 2007). Activated astrocytes 
produced excessive nitric oxide, which reacted with superoxide to form harmful 
peroxynitrite (Smith et al., 1997). Excess nitric oxide synthetase was also detected in 
astrocytes surrounding plaques in Alzheimer's disease (Luth et al., 2001). Estrogen 
interfered with this process by limiting astroglial cells and inhibiting chronic inflammation 
associated with Alzheimer's disease (Vegeto et al., 2003). The anti-inflammatory effects of 
estrogen were shown in a primary culture study; estrogen treatment decreased the 
expression of pro-inflammatory molecules, such as TNF-ǂ and IL-1ǃ, as well as nitric oxide 
synthase and cyclooxygenase-2 in astrocytes (Valles et al., 2010).   
Vegeto et al. (2006) conducted a study further supporting the protective effects of estrogen 
on inflammation associated with Alzheimer's disease.  They used the APP23 mouse model, a 
model of Alzheimer's disease that creates chronic neuroinflammation resembling that in 
Alzheimer's disease. They found that the number of plaques associated with reactive 
microglia was increased with age (Vegeto et al., 2006). Interestingly, ovariectomy 
accelerated microglial activation surrounding Amyloid ǃ plaques, whereas estrogen 
replacement delayed this process. In parallel, they showed that estrogen reduced the 
expression of inflammatory mediators, such as monocyte chemoattractant protein-1, 
macrophage inflammatory protein-2, and TNF-ǂ. That study indicates that microglia is a 
direct target of estrogen action in the brain. All of these findings reinforce the hypothesis 
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that inflammatory mechanisms significantly contribute to the pathogenesis of Alzheimer's 
disease and support the use of estrogen in the fight against Alzheimer's disease. 
Collectively, animal studies on Alzheimer's disease have shown beneficial effects of estrogen 
through inhibiting the synthesis of amyloid ǃ, facilitating its metabolisms, modulating 
protein kinases, and inhibiting inflammatory pathways. Human studies on the effects of 
estrogen on Alzheimer's disease have resulted in both positive and negative effects. It is 
unclear what causes the inconsistent results. Nevertheless, it seems clear that estrogen 
influences Alzheimer's disease pathology, if not etiology. How to identify and adjust factors 
underlying the discrepancies seems to be an essential task.  

4. Estrogen and Parkinson’s disease 

4.1 Introduction 

Parkinson's disease is the second most common neurodegenerative movement disorder. It is 
mainly characterized by the slow and gradual emergence of motor disorders such as tremor, 
rigidity, bradykinesia, and postural instability (Lang, 2007). Parkinson’s disease is less 
prevalent in women than in men by an approximate 2:3 ratio and evidence suggests that 
estrogen influences the onset and severity of disease-associated symptoms (Currie, 2004; 
Shulman, 2006). Women with Parkinson’s disease tend to have an earlier menopause, are 
more likely to have undergone hysterectomy, and used estrogen therapy less frequently 
than control subjects (Benedetti et al., 2001). Ragonese et al. (2004) suggested that factors 
reducing estrogen contribute to the development of Parkinson’s disease (Ragonese et al., 
2004). This was recently supported by the Observational Study of the Women’s Health 
Initiative (WHI-OS) that employed 83,482 women. The study showed association between 
the number of women with longer fertile lifespan and a reduced risk of Parkinson’s disease 
(Saunders-Pullman et al., 2009). In another human study, women with Parkinson’s disease 
were less likely to have used postmenopausal estrogen therapy (Currie et al., 2004), 
suggesting that estrogen produces a beneficial effect on Parkinson’s disease.  

4.2 Dopamine neurotransmission 

Dopamine is a neurotransmitter that has multiple functions in the brain such as cognition, 
reward, mood, and voluntary movement. The substantia nigra is a brain area that governs 
these functions. So far, this neurotransmitter has been the major player in Parkinson’s 
disease such that dopamine synthesizing neurons are progressively depleted in the 
substantia nigra of Parkinson’s patients (Emborg, 2004). Aberrant dopamine transmission is 
implicated in Parkinson’s disease, particularly because the symptoms are ameliorated by a 
drug which increases dopamine signaling. Dopamine is actively eliminated from the 
extracellular space by astrocytes and neurons through dopamine transporters. Afterwards, 
dopamine is either recycled into vesicles or metabolized. In previous studies, estrogen 
increased the availability of dopamine by inhibiting uptake and by decreasing the affinity of 
the transporter for dopamine (Disshon et al., 1998). Estrogen also increases the synthesis of 
dopamine in the substantia nigra and the release of dopamine from axon terminals. In 
rodents and in neuronal cell culture studies, estrogen protected dopaminergic neurons from 
injury (B. Liu & Dluzen, 2006; Arvin et al., 2000). Given this, the beneficial effect of estrogen 
on Parkinson’s disease may be mediated through estrogen’s action on dopamine.   
Studies have further identified how estrogen acts on the dopamine system. Estrogen 
modulates the development of dopaminergic neurons and neurotransmission (Bourque, 
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2009) by promoting neurite plasticity (Beyer et al., 2000). These effects are either mediated 
through a direct action on dopaminergic neurons or interactions with local astroglia 
(Ivanova et al., 2001, 2002). Alternatively, estrogen may act on genetic levels to modulate 
dopamine. For instance, estrogen regulates dopamine gene expression by activating 
transcriptional factors (DonCarlos et al., 2009). Estrogen also exerts non-genomic membrane 
effects, interaction with neurotransmitter receptors, and ionic channel regulation (Garcia-
Segura et al., 2009).  These studies suggest that estrogen protects against Parkinson’s disease 
through genomic and non-genomic effects on the dopamine system.  
Dopamine transporters mediate the uptake of dopamine from synapses to presynaptic 
vesicles, thereby restoring depleted vesicular dopamine levels (Jourdain et al., 2005). 
Estrogen stimulated dopamine uptake by nerve cells through neuronal dopamine 
transporter (D’Astous et al., 2004). On the other hand, estrogen decreased astroglial 
dopamine uptake, increasing the available levels of synaptic dopamine. This allowed more 
synaptic dopamine to be taken up by neurons. These studies suggest a few important 
points: first, not only dopamine neurons but also nigrostriatal astroglia contribute to the 
metabolic processes of dopamine (Karakaya et al., 2007); second, astroglia are implicated in 
estrogen-transmitted neuroprotection during dopamine neuro-degeneration (Morale et al, 
2006), and finally, as the complementary action of estrogen on neurons, astrocyte and 
microglia may represent a potential pharmacological target for Parkinson’s disease  
management (Vegeto et al., 2008). 

4.3 Oxidative stress 

In the process of dopamine being catalyzed by monoamine oxidase, a large amount of 
reactive oxygen species is produced, resulting in cell death (Hastings et al., 1996; Luo et al., 
1998). In addition, dopamine aldehyde generated in the oxidative deamination reaction is 
1000-fold more toxic than dopamine (Burke, 2003). Dopamine neurons in Parkinson’s 
disease become vulnerable to oxidative stress (Dexter et al., 1989; Sian et al., 1994) perhaps 
due to lower levels of glutathione (endogenous antioxidant) than other cell types.  
The brain has a predominant defense mechanism against superoxide radicals through 
antioxidant enzymes such as superoxide dismutase. Studies have demonstrated that 
superoxide dismutase is implicated in dopamine and Parkinson’s disease. Mutant mice that 
over-expressed or lacked superoxide dismutase were more resistant to (Przedborski et al., 
1992) or vulnerable to (Andreassen et al., 2001; J. Zhang et al., 2000) dopamine neurotoxin 
than wild type mice, respectively. The expression of superoxide dismutase was upregulated 
in the substantia nigra following the dopamine neurotoxin insult, yet the loss of 
dopaminergic neurons still occurred (Tripanichkul et al., 2007). These results suggest that 
there is an attempt to combat the oxidative stress in nigral neurons but not sufficient to 
spare neurons. The implication of superoxide dismutase in the antioxidant effect of estrogen 
has been shown in a study done by Tripanichkul et al. (2007). In that study, estrogen 
treatment increased the expression of superoxide dismutase in the substantia nigra of 
animals that were treated with the dopamine neurotoxin. This study suggests that estrogen 
up-regulates superoxide dismutase in critical brain areas, thereby exerting protection 
against dopamine neurotoxin or Parkinson’s disease.  

4.4 Neuroinflammation 

Neuroinflammation and microglial activation are often seen in Parkinson’s disease (McGeer 
et al., 1988; Hunot et al., 2003) and anti-inflammatory drugs reduce the risk of this disease 
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(H. Chen et al., 2003; Wahner et al., 2007). A positive correlation was found between 
antecedent brain injuries, such as trauma or exposure to infectious agents and the 
development of Parkinson’s disease (B. Liu et al., 2003). This correlation implies that the 
brain inflammatory response to these noxious events, and specifically microglial 
activation, plays a critical role in Parkinson’s disease. In support of this view, researchers 
have detected pro-inflammatory molecules (e.g. TNF-ǂ) and excessive reactive oxygen 
species in the nervous system of Parkinson’s disease patients (Hunot et al., 1996; Knott et 
al., 2000). The inflammatory molecules seem to amplify neuroinflammation as well as 
neuro-toxicity, ultimately leading to a slow and irreversible destruction of dopaminergic 
neurons. Using estrogen receptor-null mice, several studies have demonstrated that 
estrogen receptor-ǂ is involved in the anti-inflammatory activity of estrogen (Dubal et al., 
2001; Vegeto et al., 2003). Although estrogen receptor-ǃ is expressed widely in brain, it 
does not seem to mediate the protective effect of estrogen. Or the effects of estrogen 
receptors on inflammation depend on the brain area (Harris et al., 2003). Whether or 
which receptor mediates estrogen’s protection against inflammatory response still 
remains unclear. 
Collectively, the protective effects of estrogen on Parkinson’s disease appear to involve 

dopaminergic neuroprotection, anti-oxidant activities, anti-inflammatory activities, and 

estrogen receptors. Considering that Parkinson’s disease is more prevalent in male than 

female patients, how these effects of estrogen can be implemented to clinical usages is an 

open question. At the very least, estrogen can be used as an interventional tool for a new 

mechanistic insight into this neurodegenerative disease. 

5. Estrogen and ethanol withdrawal  

5.1 Introduction 

The distress of alcohol (ethanol) withdrawal is initiated by abruptly removing the inhibitory 

stimulus of ethanol and thus, is associated with rebound hyper-excitatory stimuli. In 

general, the overt initial signs of ethanol withdrawal include anxiety, ataxia, muscle 

incoordination, seizures, coma, and even death (American Psychiatric Association, 2000). 

While repeating unsuccessful attempts to quit heavy drinking, the brain undergoes random 

exposure to ethanol and withdrawal, damaging cellular and neuronal integrity (Wober et 

al., 1998).  

The neuronal activity of the brain tends to be hyper-excitable during ethanol withdrawal 

due to an increase in the level of glutamate, a major excitatory neurotransmitter (Rossetti & 

Carboni, 1995). This can result in neuronal damage to vulnerable brain areas such as the 

cortex, hippocampus, and cerebellum. In addition to this well known glutamate 

neurotransmission, ethanol withdrawal perturbs the homeostasis of redox balance and 

signaling mechanisms. For instance, ethanol withdrawal provokes the intense generation of 

reactive oxygen species and activates stress-responding protein kinases (Jung et al., 2009). In 

addition, ethanol withdrawal inflicts mitochondrial membranes/membrane potential and 

suppresses mitochondrial enzymes such as cytochrome c oxidase, all of which impair 

fundamental functions of mitochondria (Jung et al., 2007, 2009). In our recent study, brain 

aging occurred earlier in ethanol withdrawn animals than in control-diet animals (Jung et 

al., 2010). These studies indicate that mal-managed ethanol withdrawal can clearly provoke 

neurodegenerative disorders.   
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5.2 Oxidative stress 

Chronic ethanol consumption and ethanol withdrawal both generate oxidative free radicals 

and subsequent lipid peroxidation (Nordmann et al., 1990; Montoliu et al., 1994). Lipid 

peroxidation reflects the interaction between oxygen and the polyunsaturated fatty acids of 

membrane lipids, generating deteriorating breakdown products. Since the brain consists of a 

high content of unsaturated membrane lipids, it is a preferred target of both reactive oxygen 

species and ethanol (Hernandez-Munoz et al., 2000). Ethanol withdrawal-induced oxidative 

stress was associated with an increase in glutamatergic neurotransmission (Rossetti & 

Carboni, 1995), the upregulation of calcium channels, and the accumulation of intracellular 

calcium (Rewal et al., 2005). The functional consequence of prooxidant ethanol withdrawal 

is shown in several animal and human studies. For instance, enhanced reactive oxygen 

species concurred with ethanol withdrawal-induced seizure activity in rats (Vallett et al., 

1997). The cerebrospinal fluid of patients who underwent ethanol withdrawal showed 

higher concentrations of excitatory neurotransmitters and oxidative markers (Marotta et al., 

1997; Tsai et al., 1998) than control subjects. Higher levels of lipid peroxide and lower levels 

of superoxide dismutase (antioxidant enzyme) activity were also seen in those patients (Tsai 

et al., 1998). These studies indicate that the redox imbalance has a causative relationship 

with ethanol withdrawal insults.  

If ethanol withdrawal is a prooxidant stimulus, estrogen treatment should be able to 

mitigate the stress through its antioxidant property. Our recent findings essentially 

confirmed the hypothesis using the in vivo and in vitro model of ethanol withdrawal. 

Estrogen treatment mitigated reactive oxygen species generation, lipid peroxidation, and 

protein oxidation (Jung et al. 2004, 2006). Estrogen protection against the prooxidant effect 

of ethanol withdrawal may involve glutamate transmission because glutamate-induced 

oxidative stress is attenuated by estrogen (Behl & Manthey, 2000) and the quinol derived 

from estrogen (Prokai et al., 2003). It is also possible that estrogen elevates the levels of 

endogenous antioxidants, such as glutathione, so that a favorable redox potential for an 

antioxidant environment is created (Prokai et al., 2003). Since oxidative molecules are 

generated mainly from mitochondria, these studies suggest that the antioxidant protection 

of estrogen against ethanol withdrawal is linked to the mitoprotective activity of estrogen.  

5.3 Mitochondria 

Indeed, the mitoprotective effects of estrogen are interactive with the antioxidant effect by 

virtue of the fact that mitochondria are the major source and target of oxidative free radicals. 

The mitoprotective effect of estrogen has been extended to the ethanol withdrawal model in 

our recent study in which ethanol withdrawal provokes the oxidation of mitochondrial 

proteins in rats, in a manner mitigated by estrogen. Since cellular energy ATP is mainly 

generated in mitochondria, it is not surprising that estrogen protects against mitochondrial 

respiratory deficit during ethanol withdrawal (Jung et al., 2011). Presumably, estrogen plays 

a role in alleviating the oxidative burden in mitochondria, thus increasing mitochondrial 

respiration efficiency (J.Q. Chen & Yager 2004; Jung et al., 2011). 

5.4 Signaling pathways  

P38 is referred to as a stress-activated protein kinase because it is often activated in response 

to a variety of stress. A transient, moderate activation of P38 normally occurs in association 
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with cell survival or differentiation. However, excess activation generally correlates with 

pathological conditions (Barca et al., 2008). P38 is activated upon phosphorylation 

(Moriguchi et al., 1996) and thus, pP38 is often measured as an indicator of P38 activation. A 

previous study reported that the P38 inhibitor SB203580 attenuated ethanol-induced cell 

death (Ku et al., 2007), suggesting that P38 activation mediates cytotoxic ethanol. Acute 

ethanol treatment led to P38 activation (Norkina et al., 2007) and augmented endotoxin-

induced pP38 levels in a manner attenuated by P38 inhibitor in human monocytes 

(Drechsler et al., 2006). Recently, we have demonstrated that estrogen protected against 

ethanol withdrawal-induced hyperactivation of P38, suggesting that there is a crucial link 

between estrogen, P38, and ethanol withdrawal (Jung et al., 2010). In that study, middle-age 

female rats (12-15 month old) were more vulnerable to the ethanol withdrawal-induced P38 

activation than young or older rats (Jung et al., 2010). Importantly, chronic estrogen 

treatment abolished the age difference in P38 activation. These studies indicate that ethanol 

withdrawal interferes with signaling pathways, including P38, in a manner that depends on 

age and that is protected by estrogen. 

In conclusion, findings from our and others’ laboratories suggest that ethanol withdrawal 

distress is more than a neurotransmitter disorder. It is attributed to the perturbation of 

redox balance, protein kinase signaling, and mitochondria, all of which can be mitigated by 

estrogen treatment. Understanding the interaction between ethanol withdrawal and 

estrogen may contribute to the improvement of the pharmacological treatment of ethanol 

withdrawal. 

6. Conclusion  

There are some lingering controversies in the neuroprotective effects and underlying 
mechanisms of estrogen. Nevertheless, numerous studies indicate the profound 
neuroprotective effects of 17ǃ-estradiol on neurodegenerative diseases including 
ischemia, Alzheimer’s disease, Parkinson’s disease, and ethanol withdrawal syndromes. 
Diverse mechanisms mediate estrogen’s protection through neurotrophic, 
neuroprotective, antiapoptotic, and antioxidant activities. Furthermore, estrogen exerts its 
neuroprotection through inhibiting inflammation and preserving the homeostasis of 
neurotransmitters. Estrogen receptors appear to mediate some of estrogen’s protection, 
although it is not yet entirely clear whether it is estrogen receptor-ǂ, estrogen receptor-ǃ, 
or membrane estrogen receptors. At the mitochondrial level, estrogen inhibits 
peroxidation, eliminates reactive oxygen species, and maintains the homeostasis of 
mitochondrial membranes/respiration.  
The extent to which estrogen can actually ameliorate neurodegenerative diseases in clinical 

settings may depend on well controlled systematic clinical studies that are largely absent in 

current situations. Nevertheless, it may be a matter of time that this amazing molecule 

alleviates the human burden of devastating brain diseases. 
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