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1. Introduction 

Polyphenols are a wide family of compounds found in fruits and vegetables, wine, tea, 
cocoa, and extra-virgin olive oil, which exhibit strong antioxidant activity by scavenging 
different families of Reactive Oxygen Species (ROS). One of the most effective members of 
the polyphenol family in terms of free radical scavenging is hydroxytyrosol, 2-(3,4-
dihydroxyphenyl)ethanol (Fernández-Bolaños et al., 2008), a simple phenol found 
predominantly in olive tree (Olea europaea).   

Hydroxytyrosol (HT) can be found in leaves and fruits of olive, extra virgin olive oil and it is 
specially abundant in olive oil mill wastewaters from where it can be recovered (Fernández-
Bolaños et al., 2008; Sabatini, 2010). Hydroxytyrosol is a metabolite of oleuropein (Fig. 1), 
another major phenolic component of olive products; they both give to extra-virgin olive oil 
its bitter and pungent taste (Omar, 2010a). Hydroxytyrosol shows a broad spectrum of 
biological properties due to its strong antioxidant and radical-scavenging properties. More 
active than antioxidant vitamins and synthetic antioxidants, hydroxytyrosol exerts its 
antioxidant activity by transforming itself into a catechol quinone (Rietjens, 2007). 
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Fig. 1. Structures of hydroxytyrosol and oleuropein   

2. Biological activity of hydroxytyrosol 

Historically, olive tree leaves were used for traditional therapy by ancient civilizations. 
Extracts from olive tree leaves were found to have a positive effect on hypertension by the 
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middle of last century (Scheller, 1955; Perrinjaquet-Moccetti et al. 2008; Susalit et al., 2011), 
and, since then, the benefits of minor olive components have been extensively investigated 
(Tripoli et al., 2005).  

2.1 Antioxidant activity 

The antioxidant activity is the most studied property of olive phenolic compounds. The 
interest of hydroxytyrosol is based on its remarkable pharmacological and antioxidant 
activities. Reactive oxygen species, which are continuously being formed as a result of 
metabolic processes in the organism, may cause oxidation and damage of cellular 
macromolecules, and therefore, may contribute to the development of degenerative 
diseases, such as atherosclerosis, cancer, diabetes, rheumatoid arthritis and other 
inflammatory diseases (Balsano & Alisi, 2009). 

The high antioxidant efficiency of HT, attributed to the presence of the o-dihydroxyphenyl 
moiety, is due to its high capacity for free radical scavenging during the oxidation process 
and to its reducing power on Fe3+ (Torres de Pinedo et al., 2007). The antioxidant properties 
of the o-diphenols are associated with their ability to form intramolecular hydrogen bonds 
between the hydroxyl group and the phenoxy radical (Visioli et al., 1998); therefore, the 
catechol avoids the chain propagation by donating a hydrogen radical to alkylperoxyl 
radicals (ROO·) formed in the initiation step of lipid oxidation (Scheme 1). 
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 Scheme 1. Mechanism of free radical scavenging by hydroxytyrosol 

Oxidation of low-density lipoproteins (LDLs) is a lipid peroxidation chain reaction, which is 
initiated by free radicals. It has been shown that hydroxytyrosol can inhibit LDL oxidation 
efficiently due to its capacity to scavenge peroxyl radicals (Arouma et al., 1998; Turner et al., 
2005). Hydroxytyrosol reduces oxidation of the low-density lipoproteins carrying 
cholesterol (LDL-C), which is a critical step in the development of atherosclerosis and other 
cardiovascular diseases (Gonzalez-Santiago et al., 2010; Vázquez-Velasco et al., 2011);  
hydroxytyrosol has also a potential protective effect against oxidative stress induced by tert-
butyl hydroperoxide (Goya et al., 2007). 

It has been reported that hydroxytyrosol enhances the lipid profile and antioxidant status 
preventing the development of atherosclerosis. This compound may also reduce the 
expression of vascular cell adhesion molecules (Carluccio et al., 2007) and inhibit platelet 
aggregation in rats (González-Correa et al., 2008a) and hypercholesterolaemia in humans 
(Ruano et al., 2007). 

2.2 Anticancer activity 

Numerous studies about the relationship between olive oil consumption and cancer 
prevention have been carried out (Pérez-Jiménez et al., 2005). Antioxidant compounds 
supplied in the diet can reduce the risk of cancer due to the fact that they can minimize 
DNA damage, lipid peroxidation and the amount of ROS generated (Omar, 2010a; 
Hillestrom, 2006; Manna, 2005). 
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It has been reported that HT may exert a pro-apoptotic effect by modulating the expression 
of genes involved in tumor cell proliferation of promyelocytes (HL60 cells) (Fabiani et al., 
2006, 2008, 2009, 2011). Moreover, it has been shown that HT inhibits proliferation of human 
MCF-7 breast cancer cells (Siriani et al., 2010; Bulotta et al. 2011; Bouallagui et al., 2011a), 
human HT29 colon carcinoma cells (Guichard et al., 2006), human M14 melanoma cells 
(D’Angelo et al., 2005) and human PC3 prostate cells (Quiles et al., 2002). 

Pre-treatment of HepG2 cells with hydroxytyrosol prevented cell damage, what could be 
due to the fact that hydroxytyrosol may prepare the antioxidant defense system of the cell to 
face oxidative stress conditions (Goya et al., 2007, 2010).  

2.3 Osteoporosis 

Hydroxytyrosol may have critical effects on the formation and maintenance of bone, and 
could be used as an effective remedy in the treatment of osteoporosis symptoms, as it can 
stimulate the deposition of calcium and inhibit the formation of multinucleated osteoclasts 
in a dose-dependent manner. HT also suppressed the bone loss of spongy bone in femurs of 
ovariectomized mice (Hagiwara et al., 2011). 

2.4 Antimicrobial activity 

Antimicrobial activity of oleuropein, tyrosol and hydroxytyrosol has been studied in vitro 
against bacteria, viruses and protozoa (Bisignano et al., 1999). 

The in vitro antimycoplasmal activity of HT has been investigated, concluding that this 
compound might be considered as an antimicrobial agent for treating human infections caused 
by bacterial strains or casual agents of intestinal or respiratory tract (Furneri et al., 2004). 

It has been shown that polyphenols from olive oil are powerful anti-Helicobacter Pylori 
compounds in vitro (Romero et al., 2007), a bacteria linked to a majority of peptic ulcers and 
to some types of gastric cancer. 

2.5 Antiinflammatory activity 

Inflammation and its consequences play a crucial role in the development of atherosclerosis 
and cardiovascular diseases. Polyphenols have been shown to decrease the production of 
inflammatory markers, such as leukotriene B4, in several systems (Biesalski, 2007). 

The effect of hydroxytyrosol on platelet function has been tested. Hydroxytyrosol was 
proven to inhibit the chemically induced aggregation, the accumulation of the pro-
aggregant agent thromboxane in human serum, the production of the pro-inflammatory 
molecules leukotrienes and the activity of arachidonate lipoxygenase (Visioli et al., 2002).  

Recently, it has been described that HT-20, an olive oil extract containing about 20% of 
hydroxytyrosol, inhibits inflammatory swelling and hyperalgesia, and suppresses 
proinflammatory cytokine in a rat inflammation model (Gong et al., 2009).  

2.6 Antiviral activity 

Hydroxytyrosol and oleuropein have been identified as a unique class of HIV-1 inhibitors 
that prevent HIV from entering into the host cell and binding the catalytic site of the HIV-1 

www.intechopen.com



 
Olive Oil – Constituents, Quality, Health Properties and Bioconversions 

 

378 

integrase. Thus, these agents provide an advantage over other antiviral therapies in which 
both, viral entry and integration, are inhibited (Lee-Huang et al., 2007a, 2007b, 2009). 

HT and its derivatives are also useful, when applied topically, as microbicide for preventing 
HIV-infection, as well as other sexually transmitted diseases caused by fungi, bacteria or 
viruses (Gómez-Acebo et al., 2011). Furthermore, it has been reported that hydroxytyrosol 
inactivated influenza A viruses, suggesting that the mechanism of the antiviral effect of HT 
might require the presence of a viral envelope (Yamada et al., 2009). 

2.7 Hydroxytyrosol as an antinitrosating agent  

The antinitrosating properties of hydroxytyrosol and other plant polyphenols of dietary 
relevance have been investigated (De Lucia et al., 2008). It has been shown that HT reacts 
with sodium nitrite at pH 3 to give 2-nitrohydroxytyrosol, supporting a protective role of 
HT as an efficient scavenger of nitrosating species (Fig. 2). 

 
Fig. 2. 2-Nitrohydroxytyrosol formed by nitrosation of HT 

3. Hydroxytyrosol derivatives 

3.1 Lipophilic hydroxytyrosol esters  

Many different hydroxytyrosol lipophilic analogues occur naturally in olive fruit and in 
virgin olive oil. The amount of these compounds is related to olive variety and ripeness, 
climate, location, type of crushing machine and oil extraction procedures. As an example, 
the concentration of hydroxytyrosyl acetate is similar to that of HT in some olive oil varieties 
such as Arbequina, twice as high in the Picual variety, and between one third and one 
fourth in the Manzanilla and Hojiblanca oils (Romero et al., 2007). 

Due to the limited solubility of HT in lipid media, the search for new lipophilic hydroxytyrosol 
esters with enhanced properties is of great interest, both in food industry and in medicine. 
Studies on olive polyphenols have shown the importance of the lipophilicity of the 
antioxidants on the cell uptake and membrane crossing, and on the substrate to be protected 
(membrane constituents or LDL), (Grasso et al., 2007). These facts explain the efforts made in 
the development of new synthetic analogues with increased lipophilicity. 

3.1.1 Synthetic approaches 

Phenolic acids, such as caffeic acid, have been esterified with good chemoselectivity in the 
presence of strong protic acids (Fischer esterification), but the severe reaction conditions 
together with the large excess of alcohol required make this strategy of limited applicability 
(Burke et al., 1995). Under basic catalysis, phenols can be easily deprotonated, so the 
esterification of phenolic alcohols and phenolic acids via acyl nucleophilic substitution 
requires previous protection of the phenolic hydroxyl groups, due to the competition 
between aliphatic and phenolic hydroxyl groups (Appendino et al., 2002; Gambacorta et al., 
2007). 
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3.1.1.1 Protection of phenolic hydroxyl groups 

As an example, benzyl groups have been used to carry out the HT esterification under basic 
conditions, followed by catalytic hydrogenation to remove the protective groups (Gordon et 
al., 2001), as depicted in Scheme 2.  

 
Scheme 2. Synthesis of hydroxytyrosyl acetate via benzylation of phenolic hydroxyls  

A two-step procedure involving the reaction of methyl orthoformate-protected 
hydroxytyrosol with acetyl chloride, and hydrolytic deprotection in phosphate buffer under 
very mild conditions (pH=7.2) to get hydroxytyrosyl acetate (87% overall yield) (Scheme 3) 
was also described as a successful procedure for the preparation of HT-derived esters 
(Gambacorta et al., 2007). The key synthetic orthoester intermediate was also used for the 
synthesis of HT upon reduction with LiAlH4 and acidic deprotection. 
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Scheme 3. Synthesis of hydroxytyrosyl acetate via methyl orthoformate-protected 
hydroxytyrosol. 
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In order to overcome the problems associated to the protection and deprotection steps of the 
phenolic hydroxyl groups, different methods for the preparation of hydroxytyrosyl esters by 
reaction of hydroxytyrosol with various acylating agents have been described, such as 
esterification with free acids (Appendino et al., 2002), transesterification with methyl or 
ethyl esters (Alcudia et al., 2004; Trujillo et al., 2006), acyl chlorides (Torregiani et al., 2005) 
and the use of enzymatic methodologies (Grasso et al., 2007; Mateos et al., 2008; Torres de 
Pinedo et al., 2005;  Buisman, 1998).  

3.1.1.2 Acid catalyzed transesterification 

HT transesterification using methyl or ethyl esters and p-toluenesulfonic acid as catalyst has 
been described as a method without the need of protection of the aromatic hydroxyl groups 
due to its total chemoselectivity (Alcudia et al., 2004; Trujillo et al., 2006). This method 
involves heating a solution solution of hydroxytyrosol in the corresponding ethyl or methyl 
ester, containing a catalytic amount of p-toluenesulfonic acid (Scheme 4). This protocol has 
been optimized for HT acetate (86%), and also for longer aliphatic chains like 
hydroxytyrosyl butyrate, laureate, palmitate, stearate, oleate and linoleate, obtained in 
acceptable to good yields (62-76%) (Mateos et al., 2008).  

 
Scheme 4. General procedure of acid-catalyzed transesterification 

3.1.1.3 Acylation of polyphenolic alcohols with the couple CeCl3–RCOCl 

Cerium (III) chloride has been reported to be an efficient promoter for the chemoselective 
esterification of unprotected polyphenolic alcohols with acyl halides as acyl donors, thereby 
making it possible to avoid the protection of phenolic hydroxyl groups and providing 
polyphenolic esters of  interest (Torregiani, 2005). This reaction is one example of the so-
called Lewis acid catalysis by lanthanide salts (Ishihara et al., 1995). The reaction 
presumably involves the formation of an electrophilic Lewis adduct between acyl chlorides 
and cerium (III) chloride, which is quenched by the more nucleophilic aliphatic hydroxyl 
group of the substrate, with formation of the ester, and regeneration of the lanthanide 
promoter. The yields obtained are acceptable for HT using nonanoyl and oleoyl chlorides 
(53 and 52%), respectively (Scheme 5).  

 
Scheme 5. Acylation of hydroxytyrosol with acyl chlorides and Ce(III) 

3.1.1.4 Esterification with free acids: Mitsunobu esterification 

The Mitsunobu reaction has been also applied to the chemoselective esterification of phenolic 
acids with phenolic alcohols (Appendino et al., 2002) as demonstrated by the condensation of 
hydroxytyrosol with gallic acid, and of vanillyl alcohol with caffeic acid in a one step 
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procedure with 48% and 50% yields, respectively. The esterification is carried out using DIAD 
(diisopropyl azodicarboxylate) and TPP (triphenylphosphine) in THF (Scheme 6). The removal 
of byproducts arising during the Mitsunobu reaction, a major problem of this type of reactions, 
could be solved by gel-permeation chromatography on Sephadex LH-20. 

 

Scheme 6. Mitsunobu esterification of hydroxytyrosol and vanillyl alcohol 

3.1.1.5 Syntheses of hydroxytyrosol esters from tyrosol and homovanillyl alcohol 

The syntheses previously described in the previous sections had all in common 
hydroxytyrosol as a precursor of its esters, but some efforts have also been done to get 
hydroxytyrosyl esters starting from different and cheaper reagents. In this context, the 
syntheses of hydroxytyrosol esters from tyrosol and homovanillyl alcohol have been 
proposed (Bernini et al., 2008b). This procedure involves the selective esterification of 
tyrosol and homovanillyl alcohol with acyl chlorides in dicholoromethane as solvent, to give 
tyrosyl and homovanillyl acetates in 90% and quantitative yields, respectively, by using 
only a little excess of acetyl chloride in dichloromethane without any catalysts. The authors 
suggested acid catalysed acylation due to traces of hydrochloric acid derived from the 
hydrolysis of the acetyl chloride under the experimental conditions. A similar selectivity 
was observed by using several saturated or unsaturated acyl chlorides with longer chains 
such as hexanoyl, palmitoyl, oleoyl and linoleoyl chlorides.   

The subsequent oxidation with 2-iodoxybenzoic acid (IBX) or Dess-Martin periodinane 
reagent (DMP) and in situ reduction with sodium dithionite (Na2S2O4) of tyrosyl and homo- 
vanillyl esters led to the corresponding hydroxytyrosol derivatives. In general, the oxidation 
of tyrosol derivatives proceeded with higher yields (92-77%) compared to those of 
homovanillyl derivatives (88-58%). The use of DMP gave similar results to those obtained 
with IBX. The procedure of oxidation/reduction with IBX/Na2S2O4 to obtain the different 
esters is under protection of two patents (Bernini et al. 2007, 2008c). 

 
Scheme 7. Synthesis of hydroxytyrosol esters from tyrosol and homovanillyl alcohol 
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3.1.1.6 Lipase-catalyzed transesterification  

The use of enzymes, like lipases, as catalysts in non-aqueous solvents to prepare lipophilic 
derivatives directly from HT has been widely described in the last few years (Grasso et al., 
2007; Torres de Pinedo et al., 2005; Mateos et al., 2008; Buisman et al., 1998). This procedure 
avoids the use of toxic reagents and allows mild reaction conditions. 

The esterification of phenols with carboxylic fatty acids and lipases as biocatalysts was 
firstly investigated by Buisman et al., (1998), using hydroxytyrosol, octanoic acid in hexane, 
and immobilized lipases from Candida antartica (CAL-B). Furthermore, a strong dependence 
of the yield on the solvent used was observed; so, in diethyl ether a conversion of 85% was 
obtained within 15 hours (35 ºC), while conversions of roughly 20% were found in the case 
of solvents like chloroform, dichloromethane or THF. Yields of 70–80% were observed using 
n-pentane and n-hexane, in spite of the poor solubility of HT in such solvents.   

Different enzymes have been tested on hydroxytyrosol (Grasso et al., 2007) including lipases 
from A. niger, C. cylindracea, M. javanicus, P. cepacia, M. miehei, C. viscosum, P. fluorescens, R. 
arrhizus, R. niveus, C. antarctica, porcine pancreas and wheat germ, using vinyl acetate as 
reagent and tert-butyl methyl ether as solvent. The best results were obtained with C. 
antarctica in terms of short reaction time, chemioselective conversion and good yield. C. 
antarctica lipase (CAL) was selected for acylation of hydroxytyrosol and homovanillic 
alcohol with vinyl esters of different acyl chains on a preparative scale, as shown in Table 1. 
The use of C. antarctica with increasing alkyl chain length required longer reaction times. 
The homovanillyl alcohol and its esters were found to exhibit scarce effectiveness both as 
radical scavengers and antioxidant agents.  

Transesterification of HT with ethyl saturated, mono- and poly-unsaturated fatty acid esters, 
catalized by Novozym 435 (immobilized C. antarctica lipase B), in vacuum under 
solventless conditions, has been successfully developed (Torres de Pinedo et al. 2005). This 
procedure gave hydroxytyrosyl esters in 59-98% yield for the saturated fatty acid esters, and 
32-97% yield for the mono- and poly-unsaturated fatty acid esters.  

3.1.2 Biological activity 

3.1.2.1 Antioxidant activity  

The antioxidant activity of hydroxytyrosyl esters has been measured with different 
methods, including DPPH (1,1-diphenyl-2-picrylhydrazyl radical), ABTS (2,2'-azino-bis(3-
etilbenzotiazolin-6-sulfonic acid), FRAP (ferric reducing antioxidant power) and Rancimat 
(Mateos et al., 2008; Gordon et al., 2001; Bouallagui et al., 2011b). The Rancimat test is a 
method commonly used to evaluate the antioxidant power in lipophilic food matrices, such 
as oils and fats, while the ABTS and FRAP assays are used for the evaluation of antioxidant 
activity in hydrophilic medium; the ABTS assay evaluating the radical-scavenging capacity, 
and the FRAP method determining the reducing activity.  

The Rancimat test revealed a lower activity for ester derivatives compared to HT, in 
agreement with the so-called polar paradox, according to which hydrophilic antioxidants 
are more effective in less polar media, such as bulk oils, whereas lipophilic antioxidants are 
more effective in relatively more polar media, such as in oil-in-water emulsions or 
liposomes (Frankel et al., 1994; Shahidi & Zhong, 2011).  
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Phenol Acylating agent Product 
Time 

(min) 

Yield 

(%) 

 
35 95.0 

 
O

O

  

35 96.5 

 
 

 

75 93.3 

 

O

O

8

 
 

180 92.3 

60 96.8 

90 90.9 

90 97.5 

240 98.0 

Phenol: acylating agent 1:20, C. antarctica lipase, t-BuOMe, 40 ºC 

Table 1. Enzymatic esterification of HT and homovanillyl alcohol (Grasso et al., 2007)  

The order of the scavenging activities toward the ABTS radical was hydroxytyrosyl esters ≥ 
-tocopherol > hydroxytyrosol > tyrosyl >tyrosyl esters  BHT. In a similar trend, 
comparison of FRAP values obtained for the free hydroxytyrosol and tyrosol with the 
corresponding esters revealed that while hydroxytyrosyl esters showed a significantly 
higher reducing activity than their precursor, all the tyrosyl esters showed a lower 
antioxidant activity than that of tyrosol. The same conclusion was obtained from DPPH 
assay of the radical scavenging activity (Grasso et al., 2007).  

In connection with the size of the acyl chain, the reported literature seems to conclude that 
the antioxidant capacity of hydroxytyrosyl esters is better for medium-sized (C4C9) alkyl 
chains in comparison with HT, whereas further elongation of the acyl chain does not 
improve the antioxidant activity. This confirms that antioxidant capacity does not depend 
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only on lipophilicity. A possible explanation could be related to the fact that the 
conformational freedom of the ester chain increases with the acyl chain length, and this 
could result in folded structures in which catechol hydroxyls are shielded  (Tofani et al., 
2010; Pereira-Caro et al., 2009; Medina et al., 2009).  

This antioxidant activity has also been proved in biological assays, in order to check the 
ability of hydroxytyrosyl esters to protect proteins and lipids against oxidation caused by 
peroxyl radicals, using a brain homogenate as an ex vivo model (Trujillo et al., 2006) and 
cumene hydroperoxide to induce oxidation. The results obtained showed a protective effect 
in these systems, which was more effective in preventing the generation of carbonyl groups 
in proteins than the generation of malondialdehyde in lipid; hydroxytyrosyl linoleate 
showed the greatest activity. This fact proves that the introduction of a lipophilic chain in 
the hydroxytyrosol molecule increases both protein and lipid protection.  

Dichlorodihydrofluorescein (DCF) fluorometric assay on whole cells, carried out to check 
the antioxidant activity of a large serie of hydroxytyrosyl esters  (Tofani et al., 2010) on rat 
muscle cells, showed that hydroxytyrosol esters had a better antioxidant activity compared 
to HT due to the better penetration into the cells of the lipophilic derivatives.  

Hydroxytyrosol fatty acid esters have shown a nonlinear tendency in antioxidant capacity in 
fish oil-in-water emulsions (Lucas et al., 2010), where a maximum of antioxidant efficiency 
appeared for hydroxytyrosol octanoate in a study of hydrosytyrosyl esters with alkyl chains 
varying from C2 to C18. These results seem to be in disagreement with the antioxidant polar 
paradox. 

3.1.2.2 Cardiovasvular diseases 

Platelet aggregation is considered one of the main events in arterial thrombosis; therefore 
aggregation prevention is a major goal of cardiovascular research. It has been proved that 
hydroxytyrosol acetate inhibits platelet aggregation induced by ADP, collagen or 
arachidonic acid and stimulates nitric oxide production, more efficiently than 
hydroxytyrosol, and as effectively as acetylsalicylic acid; the latter is the most widely used 
drug in the world to prevent ischaemic cardiovascular diseases because of its antiplatelet 
aggregating action. This conclusion has been achieved in vivo in a study of oral 
administration of this ester to rats (González-Correa et al., 2008b), and in vitro in both 
human whole blood and platelet-rich plasma (González-Correa et al., 2009).  

3.1.2.3 DNA damage oxidative protection  

The atypical Comet test on whole blood cells has been applied to several hydroxytyrosyl 
esters to check their capacity to counteract the oxidative stress caused by H2O2  and the basal 
DNA damage. 

The results obtained show that antidamaging properties on DNA of HT acetate and 
propanoate are comparable to those of HT, whereas the protective effect progressively 
decreases in the order butanoate < decanoate  estearate (Fig. 3). This behavior was not 
observed for the lipophilic analogues of homovanillyl alcohol which appear to be scarcely 
protective, indicating that o-diphenols are more effective antioxidants than simple phenols 
(Grasso et al., 2007). 
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Fig. 3. Hydroxytyrosol lipophilic analogues 

3.1.2.4 Prevention of oxidative stress  

The ability of hydroxytyrosol and its esters to prevent iron-induced oxidative stress has 
been studied on human cervical cells (HeLa cells) by the TBARS protocol (Bouallagui et al., 
2011b). Pre-incubation of HeLa cells in the presence of 100 μM phenolic compounds led to a 
significant improvement of the oxidative status. In fact, thiobarbituric acid-reactive 
substance (TBARS) production was decreased by 30%, 36% and 38% with hydroxytyrosol, 
hydroxytyrosyl acetate and hydroxytyrosyl oleate, respectively. 

3.1.2.5 Transport, absorption and metabolism  

The study of the metabolism of hydroxytyrosol, tyrosol, and hydroxytyrosyl acetate has 
been carried out using human hepatoma cells (HepG2) as a model system of the human 
liver (Mateos et al., 2005). The results showed extensive uptake and metabolism of 
hydroxytyrosol and scarce metabolism of tyrosol, while hydroxytyrosyl acetate showed an 
interesting behavior, with formation of deacetylated hydroxytyrosol after only 2 h. Because 
hydroxytyrosyl acetate was stable in the culture medium, the hydroxytyrosol detected in the 
extracellular medium should be attributed to the action of the hepatic cells. 

3.1.2.6 Neuroprotective effect of hydroxytyrosyl and hydroxytyrosol acetate  

Neuroprotection exerted by HT derivatives has been investigated in rat brain slices 
subjected to hypoxia-reoxygenation, both in vitro and after oral administration (González-
Correa et al., 2008). This study was carried out to confirm to the previously demonstrated 
neuroprotective effects of virgin olive oil in rats (González-Correa et al., 2007). Although the 
studies gave positive results in the neuroprotective activity of both HT and hydroxytyrosyl 
acetate, mechanisms that underlie this effect are still unknown. 

3.2 Lipophilic hydroxytyrosyl alkyl ethers 

3.2.1 Synthetic approaches 

Hydroxytyrosyl alkyl ethers have been obtained (Madrona et al., 2009) in a three-step 
procedure starting from hydroxytyrosol isolated from olive oil waste waters (Scheme 8). 
This procedure requires first the selective protection of the aromatic hydroxyl groups via 
benzylation with benzyl bromine in the presence of K2CO3, and then the addition of an alkyl 
iodide under basic conditions, and the subsequent deprotection by catalytic hydrogenation 
(Pd/C) to obtain the corresponding ethers.  

The yield for the alkylation step varies depending on the length of the alkyl chain; as 
depicted in Scheme 8, the yields decrease as the length of  the alkyl chain increases, due to 
the reduced solubility of the corresponding long chain alkyl iodides in the solvent (DMSO). 
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Scheme 8. Synthesis of hydroxytyrosyl alkyl ethers by alkylation with alkyl iodides 

The oxidative stability of lipid matrix in the presence of these compounds, measured by the 
Rancimat method, has shown that these derivatives retain the high protective capacity of 
free hydroxytyrosol and similar induction times, having higher induction times than 
butylhydroxytoluene (BHT) and ǂ-tocopherol (Madrona et al., 2009). These results are in 
agreement with those obtained in the case of hydroxytyrosyl esters, covered in the previous 
section (Mateos et al., 2008). The antioxidant activity has been checked by the DPPH, FRAP 
and ABTS assays in a hydrophilic medium (Pereira-Caro et al., 2009). The antioxidant 
activity of the lipophilic hydroxytyrosyl ethers was slightly lower in bulk oils and higher in 
hydrophilic media in comparison with their reference HT, supporting the polar paradox. 
The length of the alkyl chain did have a positive influence in hydrophilic medium for ethers 
with a short alkyl chain (methyl, ethyl, propyl), while ethers with longer alkyl chains (from 
butyl to octadecyl) maintained or decreased their antioxidant activity, probably due to the 
steric effect of the hydrocarbon chains. 

3.2.2 Biological activity   

In order to evaluate the safety and potential biological activity of these ethers, studies of 
their transport, absorption and metabolism in cellular and animal models have been 
developed (Pereira-Caro et al., 2010a, 2010b) using a human hepatoma cell line (HepG2) as a 
model system of the human liver and human enterocyte-like Caco-2/TC7 cells, which are 
commonly used to characterize the intestinal absorption of a range of drugs, nutrients, and 
other xenobiotics.  

The results showed a direct relationship between the lipophilic nature of each compound and 
the level of metabolization; as an example, hydroxytyrosyl butyl ether biotransformation was 
complete after 18 h, whereas small amounts of the others remained after the same time. 
Furthermore, an intestinal absorption increase was observed from methyl to n-butyl ethers. 

Protective effects against oxidative stress have also been studied (Pereira-Caro et al., 2011) 
using HepG2 cells, the ones previously employed to assess the metabolism of the 
synthesized HT ethers. The results obtained show the potential to prevent cell damage 
induced by tert-butyl hydroperoxide (t-BuOOH) and the ability to maintain unaltered 
cellular redox status, partially after 2 hours of pretreatment and almost completely after 20 
hours. These results are in accordance with those obtained with hydroxytyrosol (Martín et 
al., 2010), but they also show the relevance of the role of the lipophilic character of the 
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phenolic compounds on their antioxidant potential against cell damage: HT methyl and 
ethyl ethers are less effective than HT propyl and butyl ethers. 

3.3 Hydroxytyrosol-derived isochromans 

Isochroman fragment is a ubiquitous scaffold that can be found in natural products, drugs 
and agrochemicals (Larghi & Kaufman, 2006). Access to dihydroxyisochromans derived 
from HT can be achieved by using the oxa-Pictet-Spengler reaction, by reaction of 
arylethanols with aldehydes, ketones or masked-carbonyl derivatives (Guiso et al. 2001). 
The reaction is highly regioselective, as intramolecular cyclization takes place mainly in the 
less hindered position, as it can be deduced from its reaction mechanism, shown in  
Scheme 9. Two of the synthetized isochromans (Fig. 4) have been detected in olive oil 
(Bianco et al., 2001).  

 
Fig. 4. Isochromans naturally present in olive oil 

 
Scheme 9. Synthesis of hydroxytyrosol isochroman derivatives  

Hydroxytyrosol isochroman derivatives shown in Fig. 4 were effective free radical 
scavengers able to inhibit platelet aggregation and thromboxane release (Togna, 2003). 

3.4 Hydroxytyrosol glucoronide derivatives 

One of the major metabolic pathways found in vivo for dietary phenolic compounds such as 
hydroxytyrosol is O-conjugation via glucuronidation and sulfation. Therefore, it is of 
interest to study these metabolites and their biological activities. 
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Biocatalyzed syntheses of hydroxytyrosol and other phenolic glucuronides have been 
developed using porcine liver microsomes (Khymenets et al., 2006, 2010). This type of 
glucuronides has also been synthesised stereoselectively (Lucas et al., 2009) in the phenolic 
or aliphatic hydroxyl groups using efficient chemical method from O-partially protected 
hydroxytyrosol and glucuronosyl trichloroacetimidate donors (Scheme 10). 

The antioxidant activities of hydroxytyrosol conjugates have been evaluated, concluding 
that none of these glucuronides displayed significant antioxidant activities at the 
concentration tested (Khymenets et al., 2010). 

 

 
 

Scheme 10. Synthesis of hydroxytyrosol glucuronides  

3.5 Hydroxytyrosol glucosides 

The three isomers of hydroxytyrosol -D-glucopyranosides (Fig.5) have been reported to be 
present in olives (Bianco et al., 1998). The 4-glucoside  (Romero et al., 2004) and the 1-
glucosides (Medina et al., 2007) have been found in table olive brines, and have been 
analysed as antimicrobial compounds against Lactobacillus pentosus with negative results. It 
has been recently shown that hydroxytyrosol 4-glucoside was the main phenolic compound 
in the aqueous phase of fresh alpeorujo, followed by hydroxytyrosol, and hydroxytyrosol 1-
glucoside. 

 
Fig. 5. The three isomers of hydroxytyrosol  
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3.6 Arylhydroxytyrosol derivatives 

The synthesis of 2-arylhydroxytyrosols from 2-halohydroxytyrosol derivatives has been 
described (Bernini et al., 2008a). The reaction of the corresponding 2-chloro precursors via 
Suzuki-Miyaura cross-coupling reaction with arylboronic acids containing electron-
donating, electron-withdrawing, as well as ortho substituents, yielded this family of 
compounds in high to excellent yields (Scheme 11). 

 
Scheme 11. Synthesis of 2-arylhydroxytyrosol derivatives 

3.7 Complexation of hydroxytyrosol with β-cyclodextrins 

The complexation of hydroxytyrosol with commercially-available ǃ-cyclodextrin (ǃ-CD) 
(López-García et al., 2010; Rescifina  et al. 2010) and hydroxypropyl-ǃ-cyclodextrin (HP-ǃ-
CD) (López-García et al., 2010) in aqueous solutions has been studied. The stoichiometries, 
the association constants and the geometry of the complexes have been determined by NMR 
techniques. The stoichiometries of both complexes are 1:1 and the association constants are 
93±7 M-1 for HT/ǃ-CD complex and 43±1 M-1 for HT/HP-ǃ-CD complex (López-García et 
al., 2010). In both cases, the insertion of the catechol moiety took place by directing the 
hydroxyalkyl chain to the primary rim. The postulated geometry of the 1:1 HT/-CD 
inclusion complex is depicted in Fig. 6. 

H-5

H-3

OH

7

OH
14

OH

OH

OH

 
Fig. 6. Postulated geometry of the 1:1 HT/-CD inclusion complex  
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Moreover, the antioxidant activity of encapsulated HT, together with the photoprotection 
effect of ǃ-CD on HT, has been evaluated by scavenging of the stable DPPH radical. It has 
been proven that ǃ-Cyclodextrin acts as a secondary antioxidant and provides a moderate 
improvement of the radical scavenging activity of HT measured by the DPPH assay. 

ǃ-Cyclodextrin exerts a strong photoprotection of HT upon UV irradiation, which could be 
deduced from the EC50 values (Table 2). For equimolecular mixtures of HT and -CD at 1.2 
mM, the observed degradation after 24 h and 48 h is similar to the degradation found for HT at 
the same concentration and time (entries 4 and 5) showing no protection at 24 h and only a 
slight protection after 48 h. However, using 1:4 mixtures of HT (1.2 mM) and -CD (4.8 mM), a 
remarkable reduction of the degradation rate was observed when compared with pure HT. In 
this way, the complexation of HT with cyclodextrins might enhance stability, improve its 
performance as antioxidant and extend its storage life (López-García et al., 2010).  
 

Entry Antioxidant [HT] (mM) Irradiation time (h) 
EC50 

(g HT / kg DPPH) 

1 HT 1.2 12 119.0 ± 1.4 

2 HT 1.2 24 353.6 ± 23.4 

3 HT 1.2 48 1436.1 ± 73.2 

4 HT-ǃCD (1:1) 1.2 24 357.2 ± 30.7 

5 HT-ǃCD (1:1) 1.2 48 1011.6 ± 171.9 

6 HT-ǃCD (1:4) 1.2 12 112.4 ± 6.4 

7 HT-ǃCD (1:4) 1.2 24 198.0 ± 4.6 

8 HT-ǃCD (1:4) 1.2 48 387.2 ± 13.3 

Table 2. Effect of the encapsulation of HT on its photostability 

4. Conclusions 

Hydroxytyrosol is a phenolic compound that can be isolated from olive oil mill wastewaters. 
The remarkable biological properties of this compound, mainly due to its strong antioxidant 
activity, has stimulated the synthesis of a series of derivatives, some of them are also 
naturally-occurring in the olive tree. Among these derivatives hydroxytyrosyl esters and 
ethers are of great interest, as some of them show strong antioxidant activity and improved 
bioavailability.   
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