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1. Introduction 

Electrocardiogram (ECG) signal processing aims basically 1) at artifact reduction to make 

the ECG signals cleaner and better interpretable by human or machine observers, 2) at 

revealing aspects not immediately observable in plain measured ECG signals even after 

artifact reduction, or 3) at diagnostics decision support and automated ECG signal 

interpretation, including classification of ECG signals into different classes associated with 

normal or pathological heart function. Thus, sports related applications aside, body surface 

ECG signal processing aims at enhancing ECG based diagnostics. In this Chapter, we review 

and demonstrate a statistical signal processing approach, independent component analysis 

(ICA), which is inherently very suitable for ECG signal processing regarding the aims 1) and 

2) above, and also equally applicable as a component in systems aimed at accomplishing the 

aim 3). For more on general ECG signal processing, the reader is directed to the textbook 

written by Sörnmo & Laguna (2005), and for a thorough treatment of ICA to the Hyvärinen’s 

book (Hyvärinen et al., 2001). A concise review on ICA in ECG signal processing has been 

presented by Castells et al. (2007a). In this Chapter, we describe and illustrate several widely 

adopted applications of ICA in ECG signal processing, and discuss associated practical 

aspects, some of which are not generally found in the literature. The treatment of the matter is 

aimed at conceptual and practical understanding, leaving the mathematical derivations and 

proofs far mostly for the interested reader to find in the references. 

ICA (Castells et al., 2007a; Comon, 1994; Hyvärinen et al., 2001; Hyvärinen & Oja, 2000; Naik 
& Kumar, 2011) is a statistical signal processing method for decomposing a set of signals 
into a set of mutually independent component signals. In general, in the applications of ICA, 
including in ECG signal processing, the objective is that the resulting independent 
component signals are the original source signals. Since ICA operates purely based on the 
input signals and a few assumptions, ICA belongs to the class of methods called blind 
source separation methods. For ICA, a source signal is called an independent component 
(IC). The terms ‘IC’ and ‘source signal’ are here used interchangeably. For ECG, the source 
signals are the bioelectrical signals generated by the heart, and all the possible artifact 
signals.  
Generally, ICA input signals are the observed signals, which may be measurement time 

series, such as sampled voltage values in time as in the case of ECGs, image pixel values, or 

basically any sets of values fulfilling the assumptions of ICA. In the sequel, the term 
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‘measured signals’ refers to a set of simultaneously measured digital discrete-time signals 

with constant interval between the measured signal samples. All signals are assumed to be 

sampled at the same time instances. 

ICA is realized by an iterative numerical algorithm, several of which exist. In Section 2 of 
this Chapter, we first introduce the basics of ICA, review ICA estimation principles and note 
a few commonly used available ICA methods. Thereafter, the specific applications of ICA in 
ECG signal processing are described and illustrative examples are given. Internet addresses 
of a few ICA related web sites and ICA program packages are given in the Appendix. 
For simplicity of presentation and the ease of reproducibility of the results shown in this 
Chapter, all the ICA calculations have been performed using FastICA (Aalto University 
[Aalto], 2005; Hyvärinen, 1999) with the default parameters. Note that for this kind of 
statistical signal processing software the results will differ from one run to another, but the 
conclusions should remain unaltered. Also, as usual with signals of biological origin, an ICA 
algorithm may or may not converge, and if not, further ICA input signal preprocessing may 
be necessary. For some ECG signals ICA just might not succeed. In the examples given in 
this Chapter only minor preprocessing has been applied, if any (possible preprocessing has 
been described in conjunction with the examples).  
In Section 2.1, we introduce the basic concepts of ICA and illustrate its functioning with a 
toy example. ICA estimation principles and the ICA package employed in the examples in 
this Chapter, FastICA (Aalto, 2005), and a few other popular ICA methods are mentioned in 
Section 2.2. In Section 2.3, practical aspects and reliability of the ICA results are discussed. 
The conceptual differences between ICA and principal component analysis (PCA) are 
outlined in Section 2.4, and common ICA related misconceptions in the literature are 
discussed in Section 2.5. Common ECG artifacts are shortly reviewed in Section 3.1 before 
proceeding to describe the applications of ICA in ECG signal processing in Sections 3.2 
through 3.5. In Section 3, also illustrative examples are presented. In Section 4, usage of ICA 
as a part of diagnostic systems is discussed, and finally, concise conclusions on ICA in ECG 
signal processing are given in Section 5. 

2. Basics of ICA 

2.1 The basic concepts of ICA 

ICA requires the fulfillment of two assumptions: 1) the measured signals are linear 
combinations of independent source signals, and 2) the independent source signals are 
nongaussian. Fulfillment of the first assumption can usually be assessed based on the 
knowledge of the signal sources and the measurement setup with respect to the sources. 
Naturally, should there exist no source signals which were independent of each others, ICA 
would make no sense. To an approximation, the assumption of linear combinations of sources 
can be taken to be valid for ECG signals and most artifacts. The nature of the different artifacts 
is discussed in Section 3.1. The fulfillment of the second assumption cannot in general be 
known, unless an appropriate source signal model exists or the properties of the source signals 
can be otherwise assessed. For example, Rieta et al. (2004) conclude that during atrial 
arrhythmia episodes, atrial activity and ventricular activity are generated by independent 
generators, whose amplitude distributions are nongaussian. Shkurovich et al. (1998) show also 
nongaussian amplitude distributions of sinus rhythm and atrial fibrillation measured during 
defibrillator implantation. The first assumption would be clearly fulfilled if we considered the 
heart as one or several point sources and the possible electromyogram (EMG) and other 
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artifacts as other point sources. Even though such a model might not exactly describe reality, 
ICA has been demonstrated to be feasible and useful in several ECG applications. Also, even if 
there is no knowledge on the fulfillment of the second assumption, ICA may be attempted. 
Please, see also Section 2.3 on practical considerations and ICA reliability. 
In the context of ECG signal processing, ICA assumes that the measured possibly artifact 
containing ECG signals are linear combinations of source signals. This is indicated by the 
mixing model 訓 = 寓薫, (1)

where the voltage signal samples measured over a limited period of time are in the rows of 
the measurement matrix Y, the source signals are in the rows of X, and A is the mixing 
matrix. For ICA of ECGs, signal samples measured during a short period of time via one 
ECG lead form one row of Y (1). For a standard 12-lead ECG measurement, Y is thus a 
matrix of L = 12 rows and N columns, with N being the number of signal samples taken to 
be processed by ICA at one time from each ECG lead signal. N may in general be decided 
according to the ECG sampling rate and the phenomena of interest, e.g., to span one or 
several cardiac cycles. Let us denote one measured ECG signal sample by y(l,n), where n = 1, 
..., N is the discrete time index, and l = 1, ..., L is the ECG lead index. ICA can naturally be 
performed in a running window, but here we always consider running ICA once for one 
measured ECG signal segment. Writing (1) out with signal samples, we get 

 煩検岫な,な岻 橋 検岫な, 軽岻教 ⋱ 教検岫詣, な岻 橋 検岫詣, 軽岻晩 = 煩欠岫な,な岻 橋 欠岫な, 詣岻教 ⋱ 教欠岫詣, な岻 橋 欠岫詣, 詣岻晩 煩捲岫な,な岻 橋 捲岫な, 軽岻教 ⋱ 教捲岫詣, な岻 橋 捲岫詣, 軽岻晩. (2) 

For performing the matrix multiplication (2), see (5). After successful ICA, the rows of the 
matrix X contain the ICs. In general, the aim of applying ICA is that each IC carried a signal 
generated by a single physiological or physical source, such as a signal generated by the heart 
or its individual structure, possible additive noise, or other artifact, such as EMG artifact. The 
mixing matrix A describes how the source signals are weighted as they are conducted from the 
respective generators to the electrode sites and summed at each ECG electrode on the body 
surface, i.e., how the measurements are linear combinations of the sources. 
ICA can find at maximum as many ICs are there are ICA input signals. In (1) and (2), we 
have assumed that there are equally many ICs in X than there are input signals in Y. In the 
case that there are more measurements than actual sources, the resulting X has fewer ICs 
than there are measured signals in Y, and correspondingly the mixing matrix A is not a 
square matrix. Given L measured signals and L’ true sources, and L > L’, upon successful 
ICA, X will be of size L’-by-N, and A of size L-by-L’. On the other hand, in the case of more 
actual sources than measurements, L < L’, the sizes of the matrixes are as shown in (2), but 
the system is underdetermined, and the true ICs appear mixed in unknown fashion in ICs in 
X, if the ICA algorithm converges. These cases are illustrated with a toy example in Fig. 1. 
From (1) and (2), we also see a common application of ICA: measurement reconstruction 

with only the ICs carrying desired information. First, calculating ICA on Y, if successful, 

yields both A and X. Thereafter, the ICs in X can be analyzed to determine which ICs carry 

noise or artifacts and which carry contributions from the actual ECG. To reconstruct the 

ECG without the noise and artifacts, the corresponding rows of X are set to zero in (2), and Y 

is calculated according to (2) without altering A. This completely removes the contributions 

of the zeroed ICs. This is the basis of several ECG applications of ICA. 
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Due to the nature of the mixing model (1), ICA has three ambiguities: 1) signs of the ICs are 
arbitrary, 2) energies of the ICs are arbitrary, and 3) the order in which the ICs appear in X 
(1) is arbitrary. The ambiguities of X are facilitated by the corresponding changes in the 
mixing matrix A in (1). With an arbitrary nonzero real constant c, (1) can be written as 

 

訓 = 寓薫= 煩欠岫な,な岻 橋 欠岫な, 詣岻教 ⋱ 教欠岫詣, な岻 橋 欠岫詣, 詣岻晩 煩捲岫な,な岻 橋 捲岫な, 軽岻教 ⋱ 教捲岫詣, な岻 橋 捲岫詣, 軽岻晩 
= 煩−欠岫な,な岻 橋 欠岫な, 詣岻教 ⋱ 教−欠岫詣, な岻 橋 欠岫詣, 詣岻晩 煩−捲岫な,な岻 橋 −捲岫な, 軽岻教 ⋱ 教捲岫詣, な岻 橋 捲岫詣, 軽岻 晩 

= 頒怠頂欠岫な,な岻 橋 欠岫な, 詣岻教 ⋱ 教怠頂欠岫詣, な岻 橋 欠岫詣, 詣岻番 煩潔捲岫な,な岻 橋 潔捲岫な, 軽岻教 ⋱ 教捲岫詣, な岻 橋 捲岫詣, 軽岻 晩, 
(3)

which means that for the same set of measured signals Y (3), the signs and amplitudes of the 

ICs are arbitrary, as accommodated by the corresponding changes in A (3). Similarly, the 

indeterminate order of ICs in X is seen from (4). 

訓 = 頒欠岫な,に岻 欠岫な,な岻 欠岫な,ぬ岻 橋 欠岫な, 詣岻欠岫に,に岻 欠岫に,な岻 欠岫に,ぬ岻 橋 欠岫に, 詣岻教 教 教 ⋱ 教欠岫詣, に岻 欠岫詣, な岻 欠岫詣, ぬ岻 橋 欠岫詣, 詣岻番 琴欽欽
欽欣捲岫に,な岻 捲岫に,に岻 橋 捲岫に, 軽岻捲岫な,な岻 捲岫な,に岻 橋 捲岫な, 軽岻捲岫ぬ,な岻 捲岫ぬ,に岻 橋 捲岫ぬ, 軽岻教 教 ⋱ 教捲岫詣, な岻 捲岫詣, に岻 橋 捲岫詣, 軽岻筋禽禽

禽禁
 (4)

Let us present a toy example to illustrate the workings of ICA, alike it can be expected to 

operate with biomedical signals. The same example will be used also to illustrate the 

difference between ICA and PCA in Section 2.4. Denote a measured ECG lead signal by 

yl = [y(l,1) … y(l,N)], l = 1, …, L, and a source signal by xl analogously. Note that the 

independence of the sources in this example has not been confirmed, alike usually is the 

case in the analysis of biomedical signals. Let us consider L = 4 simulated measured signals, 

and denote ICA calculated with input signals y1 and y2 by ICA(y1,y2), and the ICA of other 

input signal combinations analogously. In Fig. 1A are shown L’ = 3 simulated source signals 

x1, x2, and x3, which are linearly combined to form the simulated measured signals 

according to y1 = 0.7x1 + 0.2x2, y2 = 0.6x1 + 0.7x2, y3 = 0.9x1 + 0.2x2 + 0.4x3, and 

y4 = 0.5x2 + 0.2x3. In ECG measurements, this would correspond to the weighted summation 

of the source signals at the ECG electrodes. In reality the weights are dictated by the 

electrical conduction paths from the sources to the electrodes, including the electrode-skin 

contacts. The four simulated measured signals are seen in Fig. 1B. In Fig. 1C, the results of 

ICA on all the subsets of at least two simulated measurements are shown, displaying the ICs 

from one ICA calculation in each column. 

In the results of ICA(y1,y2), IC11 and IC12 in the first column of the subfigures in Fig. 1C, 
correspond quite well to the source signals x1 and x2, as expected, since the simulated 
measurements y1 and y2 are composed only of these two sources. The results of ICA(y1,y3), 
ICA(y2,y3), and ICA(y3,y4), in Fig. 1C, illustrate one type of possible cases encountered in 
biomedical signal processing, including in ECG signal processing: the simulated 
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measurements are composed of a larger number of sources than there are measured signals 
as ICA input. In these cases, the ICs are inhabited by the sources in an arbitrary manner, as 
clearly illustrated by the ICs resulting from ICA(y2,y3) and ICA(y3,y4). The results of 
ICA(y1,y3) may seem to display fairly clean source signals, but the contribution of the source  
 

 
 

 

Fig. 1. (A) The three simulated original sources, i.e., the desired results of ICA. (B) The four 
simulated measured signals, constructed as linear combinations of the sources as 
y1 = 0.7x1 + 0.2x2, y2 = 0.6x1 + 0.7x2, y3 = 0.9x1 + 0.2x2 + 0.4x3, and y4 = 0.5x2 + 0.2x3. (C) The 
results of ICAs, with the results from one ICA calculation presented in each column. Note 
the arbitrary sign of the ICs, e.g., comparing IC53 and IC63. Units of amplitude are arbitrary 
in all (A), (B), and (C), and the time span is equal in all subfigures. Adapted from 
(Tanskanen et al., 2005). 
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x2 is still buried in an unknown manner in the ICs. For ICA(y2,y3,y4), there are equally many 
ICA input signals as there are original sources and ICA succeeds well in separating the 
sources, as expected. Due to the numerical nature of ICA calculations, and the fact that we 
did not ensure independence of the original sources, the ICs may not be exactly clear of the 
contributions from the other sources. The same holds for ICA(y1,y2,y3,y4) (Fig. 1C) where we 
also see the inherent property of ICA to determine the true number of ICs in an 
overdetermined case: even though there are four simulated measurements as ICA inputs, 
ICA correctly produces only three ICs. Such an observation is highly desirable also in 
practice in biomedical signal processing, since is it allows us to determine the true number 
of the sources (down to a numerical approximation). Note that in the examples shown in 
Figs. 3 and 6, there are eight measured ECG leads and one calculated lead, and thus ICA can 
find at maximum eight ICs since the calculated lead does not contribute new independent 
information. Such dimension reduction does therefore not indicate that the true number of 
sources would be indicated by the number of ICs. 
Let us note that in ECG measurements, artifacts quickly increase the number of the true 
sources. Given too few measured ECG leads as ICA input signals, this may render the 
results of ICA useless, since the artifacts may populate most of the ICs, thus possibly 
causing the separation of the desired sources fail. This may be alleviated by increasing the 
number of ICA input ECG leads, and by general preprocessing of the ECG signals such as 
noise alleviation filtering, line interference alleviation, and baseline wander reduction. On 
the other hand, if the artifacts are well separated by ICA in the ICs of their own, they may be 
easily removed, as illustrated in Section 3. For example, the fist clenching artifact seen in Fig. 
3A was removed easily with ICA (Fig. 3C). 

2.2 ICA estimation principles and algorithms 

In this Section, we bring into attention the multiplicity of ICA approaches without going 
into details or mathematics. The general ICA estimation principles (Hyvärinen et al., 2001) 
are: 1) Nonlinear decorrelation: the components are independent if they are uncorrelated 
and their appropriately chosen nonlinear transformations are uncorrelated. The appropriate 
nonlinear functions can be found using estimation and information theories. 2) 
Maximization of component nongaussianity. Intuitively, since central limit theorem states 
that summing nongaussian random signals yields signals that are closer to gaussian than the 
original signals, decomposing such sums of signals into the components maximizing the 
nongaussianity of the components results in ICs. 
ICA has been realized by numerous methods including nongaussianity maximization, 
maximum likelihood estimation (Pham & Garat, 1997), mutual information minimization, 
tensorial methods, nonlinear decorrelation, and nonlinear PCA (Stamkopoulos et al., 1998). 
One practical difference between the methods is that several methods estimate all the ICs 
simultaneously, whereas, for example, nongaussianity maximization can be used to estimate 
a single IC at a time or all the ICs simultaneously. All the mentioned methods have been 
discussed by Hyvärinen et al. (2001), and several comparisons of ICA algorithms have been 
published, including a more general comparison by Giannakopoulos et al. (1999), 
comparison of different ICA methods for arrhythmia analysis (Llinares & Igual, 2009), atrial 
fibrillation analysis (Vayá et al., 2007), fetal ECG extraction in (Hild et al., 2007; Parmar 
Sargam & Sahambi, 2004), and movement artifact removal (Milanesi et al., 2008).  
There exist numerous ICA software packages implementing different ICA algorithms. Web 
addresses of several ICA web sites and program packages are listed in the Appendix at the 
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end of the Chapter. In the examples presented in this Chapter, we have applied FastICA 
(Aalto, 2005; Hyvärinen, 1999; Hyvärinen et al., 2001) version 2.5 using its default 
parameters. FastICA is an iterative numerical algorithm, which has been developed by 
Hyvärinen (1999), giving also instructions for parameter selection. FastICA runs in Matlab 
(The MathWorks, Inc., Natick, MA, USA) and is available also for a few other environments. 
FastICA package includes both a command line function and a graphical user interface. The 
program also automatically performs signal preprocessing in order to greatly ease the ICA 
calculations. The preprocessing steps are mean removal and PCA, or more exactly, whitening 
(Hyvärinen et al., 2001). Whitening the data makes the ICA input signals uncorrelated and of 
unit variance. PCA also provides for possible dimension reduction prior to ICA. 
Since the ICA algorithms are necessarily numerical and generally iterative, the independence 

can be achieved only down to an error. According to our experience, the FastICA default 

parameters are usually appropriate. By default, FastICA strives to estimates all true ICs and 

possible further dimension reduction can be set by the user. For example, leaving out the most 

insignificant PCs in the preprocessing phase results in fewer ICA input signals. For this, the 

eigenvalues of the PCs can be observed also graphically. Furthermore, the nonlinear function 

to be used in the ICA can be selected from the given choices, with general selection criteria 

stated in (Hyvärinen, 1999). That said, according to our experience, the default parameters are 

a very good starting point for most experimentations with ICA. Should FastICA fail to 

converge, one can resort to the parameter settings, to the practical considerations described in 

the next Section, or finally to another ICA algorithm. Finally, for some specific ECG signals 

ICA just might not succeed. 

2.3 Practical considerations and reliability of ICA results 

In general, biomedical signals are stochastic random signals by nature, and the fulfillment of 

the ICA assumptions, especially regarding nongaussianity cannot be guaranteed. An 

appropriate model or measurement analysis may naturally shed light on the matter. In any 

case, ICA may be attempted. On the other hand, failing ICA with the specific input signals 

and using one algorithm with certain parameters, may not mean that the data at hand was 

unfit for ICA in general.  Specifically in the case in which we can assume that the ICA 

assumptions should be sufficiently fulfilled, but ICA algorithm tends to fail, achieving 

convergence can attempted by changing number of ICA input samples, i.e., the length of the 

ECG signal segment used as input to ICA at one time, or by changing the number of ICA 

input ECG lead signals, input signal bandwidth and sampling rate, or ICA parameters. Also 

different ICA algorithms may yield different performances. 

Due to the stochastic nature of the ECG measurements and the properties of ICA estimation 
algorithms, the ICA results can vary from one run to another. This raises the question of ICA 
reliability, which should be assessed at least in critical applications. At simplest, ICA 
reliability assessment can be approached by running ICA several times on the same data, 
and for example also on slightly time shifted data. First and foremost, the ICA results 
should naturally result in the same final conclusions regarding the original hypothesis. 
Secondly, the ICA results should greatly resemble each other from run to run. Note that the 
signs, amplitudes, and the order of appearance of the ICs may vary from one run to another; 
this does not constitute a reliability issue but is expected behavior, which is to taken into 
consideration by the biomedical algorithm developer. Another approach is to resample the 
same data in a few different ways, calculate ICA on the differently sampled data, and use 
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the average of the resulting ICs as ICA results. Further methods for reliability assessment 
have been devised, for example, by Meinecke et al. (2002), and Icasso: software for 
investigating the reliability of ICA estimates by clustering and visualization developed by 
Himberg et al. (2004) (c.f. the Appendix for the Internet address). 

2.4 ICA vs. PCA 

PCA (Hyvärinen et al., 2001; Jolliffe, 2002) employs the same mixing model (1) as ICA, but the 

resulting components are fundamentally different. Whereas ICA yields components, which 

are mutually statistically independent, PCA yields principal components (PCs), which are 

mutually statistically uncorrelated. Uncorrelatedness is a much weaker requirement than 

independence; independent signals are also uncorrelated, but uncorrelatedness does not imply 

independence. Thus, also the aims of applying PCA and ICA are partially different. One of the 

applications in which both PCA and ICA have been successfully applied is noise reduction by 

excluding noise carrying components from the reconstruction. However, due to the different 

nature of the components resulting from PCA and ICA, the basis of noise reduction is 

different. For PCA in ECG signal processing see, e.g., (Castells et al., 2007b). 
The PC found first by a PCA algorithm explains the greatest amount of variance in the 
measured signals and the last found PC the least. Thus, in practice the last found one or a 
few PCs may consist of mostly noise, thus PCA has been successfully applied in noise and 
dimensionality reduction. As the PCs are only statistically uncorrelated, they are in general 
not directly related to the actual independent physical or physiological sources. Therefore, 
in contrast with ICA, PCA cannot in general recover the actual source signals. Furthermore, 
strictly speaking, even if the last found PC may resemble a noise only signal, it may still 
contain contributions of the actual source signals. Even though such contributions were 
most probably minor, the ECG information they carry would be lost in noise reduction by 
PCA. Nevertheless, PCA is a powerful tool for noise reduction if applied appropriately. 
Also, as noted in Section 2.2, PCA is often used as preprocessing for ICA. 
Functioning of PCA is illustrated in Fig. 2. The PCs produced by PCA of the simulated toy 
measurements shown in Fig. 1B are seen in Fig. 2A. In the toy example, comparing the ICs 
produced by ICA(y2,y3,y4) or  ICA(y1,y2,y3,y4) in Fig. 1C with the PCs shown in Fig. 2A, it is 
seen that ICA was able to separate the sources whereas PCA was clearly not. In Fig. 2B are 
shown the results of PCA applied on the eight-lead ECG measured on the abdominal region 
of a pregnant mother. The corresponding original measured signals are shown in Fig. 4A. 
Maternal ECG contributions are seen in PC7 and PC8 in Fig. 2B and fetal ECG is evident at 
least in PC2 and PC3. Results of ICA calculated on the same data are shown in Fig. 4B. 
Comparing Figs. 2B and 4B, the inability of PCA to separate the different sources is not 
obvious to the eye, but the effects of PCA vs. the effects of ICA are expected to be similar to 
those seen in the toy example. The PCs in Fig. 2 were produced with FastICA using the 
command line option which yields only PCs, or more precisely, components which are zero-
mean and white, meaning that in addition to being uncorrelated they are of unit variance. 

2.5 Common misconceptions in the biomedical ICA literature 

The main misconception appearing in the biomedical ICA and PCA literature is that of ICA 

vs. PCA, especially regarding their capabilities to separate sources. As already noted, ICA 

yields independent components, whereas PCA yields merely uncorrelated components. 

Thus, PCA is incapable of separating the independent sources. 
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Fig. 2. (A) The results of PCA of all four simulated signals in the toy example seen in Fig. 1B. 
The corresponding ICA results are those of ICA(y2,y3,y4) and ICA(y1,y2,y3,y4) seen in Fig. 1C. 
(B) The results of PCA of the eight-lead maternal ECG seen in Fig. 4A. The results of ICA 
calculated on the same data are shown in Fig. 4B. Units of amplitude are arbitrary in (A) and 
(B). The time span in (A) is the same as in all the subfigures in Fig. 1. 

Reconstructing ECG lead signals from the ICs excluding also one or several ICs carrying 

ECG activity can be a hazardous practice. Whereas the resulting ECG signal reconstructions 

are cleaned of the noise and other artifacts carried in the excluded ICs, such reconstruction 

may yield ECG signals whose morphology may have been altered, or some waves may have 

disappeared altogether or appear with changed relative amplitudes. 

An expected IC not appearing in the results of ICA is sometimes claimed to be due to the IC 

being minor in amplitude and buried in noise, and thus not separable. On the contrary, ICA 

is often very powerful in separating weak ICs whose contributions cannot be observed 

directly in the original measured ECG signals. Rather, the explanation is likely to be either 

one or several of the following: there may be an insufficient number of measured ECG leads, 

i.e., less measured ECG lead signals have been used as input to ICA than there are sources. 

As a consequence, the expected IC may be buried in a mixture of sources in the ICs. Noise or 

artifacts not independent of the expected IC, which thus are not separable by ICA. For 

example, respiration and blood pressure are known to modulate ECG (Sörnmo & Laguna, 

2005), although it is unknown if these contributions were actually able to mask expected ICs. 

The expected IC may also have fallen victim of dimension reduction by PCA in signal 

preprocessing, if the information of the expected IC was contained in PCs whose 

eigenvalues were below the threshold for inclusion. Still, as discussed in Section 2.3, it is not 

impossible that the results of ICA have not been sufficiently reliable, and may thus be false. 

In this case, the precautions noted in the Section 2.3 are recommended. 
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3. ICA in ECG signal processing 

Basically, many ICA based ECG processing techniques work similarly: After ICA, the 
unwanted ICs in (2) are identified and set to zero, and the measured signals are 
reconstructed using (2), thus yielding reconstructed signals clean from the artifacts 
contained in the zeroed ICs. The other common application is ECG beat classification, in 
which the ICA results are used as features based on which the beats are classified. 
Classification may be desired, for example, to indentify pathological beats and subsequently 
determine the pathology. 
Whereas ICA is usually applied to a set of a few concurrently measured ECG signals, such 
as 12-lead ECG, ICA based methods for single-channel ECG signals have also been 
proposed, e.g., by de Chazal et al. (2003) and Mijović (2010). The other extreme is 
represented by ICA of high-density ECG measurements with tens (Zhu et al., 2008) or even 
hundreds of ECG lead signals used as ICA input to achieve enhanced level of source 
separation. 

3.1 ECG artifacts 

In this Section, the artifacts generally encountered in ECG signals (Sörnmo & Laguna, 2005) 

are shortly reviewed and discussed in the view of the ICA assumptions. In all cases in which 

ICA can be expected to work, a sufficient number of measured ECG leads must be provided 

for efficient artifact signal separation and removal. 
In most environments, electrical devices and wiring can be found in the vicinity of the ECG 
measurement equipment and wiring, and 50/60 Hz power line frequency artifact can be 
easily introduced to the measured ECG signals. Power line frequency artifact is clearly 
independent from the ECG signals and often well-separable and removable by ICA. 
EMG artifacts generated by muscles other than the heart muscle are generally independent 
of ECG signals. However, in principle, EMG represents a distributed source and cannot be 
immediately assumed to originate from a single or a small number of discrete sources 
comparative to the number of ECG leads. Nevertheless, separating EMG artifacts may well 
be attempted and can be successful in practice (c.f., the fist clenching example in Fig. 3). A 
usual application of ICA is also the removal of ECG artifacts from EMG or 
electroencephalogram (EEG) signals, as e.g., proposed in (Jung et al., 2000). 
Baseline wander is a usual artifact seen in ECG signals. It is clearly an independent effect, 
which may be seen in only one or a few ECG lead signals. It may also appear totally 
different in different leads and can easily be generated by applying slowly changing 
pressure to an ECG electrode, among other reasons. In general, the effect is well separable 
and removable. ECG baseline wander removal by ICA has been proposed by Barati & 
Ayatollahi (2007), for example. 
Limb movement, couching, and general restlessness among other similar activities represent 
a more complex class of artifacts, which may include EMG artifacts and other artifacts due 
to the movement of wires and stresses on ECG electrode contacts, and maybe other artifacts 
as well. Removal of such complex artifacts may be attempted but in general the success 
cannot be predicted a priori. Shoulder movement artifact removal was successfully 
performed in (Milanesi et al., 2008). 
Holding hands together or grasping hospital bed metal side railings with both hands may 
effectively bring the two wrist electrodes to a nearly equal potential, thus making the signals 
of the standard ECG leads II and III almost equal, and lead III signal may nearly disappear. 
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Such an effect is not caused by an independent source of interference, and cannot be 
expected to be removable by ICA. 

3.2 ICA for noise and artifact removal 

As described earlier, the basic approach to noise and artifact removal is to perform ICA 
followed by ECG reconstruction using (2) with the noise and artifact carrying ICs set to zero. 
Here, a crucial step is the recognition of the ICs carrying the artifacts. This may be achieved, 
e.g., by different statistical or waveform classification methods in time domain or in 
frequency domain, or by more advanced methods as described, e.g., by He et al. (2006) who 
also give several illustrative examples. Note that in the examples in (He et al., 2006) the 
artifacts and noise to be removed are contained in ICs which seemingly do not carry ECG 
contributions, thus yielding correct ECG reconstruction which does not alter the actual ECG 
waveforms. In this Chapter, recognition of the ICs carrying atrial fibrillation is considered in 
the example shown in Fig. 6, whereas otherwise IC classification has been performed by 
visual observation only. ICA can also be successfully applied, for example, to ECG baseline 
wander (Barati & Ayatollahi, 2007) and motion artifact removal (Milanesi et al., 2008). 
In Fig. 3A, a standard ECG is shown with an artifact caused by the subject clenching his left 
fist. The artifact is evident in all leads except in the lead II. The measurements were 
performed with NeuroScan (SynAmp  by  Compumedics  NeuroScan,  El  Paso  Texas, USA) 
with the reference on the left ankle. The standard chest ECG leads in Fig. 3A have been 
determined using Wilson’s central terminal. 
In Fig. 3B, ICs resulting from ICA calculated on the ECG signals seen in Fig. 3A, are shown. 
Since the lead III in Fig. 3A has been calculated from the leads I and II, there are only eight 
actual measurements in the nine ICA input signals. Accordingly, ICA found only eight ICs 
(Fig. 3B), as it could at maximum. In Fig. 3B, the left fist clenching artifact is nicely contained 
in IC4, although here the artifact has been detected by visual assessment only, and it is hard 
to exclude the possibility of artifact contributions in the other ICs. At least IC1, IC2, IC3, IC5, 
IC6, and IC7, can be seen to carry ECG information. IC7 might be taken to display 
contributions from T wave in addition to some other ECG contributions during QRS 
complex, but this is only speculative. IC8 may be noise and carry also minor ECG 
information (noise is comparative to the possible ECG information). In Fig. 3C, the ECG 
reconstructed without IC4 is shown. In visual inspection, the fist clenching artifact has been 
removed, and for the second heart beat shown, the T wave morphology in the lead I’ and 
the details of the QRS complex morphology in the lead II’, both of which are unobservable 
in Fig. 3A, have been recovered in Fig. 3C. A reconstructed lead is denoted with a prime in 
the lead name, also in the sequel. 

3.3 ICA for ECG feature extraction 

ECG feature extraction using ICA (Huang et al., 2010; Hyvärinen et al., 2001; Jiang et al., 
2006) generally includes preprocessing the ECG signals by mean removal and dimension 
reduction. In dimension reduction, the original large data set is reduced to a smaller number 
of signals, also decreasing noise. The resulting data set is input to ICA, whose output is the 
set of features, or basis functions. Thereafter, ECG data to be classified, e.g., according to 
pathology, is then classified based on the basis functions. For example, Jiang et al. (2006) 
classified heart beats into 14 classes of arrhythmia types, including normal beats. Heart beat 
classification using ICA has also been considered in several other publications, e.g., in (Chou 
& Yu, 2007; Herrero et al., 2005; Ye et al., 2010). 
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Fig. 3. (A) ECG with left fist clenching artifact visible in all leads but II. (B) Results of 
calculating ICA on the signals in (A). Fist clenching artifact has been separated into IC4. (C) 
ECG signals reconstructed using all the ICs except IC4. 
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Fig. 4. (A) Eight-lead ECG measured on the abdominal region (leads Ab1 though Ab8) of a 
pregnant mother1. Maternal heart beats are clearly recognizable but fetal ECG cannot be 
visually observed. (B) Results of ICA on the data seen in (A). It can be clearly seen that IC1 
exhibits fetal ECG, whereas IC2 and IC3 carry maternal ECG. 

                                                                 
1The data used in this example was obtained from The Open-Source Electrophysiological Toolbox, 
http://www.oset.ir/, Shiraz University, Shiraz, Iran, to where the data was provided by Dr. A. 
Tokarev, Biomedical Signal Processing Laboratory, National Aerospace University, Kharkov, Ukraine. 
The data was offered for download and usage under the GNU General Public License. 
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3.4 ICA for fetal ECG extraction 

ECG signals originating from the hearts of the mother and the fetus are clearly independent 

of each other and they can be efficiently separated using ICA, thus providing for extraction 

of fetal ECG (Lee et al., 2005; Martín-Clemente et al., 2011; Sameni et al., 2006; Zarzoso & 

Nandi, 2001). The approach is to perform ICA on a set of ECG leads, which includes leads 

measured on the abdominal region of the mother and possibly also other leads, such as 

chest ECG leads. The abdominal lead signals are expected to carry both fetal and maternal 

ECGs. Upon successful ICA, recognizing the ICs containing fetal ECG is generally straight 

forward based on the different heart rates. Thereafter, fetal ECG can be reconstructed from 

the recognized ICs carrying fetal ECG information, if desired. A simple method to 

determine which ICs carry fetal or maternal ECG, is to perform beat detection, e.g., by 

highpass filtering followed by peak detection by thresholding, and subsequently calculating 

the heart rates for every IC carrying ECG information. If the ICA source separation is 

successful, ICs with two distinct heart rates can be recognized, with the ICs with the faster 

heart rate belonging to the fetal ECG. An eight-lead ECG measured from the abdominal 

region of a 25-year old mother in the 33rd week of pregnancy is shown in Fig. 4A. In Fig. 4B, 

are shown the ICs resulting from ICA on the signals shown in Fig. 4A. Fetal heart rate can be 

easily assessed from IC1 in Fig. 4B, where as fetal ECG is not directly observable in the 

original measured ECG signals (Fig. 4A). In Fig. 5 are shown the fetal ECG signals 

reconstructed for all the abdominal leads using only IC1 (Fig. 4B). Comparing Figs. 4A and 

5, it is seen that even though no fetal ECG is visually observable in the original abdominal 

measurements (Fig. 4A), every abdominal lead carried fetal ECG information and even some 

fetal heart beat morphology can be observed from the reconstructions (Fig. 5). 

 

 

Fig. 5. Fetal ECG reconstructed for all the abdominal leads shown in Fig. 4A using only IC1 
seen in Fig. 4B. 
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Before ICA, baseline wander was removed from the measured signals by highpass filtering 

with an equiripple FIR filter of length 916, satisfying passband cutoff frequency of 5 Hz 

at -3 dB, stopband attenuation of at least -80 dB below 2 Hz, and passband ripple less than 

1 dB. Note that this filter was not optimized to maximally remove baseline wander, but only 

to provide for the convergence of ICA. With original unfiltered measured signals FastICA 

did not converge. Note that ICA of maternal and fetal ECG does not always succeed. This 

may be due to either the general facts regarding ICA of biomedical signals discussed in 

Section 2.3, or due to too few ECG lead signals available. Considering that abdominal ECG 

leads also record the mother’s abdominal EMG and the EMG of the fetus, the ECG lead 

count must be sufficiently high for the separation to succeed. 

3.5 ICA of amplitude parameterized ECG 

Diagnostics based on amplitude parameterized ECG is common practice. By ECG amplitude 

parameterization, we mean construction of a new set of signals from the signal amplitudes 

at some defined fiducial points of the ECG, such as R peak or ST60 amplitudes (amplitudes 

60 ms after the start of the ST segments), or from time averages of delineated ECG segments. 

ICA of parameterized ECG has been proposed, e.g., by Chawla (2007) and Tanskanen et al. 

(2006a, 2006b). In this Section, we explicitly show that such ECG signal parameterizations in 

fact fulfill the assumption of linearly combined components. Related to parameterized ECG 

and more generally to the ECG wave delineation problem (Sörnmo & Laguna, 2005), an ICA 

based method for locating R peaks have been proposed by Chawla et al. (2008).  

From (2) it can be seen that the mixing matrix A remains unchanged for a new set of ICA 

input signals formed by picking individual columns from X (samples measured at the same 

time instances from all the measured signals). This means that we may freely choose the 

ICA input samples in time as long as all the ECG leads are sampled at the same time.  

One ECG sample (2) measured at time n via the lead l is given by 

検岫健, 券岻 = 布 欠岫健, 倦岻捲岫倦, 券岻挑
賃退怠 , (5)

where L is the number of ECG leads. Time average of M samples of the lth measured lead, 
starting from the sample number n0, is given by 

検銚塚岫健, 券待岻 = な警 布 検岫健, 券岻暢袋津轍貸怠
津退津轍 . (6)

Inserting (5) into (6) we get 

検銚塚岫健, 券待岻 = な警 布 布 欠岫健, 倦岻捲岫倦, 券岻挑
賃退怠 =暢袋津轍貸怠

津退津轍 布 欠岫健, 倦岻 ∙ な警 布 捲岫倦, 券岻暢袋津轍貸怠
津退津轍

挑
賃退怠  

= 布 欠岫健, 倦岻捲銚塚岫倦, 券待岻,挑
賃退怠  

(7)

which means that time averaging measured signals does not invalidate the assumption of 
the linearly combined ICs. From (7) we see that time averaged measured signals are linear 
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combinations of correspondingly time averaged source signals, and that the separation 
matrix remains unaltered.  
A word of warning is in place regarding time averaging. An assumption of ICA is that the 

ICs are nongaussian. According to the central limit theorem, a sum of nongaussian random 

signals is closer to gaussian than the original signals. Here, it means that time averaged ICs 

might be theoretically forbidden. Nevertheless, running ICA on averaged measurements 

may be attempted with due consideration given to the reliability of the results, as discussed 

earlier. Amplitude parameterization without averaging is naturally free of such concerns. 

 

 

 
 
 

 

Fig. 6. (A) ECG measured from a patient with atrial fibrillation during exercise stress test. (B) 
Results of ICA on the signals in (A). Atrial fibrillation is detectable in IC7 and IC8. 
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4. ICA in ECG based diagnostics 

ICA has found several applications in signal processing systems aimed at aiding in 

diagnostics. ECG based diagnostics applications in which ICA has been utilized include, 

e.g., classification of ECG beats (Chou & Yu, 2007; Huang, et al., 2010), analysis of 

parameterized ECG signals (Chawla, 2007; Tanskanen et al., 2006a, 2006b), heart rate 

variability analysis (Zhangyong et al., 2005), arrhythmia estimation (Castells et al., 2005; 

Jiang et al., 2006; Llinares & Igual, 2009), and atrial fibrillation extraction and analysis (Rieta 

et al., 2004; Stridh & Sörnmo, 2001; Zarzoso & Comon, 2010). A nice diagram of an atrial 

source separation system has been presented by Castells et al. (2005). Analyzing sub-signals 

in heart rate variability, Zhangyong et al. (2005) proposed to approach analysis of the effects 

of the autonomic nervous system. For a general description of the effects of blood pressures 

and respiration, see the book by Sörnmo & Laguna (2005). As mentioned, several proposed 

ECG analysis systems employ ICA as one system component, e.g., as in the heart beat 

classification system by Herrero et al. (2005), in which ICA based feature extraction is 

employed in combination with preprocessing, time-frequency feature extraction, and neural 

network based classifiers. 

As mentioned earlier, 12-lead ECG may sometimes be insufficient for efficient ICA based 

analysis of the phenomenon of interest. For example, Zhu et al. (2008) analyzed 72-lead and 

98-lead ECG measurements using ICA and were able to separate the P wave, QRS complex, 

and T wave. Thus, with high-density ECG measurements and ICA based analysis more 

detailed diagnostics applications might be realizable. 

In Fig. 6A, ECG measured from a patient with atrial fibrillation during exercise stress test 
is shown. In Fig. 6B, the results of ICA on the signals in Fig. 6A are shown. In Fig. 6B, 
atrial fibrillation can be identified in IC7 and IC8. For both IC7 and IC8, power spectrum 
estimation using Welch method (Sörnmo & Laguna, 2008) reveals a clear peak around 6–7 
Hz, which translates to the fibrillation rate of 360–420 beats per minute. Corresponding 
power spectral peaks are not found for the other ICs seen in Fig. 6B. Thus, in this case 
power spectral peak detection can also be used to recognize the ICs carrying atrial 
fibrillation information. 

5. Conclusions 

The numerous features making up the measured ECG signals originate largely from 

independent sources, whose contributions are linearly combined at the ECG electrodes. 

These sources are artifacts, such as muscle generated electric signals, and actual ECG 

generator signals originating from the operation of the heart itself. Also within the heart, a 

few independent signal generators can be identified. Due to the inherent independent 

component nature of the measured ECG signals, they lend themselves to be effectively 

processed with ICA, given the proper precautions outlined in this Chapter. Thus, ICA has 

been widely applied to enhance the ECG signals or their specific features to provide for 

enhanced diagnostic value. ICA has also been employed as a component in several 

proposed signal processing system aimed at diagnostics decision support. In this Chapter, 

several of these aspects were reviewed and practical illustrations were provided. To get the 

reader started on ICA of ECG signals, notes on popular available ICA program packages 

were made and the list of references was designed to widely cover the associated fields. We 
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sincerely hope that this Chapter provides valuable practical insight into ICA and to the 

nature of the ECG signals with regard to processing them using ICA, and promotes novel 

ideas for enhancing ECG based diagnosis with the aid of this powerful statistical signal 

processing method. 
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7. Appendix 

In this Appendix, Internet addresses of some ICA related web sites and program packages 

are given. There exist numerous ICA related sites and ICA software packages and scripts 

available in the Internet, and the list provided here is far from exhaustive. The list is 

intended to serve as a starting point for research using ICA. Although some of the listed 

web sites and ICA program packages are concerned with EEG processing, they are 

nevertheless excellent sources of ICA related information and programs. 

 

ICA Central 

Signal and Image Processing Department, Télécom ParisTech, France 

http://www.tsi.enst.fr/icacentral/ 

Independent Component Analysis (ICA) and Blind Source Separation (BSS) 

Including: 

 FastICA 

 Icasso (software for investigating the reliability of ICA estimates by clustering and 
visualization) 

Department of Information and Computer Science, Aalto University, Finland 
http://research.ics.tkk.fi/ica/ 

ICA - CNL Overview 

The Computational Neurobiology Laboratory, Salk Institute for Biological Studies, CA, 

USA 

http://cnl.salk.edu/~tewon/ica_cnl.html 

RobustICA 

Laboratoire d'Informatique, University of Nice - Sophia Antipolis, France 

http://www.i3s.unice.fr/~zarzoso/robustica.html 

EEGLAB 

Swartz Center for Computational Neuroscience, University of California San Diego, CA, 

USA 

http://sccn.ucsd.edu/eeglab/ 
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ICALAB Toolboxes 

Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute, Japan 

http://www.bsp.brain.riken.jp/ICALAB/ 

Mutual Information Least-dependent Component Analysis 

UCL Institute of Neurology, UK 

http://www.klab.caltech.edu/~kraskov/MILCA/ 
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