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1. Introduction  

Intravascular Ultrasound (IVUS) has become rapidly one of the gold technologies for the 

endovascular exploration. Next to angiography, which only gives information about the 

lumen of the investigated vessels, IVUS describes both the luminal and trans-mural 

anatomy of vascular structures. Actual devices offer several configurations and transducers 

mounted at the end of an intra-luminal catheter to produce real-time grayscale or color 

images of blood vessels and cardiac structures. The ultrasound probes miniaturization has 

permitted closer imaging and magnified details of the vessel wall and plaque. Recent IVUS 

catheters use phased array imaging where the micro-transducers are enveloped around a 

catheter tip. Typically, IVUS images show the vessel wall in histological detail: the intima 

reflects ultrasound brightly and is white, the media is echolucent and dark, and the 

surrounding adventitia is white.  

IVUS has thus become a safe and valuable tool in exploring the disease severity and the 

treatment completeness during surgical endovascular procedures (Jinzaki et al., 1993; 

Nishanian et al., 1999), such as assessing the severity of an arterial disease before treatment 

(Scoccianti et al., 1994), determining the plaque morphology and localization or checking the 

completeness of stent deployment (Diethrich, 1993; Laskey et al., 1993). Very recently, color 

flow IVUS and three-dimensional (3D) reconstruction have both introduced significant 

advances in the understanding of IVUS images (Irshad et al., 2001; Reid et al., 1995; White et 

al., 1994). The very latest advance, called virtual histology IVUS, provides a color-coded 

map of the plaque components, thus providing a better understanding of the arterial plaque 

structure and morphology (Nair et al., 2001; Vince & Davies, 2004).  

2. IVUS principle  

IVUS gives series of tomographic images of the explored vessel wall. During acquisition, an 

IVUS catheter is entered into a vessel and then withdrawn through a given vessel segment 

during simultaneous and continuous imaging, resulting in series of cross section images. 

Current catheters have frequencies from 30 to 40 MHz, planar resolutions from 50 to 150 

µm, and a typical sampling rate of 30 images per second (Di Mario et al., 1995). 
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2.1 Acquisition using pullback devices 

The current methods used to quantify a volumetric IVUS analysis are usually achieved by a 
simple summation of a targeted subsample of the 2-D images into a volumetric dataset 
(Chandrasekaran et al., 1994; Rosenfield et al., 1992; Rosenfield et al., 1991). In that case, the 
accurate volume calculations need the precise localization of each 2-D cross-sectional image 
used in the longitudinal axis of the vessel segment (Di Mario et al., 1995; Roelandt et al., 
1994). To do so, a manual pullback was firstly performed, with recording of the time and 
length of the acquisition, and the image location was estimated from the pullback start point 
and the average pullback velocity. Alternatively, displacement sensors were used to record 
the IVUS catheter translation during the manual pullback procedure (Hagenaars et al., 
2000). Since it is obviously difficult to maintain a consistent speed during manual pullback, 
most current systems have introduced a motorized pullback device with a constant speed 
(usually around 0.5 mm/s) (Cavaye et al., 1992; Liu et al., 1999; Matar et al., 1994). 

2.2 Cardiac synchronization and frame selection 

Since images are recorded at 30 frames per second, with a pullback speed of 0.5 mm/s, 60 

frames are recorded for each 1-mm vessel segment. Since, a coronary segment of 3 to 10 cm 

is typically explored, 1800 to 6000 individual frames are usually recorded. Therefore, these 

large datasets are often sub-sampled using constant intervals (0.5 - 1.0 mm) or using an 

electrocardiogram gating: the 1-mm interval without respect to the cardiac cycle is often 

used for manual analysis, whereas computerized algorithms require different sampling 

intervals (Klingensmith et al., 2000a; von Birgelen et al., 1996a). Therefore, consecutive 

frames sub-sampled with a 1-mm interval are corresponding to changes in the lumen and 

vessel areas during the different phases of the cardiac cycle. 
A typical “sawtooth” artifact can be seen on longitudinal 2-D pullback displays when the 
sub-sampling is performed without synchronization to the cardiac cycle. This sawtooth 
artifact is less marked when the explored vessel exhibit a reduced compliance (such as 
stented vessels or stenotic vessels). Nevertheless, it is recommended to get the cardiac cycle 
synchronization since it allows the cyclic cycle artifacts to be eliminated (von Birgelen et al., 
1996b; von Birgelen et al., 1997b). In fact, different physiologic, cyclic signals are commonly 
used to synchronize the IVUS images to the cardiac cycle, including the arterial blood 
pressure and the electrocardiogram signals (Allan et al., 1998; Sonka et al., 1998).  
When operating a retrospective gating, IVUS images and electrocardiogram signals are 

acquired continuously, since the electrocardiogram signals are required to sort the images 

and to perform the analysis of the volumetric dataset (Klingensmith et al., 2000a; Kovalski et 

al., 2000). On the other hand, when operating a prospective gating, the IVUS images are only 

acquired at a given times of the cardiac cycle and the catheter is then moved to acquire the 

next gated image (Bruining et al., 1998; von Birgelen et al., 1997a; von Birgelen et al., 1995). 

This last gating method presents the advantage to not requiring additional steps to perform 

the analysis of the dataset, and a volumetric dataset is available immediately after the 

acquisition pullback. 

2.3 Transferring the IVUS dataset to an analysis system 

The whole raw IVUS data, composed of the reflected acoustic signals, are displayed on IVUS 
consoles. This dataset could also be stored on S-VHS videotape, on CD-ROM or magneto- 
optical disks. Recent IVUS consoles have digital output capabilities that allow direct data 
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transfer in digital format, and may provide radiofrequency outputs composed of raw IVUS 
acoustic signals. This signal processing approach is particularly adapted for a computerized 
image analysis, since it allows traditional measurements but also radiofrequency-based 
tissue characterization (Nair et al., 2001; Nair et al., 2002). 

3. Devices, recording methods and techniques  

3.1 Devices 
Typical mechanical IVUS transducers produce cross-sectional images by rotating at the tip 
of the catheter using a flexible, high-torque cable. These transducers are creating a cone-
shaped ultrasound beam that allows the vessel to be imaged slightly forward or in front of 
the transducer assembly. 
An optimized visualization is obtained when using IVUS catheter having appropriate size 
and frequency. Thus, the clinician has to make a compromise between the highest frequency 
vs. depth of penetration vs. catheter size. He also has to consider the wire guide diameter 
and the guide-wire exchanges utility. IVUS catheters used for most aortic and iliac 
procedures can be advanced over a 0.035-inch guide wire and range in size and frequency 
from 6 to 8 Fr and 8 to 20 MHz, respectively. An IVUS probe, ranging between 8 to 15 MHz 
is commonly used for aortic procedures, allowing an adequate circumferential imaging. The 
following Table 1 is presenting the current available catheters applicable for peripheral 
vascular and coronary interventions. 
 

Intravascular Ultrasound Catheters Size
(Fr)

Guide 
Wire (in)

Frequency
(MHz)

Target vessel 

Volcano Corporation catheters (phase array)

 Eagle Eye Gold IVUS Imaging
(color-flow and virtual histology)

3.5 0.014 20 Carotid renal iliac 
Femoral 

 Visions PV 0.018 F/X IVUS Imaging
(color-flow) 

3.5 0.018 20 Femoral popliteal 
tibial 

 Visions PV 8.2F IVUS Imaging 8.2 0.038 8.3 Aorta iliac 

Boston Scientific catheters (rotating crystal)

 Atlantis SR Pro 3.2 0.014 40 Femoral popliteal 
tibial 

 Atlantis SR Plus 3 0.014 40 Femoral popliteal 
tibial 

 Atlantis SR 3.2 0.014 40 Femoral popliteal 
tibial 

 Atlantis PV Peripheral Imaging 8 0.035 15 Aorta iliac 

 Sonicath Ultra Ultrasound 9 0.035 9 Aorta iliac 

 Sonicath Ultra Ultrasound 3.2 0.018 20 Femoral popliteal 
tibial 

 Sonicath Ultra Ultrasound 6 0.035 12.5 Iliac femoral 

 Sonicath Ultra Ultrasound 6 0.035 20 Femoral popliteal 
tibial 

Table 1. Specifications of commonly used intravascular ultrasound (IVUS) catheters in 
peripheral occlusive interventions. 
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3.2 Access to vessels 

Depending on the size of the considered vessel (see Table 1), IVUS catheters can be 

introduced percutaneously through a standard vascular access sheath (5 to 9 Fr). The 8.2 Fr, 

10-MHz catheter is one of the most commonly used catheter for aorta-iliac intervention, 

since it requires a 0.035-inch guide wire and thus can be quickly prepared, introduced, 

and/or exchanged with other catheters. However, this specific catheter requires a 9 Fr 

sheath that can be disproportionate for lower extremity interventions.  

Most current percutaneous trans-luminal angioplasty balloons and stents targeted for infra-

inguinal regions require only 6 Fr sheaths. The 3.4 Fr, 3.2 Fr, or 2.9 Fr catheters, using 0.018-

inch and 0.014-inch guide wires, are more suitable for the typical retrograde common femoral 

artery puncture and access to the contra-lateral femoral-popliteal segments (Hiro et al., 1998; 

Saketkhoo et al., 2004). In some case, especially with tortuous vessels and when antegrade 

puncture of the common femoral vessel is required, the 3 Fr catheters are also useful.  

Lengths of IVUS catheters are vary from 90 to 150 cm, thus allowing imaging of small tibial 

vessels from a contra-lateral up-and-over approach. The smaller catheters require 0.018-inch 

or 0.014-inch guide wires and are commonly used for infra-inguinal interventions, whereas 

the larger IVUS catheters need 0.035-inch guide wires and used for larger vessel 

interventions (Hiro et al., 1998). 

3.3 Image acquisition and quality 

An optimal visualization requires a careful positioning of the catheter tip within the vessel 

and an appropriate size matching of the device to the artery caliber, meaning that an IVUS 

intervention necessitates a pre-procedural estimation the target vessel diameters (Figure 1). 

The best image quality is obtained when the IVUS catheter is parallel to the vessel wall and 

when the ultrasound beam is perpendicular to the luminal surface. Some artificial 

differences in the wall thickness measurement may be obtained when the IVUS catheter has 

an eccentric position, leading to the vessel wall to appear more hyperechoic than the distant 

wall. Angulations may promote an elliptical image of the vessel lumen, especially when 

 

A.         B.  

Fig. 1. Illustration of quantitative measurements with IVUS. Examples show an in vivo IVUS 
image digitized from video (A) and the detected borders overlaid (B). 
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considering tortuous aortas and the thoracic arch. In such cases, the minimal diameter 
(minor axis) is the best accurate measurement to measure the vessel diameter in angled 
images and/or tortuous vessels (Roelandt et al., 1994). At last, withdrawing the catheter 
through the lumen, rather than advancing it, promotes the acquisition of the best-quality 
images (Danilouchkine et al., 2009). 
During the procedure, real-time images of the investigated vessel are displayed on a 
monitor and are usually recorded digitally. The IVUS devices also allow the on-line and/or 
off-line measurements of vessel dimensions, luminal diameters, and cross-sectional areas. 
Recent IVUS units, comprising a motorized and/or automated withdrawing the catheter 
through the vessel at a controlled rate, may display a longitudinal gray-scale image of the 
investigated vessel with accurate reconstructed views (Hagenaars et al., 2000). These two-
dimensional longitudinal reconstructions allow distances to be measured from one point to 
another (Liu et al., 1999) and cross-sectional trans-mural wall morphology to be visualized 
(Di Mario et al., 1995). In fact, the discrimination of plaque, normal tissue, thrombus, 
dissections, and flaps is often much better appreciated on the two-dimensional longitudinal 
IVUS reconstructions than on traditional angiographic images (Reid et al., 1995). 

4. Data processing and analysis 

The dataset for volumetric analysis is represented by image series composed of two-
dimensional sections from the investigated vessels. Typically, images are selected at 1-mm 
inter-slice spacing. Then, to perform a quantitative 3-D reconstruction, the first and most 
critical step is to precisely identify and trace the anatomical structures of the studied vessel. 
In fact, identifying the luminal border is essential to discriminate the blood-intima interface, 
whereas recognizing the external elastic membrane border is important to precisely 
distinguish the boundary between the media and the adventitia (Kovalski et al., 2000). The 
space between these 2 borders is the plaque-media complex and is classically used as the 
measurement for plaque cross-sectional area (Prati et al., 2002).  
In stented vessel segments, the lumen/intimal interface and the stent borders are both 
measured, and the area between these borders is representing the neointimal tissue. In these 
stented vessel segments, the external elastic membrane border is frequently not distinguished 
because of signal drop-out behind the stent. In current atherosclerosis research trials, the 
assessment of stent, luminal and external elastic membrane borders is often performed with 
manual planimetry using commercially or freely available computer programs. This provides 
the accurate discrimination of image artifacts and true border locations but this analysis 
requires the border detection in hundreds of images. Therefore, the use of automated image-
processing techniques allows fast online analysis (Sanz-Requena et al., 2007). 

4.1 Automated 2-D/3-D border-detection methods 

Different approaches have been described to detect the luminal and external elastic 
membrane borders from 2-D IVUS images, including texture-based methods 
(Papadogiorgaki et al., 2007), knowledge-based graph searching (Bovenkamp et al., 2009), 
region growing (Sanz-Requena et al., 2007), radial gradient searching (Luo et al., 2003), and 
active contours (Sanz-Requena et al., 2007; Takagi et al., 2000). These 2-D border-detection 
techniques are now used online in newer IVUS imaging consoles, allowing the quantitative 
evaluation of lumen and plaque measurements. Because the user provides his expertise to 
augment the algorithm or correct results, the semi-automated techniques typically require 
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more time but are have a better accuracy. These 2-D border-detection methods are 
particularly used when the analysis of only a small number of images is required, e.g. 
during the guidance of interventional procedures (Sarno et al., 2011). 
When a fast analysis of many images is required, highly automated techniques for border 
detection are used and do not require significant user intervention. For example, 3-D 
border-detection methods using the inter-slice information can provide fast border detection 
from a large number of images (Cardinal et al., 2010). A graph-searching approach 
researching the globally optimal contour path through the image data has been developed 
on the basis of associated cost values (Zhang et al., 1998). Furthermore, this 2-D frame 
analysis method allows the results to be propagated down the sequence by using the 
identified 2-D contours in order to limit the search region. Another 2-D border-detection 
method uses cost values to find longitudinal contours along the volumetric data. Then, these 
contours guide the cost function minimization in the transverse 2-D images (Koning et al., 
2002). Alternatively, several useful approaches use deformable models to perform an active 
contour detection (Klingensmith et al., 2000a; Kovalski et al., 2000) (Shekhar et al., 1999). 
One of them uses a balloon force to inflate a model from the catheter outward toward the 
luminal and medial-adventitial borders (Kovalski et al., 2000). Another deformable model 
uses a cylindrical model to manually or automatically approximate the structure of the 
luminal or medial-adventitial surface, and a deformable model algorithm is then used in a 3-
D process to attach the defined structure to the surface of interest (Klingensmith et al., 
2000a; Shekhar et al., 1999). All these methods allowing the 3-D border-detection have 
clearly established their overall usefulness for fast border identification in a large sequence 
of images (Klingensmith et al., 2000a; Kovalski et al., 2000; Shekhar et al., 1999; von Birgelen 
et al., 1996a; Zhang et al., 1998). 
A major limitation of all these 3-D border-detection methods is the lack of a true gold 
standard for comparison. Histology sections might represent the more powerful gold 
standard, but they are only available at autopsy, and the required fixation always induces 
the tissue to shrink (Siegel et al., 1985). Some researchers have tried to evaluate the accuracy 
of their methods using cylindrical phantoms, but they did not test accuracy in clinical IVUS 
images (von Birgelen et al., 1996a). Other studies have compared the detected borders with 
borders traced manually by a single expert, but the obtained inter-observer variability in 
manual identification of the luminal and medial-adventitial borders might greatly limit the 
value of these comparisons in IVUS images (Haas et al., 2000; Zhang et al., 1998). At last, 
some studies have used multiple expert observers for validation, but the number of 
analyzed images is seriously limited and not sufficient to assess the ability and accuracy of 
these algorithms (Klingensmith et al., 2000a; Kovalski et al., 2000; Shekhar et al., 1999). 
Therefore, there is a need of validation of these techniques in large datasets. 

4.2 3-D reconstructions of vessel segments 

All measurements and evaluations made in 2-D tomographic slices are useful for stent 
sizing or comparisons of lesions to a reference site, but fail to provide a volumetric 
perspective. To do such volumetric calculations, the border measurements obtained in 
consecutive 2-D slices of a vessel segment are integrated, the area enclosed by the luminal 
border and external elastic membrane border is considered for each slice, and the atheroma 
area is calculated. The 3-D measurement of lumen, plaque, and vessel volumes are usually 
calculated with Simpson’s rule or trapezoidal integration by the multiplying 2-D area and 
slice thickness (Finet et al., 2003; von Birgelen et al., 1997a). This last method is suitable for 
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short and straight vessel segments, such as coronary stented lesions, but it does not allow 
the precise measurement of a longer and curved segment.  
The volumetric approach using 3-D border-detection techniques is currently applied in 
serial IVUS studies examining atherosclerotic disease progression or regression, allowing 
the assessment of plaque burden in an entire vessel segment through fast analysis of large 
image sequences. New interventional approaches also use a volumetric IVUS imaging 
approach to provide new mechanistic insights, such as innovative techniques aimed at the 
prevention and treatment of in-stent restenosis correlated with histomorphometry 
measurements (Mehran et al., 1998; Murata et al., 2002); approaches in understanding the 
effects of radiation therapy and the arterial remodeling on a stented segment 
(brachytherapy) (Lekston et al., 2008; Weichert et al., 2003; Zimarino et al., 2002; 
Zimmermann et al., 2005); or using drug-eluting stents on the neointimal hyperplasia 
development (Jensen et al., 2008; Min et al., 2007; Sano et al., 2006). 

4.3 Geometrically correct 3-D IVUS and advanced data processing 

Since the curvature of vessels is not taken into account with these straight 3-D IVUS 
methods, this limitation can be overcome by fusing the curvature information provided by 
biplane angiography or other techniques with the IVUS border information (Schuurbiers et 
al., 2009; Sherknies et al., 2005; Tu et al., 2010; Wahle et al., 2006). To do so, one common 
method is to acquire two separate angiographic images from different angles at the 
beginning of the ultrasound scanning imaging procedure and to use the catheter outline 
reconstructed from these images as a template for placement of the IVUS-derived contours 
(Bourantas et al., 2005; Klingensmith et al., 2000b; Sherknies et al., 2005; von Birgelen et al., 
1995; Weichert et al., 2003). Another method consists in following the IVUS transducer in 
time and space throughout the IVUS pullback using biplane angiography, thus the precise 
locations of IVUS image acquisitions are recorded in sequence and are used as a 
reconstruction template (Klingensmith et al., 2000b; Miyazaki et al., 2010; Wallace et al., 
2005). However, this method might be difficult because of the cardiac and respiratory 
motion and the higher radiation exposure during the whole procedure. 
Next to the precise location in 3-D space, other geometric considerations of the IVUS probe 
during image acquisition are important to be taken in account for an accurate 3-D 
reconstruction (Roelandt et al., 1994; Thrush et al., 1997). For example, the geometry of the 
reconstructed vessel can be distorted by a rotation of the catheter during pullback. These 
changes in the angular orientation of the catheter can be corrected by using analytical 
calculation based on the Frenet-Serret rules and optimizing the fit after projecting the 
reconstructed lumen from different rotational angles onto the angiogram images (Briguori et 
al., 2001; Wahle et al., 1999). Axial movements of the catheter due to the cardiac contraction 
are another cause for 3-D reconstruction inaccuracies. This geometric artifact can be reduced 
using a cardiac-gating and spatiotemporal location of the IVUS transducer throughout the 
pullback (Arbab-Zadeh et al., 1999). However, even if some errors in generating 3-D images 
can potentially surround withy these geometric assumptions, these corrections help 
improve the interpretability, usefulness and accuracy of the 3-D reconstructions. 
Repeatability is also a really important consideration in the accuracy and usefulness of 3-D 
reconstruction techniques. This aspect is however closely related to the reproducibility of 
the 3-D border-detection process (von Birgelen et al., 1996a). 
Offline digitization of IVUS images and retrieval of biplane angiographic images, but also 
digitization and intense computer processing are both required to obtain a correct 
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geometrically 3-D reconstruction (Prati et al., 1998). Therefore, all these factors, in addition 
to the artifacts induced by the respiratory and cardiac motions, limit the in vivo applicability 
of the techniques. Other developments of real-time transducer tracking and online 
radiofrequency IVUS data acquisition can be integrated into the IVUS console to provide 
accurate 3-D models of investigated vessels within a few minutes after the acquisition (Nair 
et al., 2002). These add-ons seem really powerful since they could provide an interactive tool 
for assessing the diagnostic of the pathology, giving an assessment of luminal dimensions, 
but also vessel and plaque size from any viewing angle and position. Furthermore, these 
interactive models could allow rotation and manipulation of these virtual 3-D models on the 
console computer, authorizing the placement of a virtual stent inside the reconstructed 
artery, thus permitting a stent with the length and size to be appropriately chosen (Atary et 
al., 2009; Hong et al., 2010). 
Other addendum could be integrated into the geometrically correct 3-D models, including 
analysis of hemodynamic forces, radiofrequency-derived histology, and 3-D stress maps. 
Therefore, a more precise morphologic plaque classification is possible with the analysis of 
radiofrequency data. In fact, the back-scattered radiofrequency IVUS data seems to permit 
the precise characterization of plaque composition, distinguishing the regions of calcified 
plaque vs. calcified necrosis vs. collagen (Nair et al., 2001). Another complement might 
consist on adding the mechanical properties of the investigated tissue. In fact, elastography 
represents the way a given tissue is responding to an applied force, as a function of its 
mechanical properties. Thus, the local mechanical properties of the tissue can be determined 
by comparing the images of a vessel acquired at 2 different levels of static compression (e.g. 
during systole and diastole steps of the cardiac cycle). This strain image (elastogram) may 
allow a better understanding of the relation between the progression of a disease and the in 
vivo mechanical properties of the vessel (Baldewsing et al., 2007; Cespedes et al., 1997; de 
Korte & van der Steen, 2002; Liang et al., 2008). 

4.4 Comparison of IVUS with other imaging modalities 

Even if IVUS might represent the most clinically established technique, other methodologies 
for vessel investigation are also available, such as angiography or tomographic imaging 
with magnetic resonance imaging (MRI) and computed tomography (CT). The current IVUS 
imaging plane resolution achieved in vessel cross sections is of 50 to 150 µm, whereas 
current frame rates (typically 30 frames/s), pullback speeds (usually 0.5 mm/s), and an 
ECG-gating or sub-sampling yield images at approximately 0.5- to 1.0-mm intervals (Gatta 
et al., 2009). On the other hand, the in-plane resolution of magnetic resonance imaging is 
around 1 mm and the through-plane resolution is between 3 to 5 mm with 2-D techniques 
(Escolar et al., 2006; Schaar et al., 2007), but the magnetic resonance imaging may allow, 
under several limitation in spatial resolution and signal-to-noise ratios, the atherosclerotic 
plaque components to be distinguished (Karmonik et al., 2006). At last, the in-plane 
resolution of computed tomography is less than 1 mm and the minimum through-plane 
resolution is approximately 1.25 to 1.50 mm. Some contrast-enhanced protocols are 
sometimes used to differentiate calcified and non-calcified plaque using contrast agents 
during computed tomography imaging of vessels (Nasir et al., 2010; Pundziute et al., 2008). 
Another important difference between IVUS and the other imaging modalities concerns the 
orientation of the imaging plane. In fact, since the IVUS probe is inside the vessel during the 
acquisition, the IVUS imaging plane is oriented perpendicular to the vessel axis, which is 
optimal for assessing cross-sectional dimensions. On the other hand, magnetic resonance 
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images can be acquired along some body axes (e.g. axial, sagittal, or coronal planes or in a 
plane oblique to these orthogonal planes) and computed tomography images are typically 
only acquired in the axial plane, but these images can be reformatted to another orthogonal 
plane or an oblique plane with image processing techniques (McPherson et al., 2005). 
Therefore, these plane or oblique images allow only the measurement of relatively short 
portions of a vessel (only for images that are perpendicular to the vessel axis) and the 
curvature of the vessel introduces angulation errors in parameter measurement such as the 
wall thickness (Sherknies et al., 2005). 

4.5 Color IVUS and virtual histology IVUS 

Color flow IVUS is produced by computer software that detects a difference between the 
movements of echogenic blood particles from two sequential adjacent frames. Then the blood 
flow is colored by the software in a red or bleu and is displayed as axial and 3D longitudinal 
renderings with a very high image resolution (McLeod et al., 2004; Nair et al., 2002). The 
rendering color of the flow may change from red to orange when there is very fast blood flow 
(e.g., a tight stenosis). However, the flow velocities cannot be calculated with this technique, 
image resolution is very high. The color flow IVUS is available on Eagle Eye Gold and the 
Visions PV 018 catheters (Volcano Corporation, Rancho Cordova, CA) (see Table 1 for 
specifications). During a color flow IVUS pull-back, the blood flow is displayed in the vessel 
lumen, pulsing with each cardiac cycle. Unfortunately, the color flow is not gated with the 
heart rate and cannot be performed when virtual histology images are being acquired. These 
color flow IVUS are the helpful in distinguishing echolucent disease from luminal blood flow 
and can also be used to perform peripheral interventions in patients with renal failure or 
allergy, avoiding the use of contrast media (Goderie et al., 2010; Irshad et al., 2001). 
Whereas conventional grayscale ultrasound images are generated from the intensity of the 
reflected signals that are collected by the probe, virtual histology IVUS images are obtained 
from the frequency and intensity of the returning signals and frequency varies depending 
on the tissues (Vince & Davies, 2004). An histological classification has then be realized by 
comparing the reflected virtual histology data with true histological sections of diseased 
vessels, and a color-coded map of the different components of the arterial disease has been 
established (dark green, fibrous; yellow/green, fibro-fatty; white, calcified; red, necrotic 
lipid core plaque) (McLeod et al., 2004; Nair et al., 2002). This color-coded map is of major 
importance since it allows the operator to have detailed information about the constituents 
and the nature of the plaque (Sarno et al., 2011). The virtual histology IVUS is available on 
Eagle Eye Gold catheter (Volcano Corporation, Rancho Cordova, CA) (see Table 1 for 
specifications) and is gated with the heartbeat. During the procedure using the “Volcano” 
setting, the segment length of the vessel to be examined is determined and the luminal 
border and the external elastic lamina border of the artery are automatically detected by the 
edge-tracking computer software but might require some manual adjustments. Then, virtual 
histology images of the delineated plaque can then be processed online with a few minutes, 
thus allowing clinical decisions to be made promptly, whereas some additional processing 
can be done offline (Vince & Davies, 2004). 

5. Therapeutic interventions 

5.1 Percutaneous trans-luminal angioplasty 

The accurate measurement of the true luminal diameter, the assessment of the calcific nature 
of the plaque, the precise delineation of wall morphology, and the ability to carefully 
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visualize the post-balloon result are both required for a successful percutaneous trans-
luminal angioplasty of peripheral arterial lesions. In that purpose, IVUS images can 
delineate the luminal and adventitial surfaces of vessel segments, can discriminate between 
normal and diseased components, can accurately localization and measurement of the 
thickness of plaque, and can also differentiate calcified and non-calcified vascular lesions 
(Pundziute et al., 2008; Rodriguez-Granillo et al., 2006). In fact, since the ultrasound energy 
is strongly reflected by calcified plaque, it appears as a very bright image with dense 
acoustic shadowing behind it. Not only luminal dimensions and wall thickness determined 
by IVUS are accurate to within 0.05 mm (Rodriguez-Granillo et al., 2006), the luminal cross-
sectional areas measured from IVUS correlate well with calculated from biplanar 
angiograms (Cooper et al., 2001; Irshad et al., 2001). Therefore, IVUS allows the sized 
balloon or stent to be appropriately chosen can whereas conventional angiography is 
somewhat limited in its ability to provide sensitive data regarding the effects of 
percutaneous trans-luminal angioplasty. The IVUS advantage is also to provide a precise 
evaluation of the lesion morphology, such as the luminal dimensions, the trans-mural lesion 
characteristics and the area of blood flow. Furthermore, the IVUS determination of plaque 
volume before and after the procedure offers a real quantitative method to estimate the 
amount of lesion debulking or displacement and a reference point from which to assess the 
lesion recurrence/restenosis (Kim et al., 2004; Takeda et al., 2003). 
The adjunctive use of IVUS during percutaneous trans-luminal angioplasty has been 
reported on several studies. For example, in patients with lesions of the superficial femoral 
artery treated with percutaneous trans-luminal angioplasty, IVUS has been reported to 
accurately detect the presence of dissections, plaque fractures, internal elastic lamina 
ruptures, and thinning of the media that occurred during the balloon angioplasty (Oshima 
et al., 1998; Tang et al., 2010). IVUS has also showed that, after a percutaneous trans-luminal 
angioplasty, the luminal enlargement is mainly produced by stretching of the arterial wall 
while the volume of the lesion remains relatively constant (Tang et al., 2010). 
After a percutaneous trans-luminal angioplasty the restenosis risk has also been correlated to 
IVUS findings during the initial procedure, providing important information regarding the 
post-procedural follow-up and surveillance (Montorsi et al., 2004; Xu et al., 1995). The 
percutaneous trans-luminal angioplasty of a calcific plaque leads to a higher incidence of 
dissection than a fibrous lesion, whereas fibrous plaques or concentric lesions without signs of 
fracture or dissection are prone to have late restenosis after a percutaneous trans-luminal 
angioplasty (Garcia-Garcia et al., 2009; Su et al., 2009). In the same way, IVUS is also able to 
readily identify that early restenosis following interventions is associated with luminal 
thrombus, extensive dissection, and oversized balloon dilatation, while late restenosis 
correlates with residual stenosis, lower residual lumen surface, undersized balloon use, 
concentric fibrous plaque, absence of dissection, and absence of calcification (Irshad et al., 
2001). IVUS is thus able to enhance percutaneous trans-luminal angioplasty procedures by 
allowing peri-procedural decisions to be made regarding the need for additional interventions.  

5.2 Intravascular stents 

Dissections, elastic recoil, residual stenosis, a significant residual pressure gradient across 
the lesion, or plaque ulceration with local thrombus accumulation are common indications 
for an intravascular stent placement after percutaneous trans-luminal angioplasty. Primary 
stenting is also commonly used in the treatment of certain lesions, especially common iliac 
or renal disease (Moise et al., 2009). These intravascular stents are used to increase the 
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patency of arterial occlusive lesions that have undergone angioplasty by reducing technical 
failure and restenosis rates. However, placing stents is not without risk since ineffective 
stent expansion can lead to early thrombosis or a stent migration, whereas overexpansion 
can result in vessel perforation or excessive intimal hyperplasia (Adlakha et al., 2010). 
Establishing the need for stenting as well as the guiding of a stent deployment has been 
clearly helped by IVUS. Furthermore, defining the appropriate angioplasty diameter 
endpoint and confirming adequacy of stent deployment have been reported to clearly 
improve the long-term patency of a vessel undergoing balloon angioplasty and stenting 
(Waksman et al., 2009).  

5.3 Venous interventions 

The requirement of IVUS in endovascular interventions of venous disease is not as well 
described as for arterial lesions, while there are many useful indications for IVUS use in 
venous obstructive lesions (Raju et al., 2010; Raju & Neglen, 2006). In fact, traditional 
venography for iliac vein obstruction has numerous limitations, and IVUS imaging yields 
findings not obvious on venography . In fact, intra-luminal webs or external compression and 
subsequent deformity represent abnormalities that might disturb the diagnostic. Thus, IVUS 
can provide an accurate assessment of the degree of vein stenosis whereas the venography can 
sometimes underestimates this stenosis degree by 30% (Nair et al., 2002). In the same way, 
IVUS allows more appropriately sized venous stents to be placed after venoplasty. Since more 
and more venous interventions are being performed for acute deep venous thromboses, effort 
thromboses, or congenital stenosis, the requirement IVUS might represent a powerful adjunct 
to delineate the often unclear anatomy related to the venous system (Raju et al., 2010). 

6. Conclusion 

IVUS requirement has moved rapidly from a purely diagnostic imaging modality to a useful 
adjunct for vessel endografting to playing an ever-increasing role in peripheral occlusive 
interventions. This shift has been mainly supported by the miniaturization of the elements, 
allowing the device and catheter to be as small-profile as the latest stents or balloons, and by 
the powerful helped that can give IVUS for the most optimal outcomes. While vascular 
interventions are becoming more and more complex and venture into smaller target vessels, 
success will be related to the degree of accuracy of the guidance system employed during 
the procedure. Thus, IVUS is representing an important component of current and future 
endovascular interventions and should be integrated into the routine practice of the 
advanced endovascular surgeon and training programs. 
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