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1. Introduction

The development of bio-signal analysis systems, mostly, has become a major research field due
to technological progress in signal processing. Electrocardiography (ECG) had been amongst
the most studied type of bio-signals for several decades. Research on this type of signals has
become an important tool for the diagnosis of cardiac disorders. Because of its simplicity, low
cost and a non-invasive nature it is still widely used despite newer available techniques.
This chapter deal with the problem of long-term recording analysis corresponding to
ECG signals of Holter recordings. The motivation for studying this issue focuses on
the development of methods for cardiac arrhythmia analysis to identify particular events
occurring at specific periods of time. Such events are associated to cardiac disorders that
may become potentially harmful to the patient. The developed methods are aimed at further
building up of specialized equipment that will provide clinical monitoring for both the patient
and the specialist, as well as the support for real time diagnosis.The above mentioned will
decrease mortality rates regarding heart problems specially for people living in rural areas.
This technology will benefit them to have access to a quicker and efficient specialized medical
diagnostics.
This chapter focuses on analyzing two major aspects of Holter recordings: The first one
corresponds to the large amount of data stored in such recordings, reaching up to 100.000
heartbeats for its evaluation, which becomes a hard task for the specialist to assess the
information and to decide what heartbeats are important for a determined analysis. There
are cases where only a few beats allow to identify a certain pathology or to prevent deadly
diseases. Therefore, a detailed analysis of the complete record is needed. The second
aspect corresponds to the intrinsic characteristics of the signal, such as heart rate variability,
morphological variety, among others. They may result from problems in the cardiac system
or the patient’s physical and physiological characteristics. In addition, the electrical nature of
ECG signals and its transmission to electronical devices increase the noise sensitivity, which
can completely alter the diagnostic information contained in the signal, changing the training
processes in the identification of cardiac pathologies.
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2 Will-be-set-by-IN-TECH

Consequently, both aspects have been strongly considered in the automatic ECG processing
and analysis procedures to detect, classify, and cluster heartbeats. Thus, several methods
have been reported in the scientific literature to carry out those classification–related
tasks, using either supervised Ceylan & Özbay (2007); De-Chazal et al. (2004); Wen et al.
(2007); Özbay et al. (2006) or unsupervised Cuesta et al. (2007); Lagerholm et al. (2000);
Rodríguez-Sotelo et al. (2009) approaches. Due to a large variability in ECG heartbeat
morphology; the former methods tuned for a specific ECG dataset may decrease performances
in other datasets. In addition, these techniques require a considerable amount of known and
labeled heartbeats which are not feasible when having long–term ECG monitoring.
Regarding unsupervised methods, even though their performance does not usually over-
perform supervised training, they can be applied to a broader set of ECG recordings because
they can dynamically adapt to new signal features. However, additional factors must be taken
into account in the unsupervised analysis, such as highly unbalanced classes, uncertainty of
the number of classes, signal variability, artifacts, etc. This type of analysis is more convenient
for Holter monitoring.
There are still some open issues when implementing unsupervised analyses, such as
computational cost, unbalanced clusters, unknown number of clusters and initial partition.
They are also described in this chapter ending up in an unsupervised analysis methodology
that can be implemented in oriented devices for analysis in real time. The considered
methodology does not require prior training or heartbeat labeling by the specialist and can
be applied to ECG signals that have great variability in time and morphology, identifying the
main arrhythmias set by the AAMI standard.

Objective

To describe a non-supervised methodology for analysing ECG signals of Holter recordings
including preprocessing, feature estimation, relevance analysis and clustering stages, in order
to identify cardiac arrhythmias, according to ANSI/AAMI EC57:1998 standards, and to
provide a proper trade-off between computational cost and performance.

Abbreviations and operators

ECG Electrocardiogram
QRS Complex of three graphical deflections seen on a typical ECG
AAMI Association for the Advancement of Medical Instrumentation
HRV Heart Rate Variability
PCA Principal Component Analysis
WPCA Weighted Principal Componente Analysis
MSE Mean Square Error
GEMC Gaussian Expectation Max-minimization-based Clustering
MSSC Minimum Sum of Squares-based Clustering
DTW ( dtw(·, ·)) Dynamic Time Warping
〈·, ·〉 Inner product
〈·, ·〉A M-inner product regarding matrix A

E {·} Expectation operator

226 Advances in Electrocardiograms – Methods and Analysis
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Recognition of Cardiac Arrhythmia by Means of Beat Clustering on ECG-Holter Recordings 3

2. Cardiac arrhythmias

In general, the pathologies observed using the ECG are divided into three categories:

1. Heart rhythm disturbances, or arrhythmias.

2. Dysfunctions of blood perfusion in the myocardium or cardiac ischemia.

3. Chronic disorders of mechanical structure of the heart, such as left ventricular hypertrophy.

We will describe the characterization and identification of the first type of pathologies above
mentioned. The methods are developed over the entire QRS complexes that are associated
with ventricular electrical activity. They contain clinic important information, for example
their morphology has significant changes in abnormal ventricular heartbeats. QRS complexes
are also present in most of the heartbeats and their signal to noise ratio is the highest among
all waves present in the signal.

2.1 Not imminently life-threatening cardiac arrhythmias

Broadly speaking, arrhythmias can be divided into two groups: The first group includes
ventricular fibrillation and tachycardia, which are life-threatening disorders and require
immediate therapy with a defibrillator. Identification of these arrhythmias and successful
detectors have been developed with high sensitivity and specificity degree. However, this
study just analyzes the second group, which includes arrhythmias that are not imminently
life-threatening but may require therapy to prevent further problems.
According to the AAMI standard (ANSI/AAMI EC57:1998/(R)2003) as is described in
De-Chazal et al. (2004), the following arrhythmia groups shown in Table 1 are of interest to
be examined: Normal–labeled heartbeat recordings (termed N), Supraventricular ectopic beat
(Sv), Ventricular ectopic beat (V), Fusion beat (F), as well as unknown beat class (Q) are taken
into consideration. One or more classes of such arrhythmias can be present during Holter
analysis.
The MIT/BIH arrhythmia database Moody & Mark (1982) is one of the most representatives,
at a scientific level, to evaluate the design of algorithms regarding the analysis of cardiac
arrythmias. The database contains several types of beats within each group of arrhythmias
recommended by the AAMI, for example, in the Normal group we can find the following
arrhythmia types: Left bundle Branch Block (LBBB), Right Bundle Branch Block (RBBB),
Atrial Escape (AE) and junctional Nodal Escape (NE). The Table 1 shows a classification of
arrhythmias previously mentioned.

2.1.1 Group of arrhythmias N

It corresponds to any beat that does not belong to Sv, V, F or Q classes (Table 1), as shown in
Figure 1. Bundle Branch Block (BBB) is a disorder in the conduction of electrical impulses
to the ventricles Braunwald (1993). The electrical impulse conduction to the ventricles is
carried out via the His bundle and its divisions: right and left bundle branch. When one
of these branches is altered, the electrical impulse spreads throughout the ventricular muscle
itself rather than spreading in the Purkinje system. This reduces the conduction velocity. In
case there is blockage in one of the branches, the complex will take more time than normal
Guyton & Hall (n.d.). Branch blocks also originate morphological changes (R-prime) within
the QRS complex.
In the LBBB, cardiac depolarization spreads much faster in the right ventricle compared to the
left ventricle. Therefore, the left ventricle remains polarized longer than the right one. This is

227Recognition of Cardiac Arrhythmia by Means of Beat Clustering on ECG-Holter Recordings
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AAMI heartbeat Description MIT/BIH heartbeat types

N Any beat not in the Sv,V,F Normal (N), Left Bundle Branch Block (LBBB),
or Q classes Right Bundle Branch Block (RBBB),

Atrial Escape (AE),
Nodal (junctional) escape beat(NE)

Sv Supraventricular ectopic beat Atrial Premature (AP),
Aberrated Atrial Premature (aAP),
Nodal (junctional) Premature (NP),
Supraventricular Premature (SP),

V Ventricular ectopic beat Premature Ventricular Contraction (PVC),
Ventricular escape (VE)

F Fusion beat Fusion of ventricular and normal (fVN),
Fusion of paced and normal beat (fPN)

Q Unknown beat Paced (P), Unclassified (Q)

Table 1. Set of analyzed arrhythmias according to the AAMI standard.

observed in left precordial leads (V5 and V6) through an extension and a morphological change
(RR’) of the QRS. Besides, in the RBBB, the impulse conduction through the right ventricle is
delayed regarding the left one, in this way, the QRS is prolonged and generates a morphology
known as rsR observed in the right precordial leads (V1 and V2).
The BBB does not necessarily mean heart disease, since it can occur also in healthy patients.
It may have a good prognosis and may not progress to a higher degree block Micó & Ibor
(2004). However, in some studies Brugada et al. (1998); ginsburg et al. (2006); Pabón (2001) it
was found that the presence of RBBB is correlated with arterial hypertension, heart failure,
coronary disease, pulmonary embolism, and increased mortality and the presence of LBBB
increases the risk of coronary heart disease, mortality and ventricular myocardial infarction
Balaguer (n.d.), Li et al. (n.d.). Thus, it is necessary to detect such arrhythmias because of the
prognostic value they have.
The AE are characterized by occasionally appearing and interrupt the pace of the rate base.
The most common are those identified ahead of that cadence or extrasistoles and those
delayed or escape heartbeats. Depending on the morphology of the waves,it will be possible
to know the origin of the heartbeats (atrial, nodal or ventricular) and the type of the existing
AtrioVentricular (AV) conduction.

2.1.2 Group of arrhythmias type Sv

It includes both, atrial and supraventricular premature beats as well as their variants. An
example is illustrated in Figure 2. An Atrial Premature Beat (APB) is also called Atrial Ectopic
Beat (AEB) or Premature Atrial Contraction (PAC). It is an extra heartbeat caused by electrical
activation of the atrium from an abnormal site before a normal heartbeat happens. Generally,
APBs occur in healthy people that rarely have symptoms. It is common among people who
have lung problems, specially in adults instead of young people. Recent studies on risk
factors for stroke have shown that frequent APB heartbeats are an independent risk factor
for suffering a stroke Rodríguez-Sotelo et al. (2009).

228 Advances in Electrocardiograms – Methods and Analysis
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(a) Normal heartbeat
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(b) LBBB beat
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(c) RBBB beat
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(d) Atrial Escape beat
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.9
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(e) Nodal escape beat

Fig. 1. Heartbeats of N group, extracted from MIT/BIH database.

Although, APBs are often considered a benign disorder, it has been shown in clinical practice
that frequent APBs could be an early symptom of heart failure and may precede atrial
fibrillation.
Frequent APBs can be an indicator for other risk factors, such as severe hypertension,
asymptomatic atherosclerosis, structural abnormalities causing stroke, calcified mitral valve
or enlargement of the left atrium. These risk factors might increase in the formation of
thromboembolism Engström et al. (2000).
Experts have usually analysed Holter recordings for detecting APB beats due to their
frequency and they have found that detecting them is troublesome because of their nature.
They have shown similar morphological characteristics in contrast to normal heartbeats which
accounts for the majority. Particularly, ventricular depolarization and repolarization have
displayed similar morphology between QRS complexes and T waves. Atrial depolarization
has also been used for identifying such beats, it means analysing PR intervals and P waves.
Nevertheless, there may exist beats that do not have P waves, since beats overlap with a
previous T wave which results in a slight increase of its amplitude. Heart rate variability
(HRV) is another more effective technique used to detect APB heartbeats.
From a physiological point of view, before there is a completion of ventricular repolarization,
there is a premature excitement in the atrial area different from the sinus node. This fact results
in a premature beat. Besides, there will be a delay in the activation of the sinus node for the
next cardiac cycle, triggering both an increase and a later decrease of the heart rate. The HRV’s
drawback is that if there is continuous premature beats, the pattern just described disappears.
In some cases this is interpreted as normal pace beats reducing possibilities to succeed in the
detection of APB beats through this technique.

229Recognition of Cardiac Arrhythmia by Means of Beat Clustering on ECG-Holter Recordings
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(d) Supraventricular Premature
Beat

Fig. 2. Heartbeats of Sv group, extracted from MIT/BIH database.

2.1.3 Group of arrhythmias type V

A ventricular premature beat (ventricular ectopic beat, premature ventricular contraction) is
an extra heartbeat resulting from abnormal electrical activation originated in the ventricles
before a normal heartbeat occurs. See Figure 3. The main symptom is a perception of a skipped
heartbeat. ECG is used to diagnose such condition. In some avoiding stress, caffeine, and
alcohol may be usually enough to treat this condition. Ventricular premature beats are more
common in adults. This arrhythmia may also be caused by physical or emotional stress, intake
of caffeine (in beverages and foods) or alcohol, or use of cold or fever remedies containing
drugs that stimulate the heart, like pseudoephedrine. Other causes include coronary artery
disease (especially during or shortly after a heart attack) and disorders that cause ventricles
to enlarge, like heart failure and heart valve disorders.
VE beats are hardly found in ECG of 12-leads, therefore Holter recordings are used for their
detection Holter (n.d.). VEs can be identified following certain criteria of morphological
features of the ECG Dave et al. (2005); Friedman (1989):

• QRS duration: It is higher than the average QRS dominant. It is due to an abnormal
activation of the ventricle.

• Different morphologies in the QRS complexes are present: There are not preceding P waves
prematurely. T wave is often found in the opposite direction of R wave. If heartbeats
originated from a single focus, all the VPC would have the same morphology, although
different from the normal one.

• RR intervals: They are shorter than RR average and later a complete compensatory pause
can be observed in the heartbeat.

230 Advances in Electrocardiograms – Methods and Analysis
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Recognition of Cardiac Arrhythmia by Means of Beat Clustering on ECG-Holter Recordings 7

• VEs originated from the left ventricle normally produce heartbeat patterns of RBBB and the
ones originated from the right ventricle normally produce heartbeat patterns associated
with LBBB.

A ventricular escape beat is another type of ventricular extrasystole. It is a self-generated
electrical discharge initiated by the ventricles that causes their contraction. It has been stated
that the heart rhythm begins in the atria of the heart and is subsequently transmitted to the
ventricles. The ventricular escape beat is followed after a long pause in ventricular rhythm to
prevent from a possible cardiac arrest. It indicates a failure of the electrical conduction system
of the heart to stimulate the ventricles (This would lead to the absence of heartbeats, unless
ventricular escape beats occur).
Ventricular escape beats happen when the rate of electrical discharge reaches the ventricles
and they in turn alter the base rate. An escape beat usually occurs around 23s after an electrical
impulse has failed to reach the ventricles.

0 0.42 0.69s-2

.4

mV

(a) Premature Ventricular
Contraction (PVC)

0 2.222s-.4

0.2

mV

(b) Ventricular escape beat

Fig. 3. Heartbeats of V group, extracted from MIT/BIH database.

2.1.4 Group of arrhythmias type F

Fusion heartbeats develop when either the atria or the ventricles are activated by two
simultaneously invading impulses and they can be assessed in P wave or QRS complex of the
ECG. An atrial fusion beat results when: the sinus beat coincides with an atrial ectopic beat,
two atrial ectopic beats coincide, or an atrial or sinus beat coincide with retrograde conduction
from a junctional focus. A ventricular fusion beat results when: a ventricular beat coincides
with either a sinus beat, a ventricular ectopic beat, or a junctional beat. A couple of examples
are shown in Figure 4.

2.1.5 Group of arrhythmias type Q

Unclassified heartbeats (heartbeats Q) correspond to heartbeats that do not contain relevant
medical information, mainly due to some external conditions as artifacts, electrode
disconnection, saturation of acquisition system, or heartbeats by pacemakers. In some
systems, it is necessary to isolate this kind of heartbeats from the training space in order to
give an adequate diagnosis. Normally, These heartbeats are considered as outliers because of
their low importance in the diagnosis. Figure 5 shows two types of Q heartbeats: Paced beat
and Unclassified beat.

231Recognition of Cardiac Arrhythmia by Means of Beat Clustering on ECG-Holter Recordings
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0 0.42 0.69s-1

1.4

mV

(a) Fusion of ventricular and
normal beat
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(b) Fusion of paced and normal
beat

Fig. 4. Heartbeats of F group, extracted from MIT/BIH database.

0 0.55 0.97s-2

1.4
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(a) Paced beat

0 0.55 1.11s-2

-.12

mV

(b) Unclassified beats

Fig. 5. Heartbeats of Q group, extracted from MIT/BIH database.

3. Ambulatory electrocardiography

During the last two decades, acquisition systems for physiological signals have been
developed and improved. It has been stated that they are lighter, smaller and capable of
recording multiple signals up to 48 hours. These systems also called ambulatory record
systems are used in ECG analysis to detect infrequent arrhythmias or transient abnormalities
in heart function often associated to everyday life stress, besides transient ischemic events
or silent myocardial ischemia. This type of disorders cannot be detected in short-time
ECG or 12 leads ECG recordings. Holter recorders have been used to detect this type of
abnormalities. Nowdays, signals are recorded in flash-type semiconductor memories, which
can be transferred to a workstation for further analysis J. Segura-Juárez et al. (2004).
On the other hand, the increase of health costs makes an urgent need to develop ambulatory
systems to reduce the number of patients going to hospitals. Therefore, it is necessary the
design of a portable, low cost, high performance and simple system that allows an automated
analysis and diagnosis. Such system has to fulfill certain requirements such as integrate
various data analysis techniques, for instance: signal processing, pattern recognition, decision
making and human-machine interaction. The existing portable devices have improved in
size and performance due to technological reasons, the need to record the signal over a
specific period of time, which is constrained by the storage capacity of the devices. For
example, a typical signal of 24 hours consists of approximately 100.000 heartbeats that can be
morphologically grouped (clustered) into a much smaller number of classes. Most of the classes
where the heartbeats have a typical pattern, it is enough to know the number of heartbeats and
a representative template of the morphology for grouping them, but in the time span where
cardiac activity presents anomalies or symptoms of illness, the whole recording is needed.

232 Advances in Electrocardiograms – Methods and Analysis
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Recognition of Cardiac Arrhythmia by Means of Beat Clustering on ECG-Holter Recordings 9

This is only possible if the portable device for analysis is able to do both record the signal, and
process it.
Some technical issues with regard to the ECG processing have been discussed, such as the
problem of the wide variability into signal morphology, not only among patients, but also
due to patients movements, electrical conduction changes, body characteristics, among others.
In addition, the ECG signal is contaminated by several noise sources, both external sources
(interference of the power line, movement of the electrodes) and biological sources (muscle
movement causing high-frequency interference and breathing causing baseline displacement).
Because of this, it is not possible to have a general training set that takes into account all
cases of interest. That is the reason why, this kind of analysis requires special care to choose
appropriate techniques for signal conditioning (pre-processing), since the quality of input
signal for further classification has a direct impact on its performance.

4. A novel methodology for analysis of cardiac arrhythmias

Figure 6 depicts the methodology proposed for Holter arrhythmia analysis that considers
the following stages: a) Preprocessing, b) Feature extraction, c) Analysis of relevance, and
c) Clustering. As input data, Holter recordings are initially preprocessed to reduce the
influence of interferences and artifacts. Next, recordings are segmented based on estimation of
fiducial point of QRS complexes. Heartbeat features extracted using variability, prematurity,
morphology and representation measurements of the heart rate variability, are calculated by
weighted linear projection. After that, projected data is grouped by soft clustering algorithm.
The restrictions for reducing computational load lead to framing along the time axis the input
data into a equal number (Ns in Figure 6) of successive divisions of the Holter recordings,
where each frame is separately processed. Therefore, according to the assumed criterium of
homogeneity between two given consecutive frame divisions, resulting clusters can be either
merged or split. Finally, such clusters, which represent different types of arrhythmia present
in the recording, are analyzed by the specialists, and serve them as a supporting tool for the
medical diagnosis.

4.1 Preprocessing and segmentation

The heartbeat set from recorded Holter ECG signals is to be processed. Let s(t), that is subject
to discrete time transformation, s = {sk}; where sk � s[kTs], being k ∈ N, and Ts the
sampling period. At the beginning, recordings are normalized by the z–scores approach to
prevent biasing, i.e., s0 = (s− E {s})/(|max{s}|), where the notation E {·} stands for the
expectance operator. Then, unbiased vector s0 is filtered to reduce signal disturbances and
artifacts. Specifically, power line interference is reduced using an algorithm based on adaptive
sinusoidal interference canceller that provides significant signal–to–noise ratio improvement
Martens et al. (2006). Also, the baseline wandering is cancelled out by the method described
in Roddy (1991) that is based on a two–pole, phase–compensated filter, developed for real–
time processing of long ECG segments. Although, the signal is also partially filtered, this
preprocessing is supposed not to affect the separability among the underlying heartbeat
groups.
R–peak locations are previously estimated accordingly to the procedure given in
Laguna & Sörnmo (2005), since the analysis of arrhythmias under consideration is
supported on fixed changes of both QRS complex, as well as the HRV. The following
sequential procedures are included: band–pass filtering, R peak enhancement and adaptive
thresholding. Furthermore, their segmentation is carried out for a fixed window length

233Recognition of Cardiac Arrhythmia by Means of Beat Clustering on ECG-Holter Recordings
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Fig. 6. Block diagram of proposed unsupervised methodology for Holter monitoring of
cardiac arrhythmias.

to avoid analysis over QRS complexes of different length, that is, each j–th complex dj is
accomplished as follows: dj = {s0

k}; ∀k ∈ [lj − aFs, lj + bFs], where lj is the R–peak time
location of the j-th heartbeat and Fs = 1/Ts is the sampling frequency. Nonetheless, it must
be quoted that some morphologies such as VE, might exhibit S–waves lasting exceptionally
more than usual, and therefore, they can be missed if using such a short processing window.
QRS width is fixed to be of 200 ms length, i.e., a = b = 0.1.

4.2 Feature extraction

Heartbeat characterization is achieved by taking into consideration the wide set of features
previously proposed for arrhythmia analysis over Holter ECG recordings Cuesta et al. (2007);
Cvetkovic et al. (2008); Lagerholm et al. (2000); Rodríguez-Sotelo et al. (2009). The whole set
of studied features can be divided into the following groups, as shown in table 2:

4.2.1 Prematurity and variability based features

When considering Sv labelled arrhythmias, their morphology is highly similar to the normal
heartbeat shape. Therefore, the following set of features, which are extracted from variability
of cardiac rhythm, are mainly considered Rodríguez-Sotelo et al. (2009):

– HRV–derived features (x1, x2, x3): Interval parameters providing information about
sequences of heartbeats with unusual timing, namely De-Chazal et al. (2004):

x1 = lj − lj−1, (RR interval)
x2 = lj−1 − lj−2, (pre − RR interval)
x3 = lj+1 − lj, (post − RR interval)

234 Advances in Electrocardiograms – Methods and Analysis
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Recognition of Cardiac Arrhythmia by Means of Beat Clustering on ECG-Holter Recordings 11

Index Type Description
x1 HRV and

Prematurity
• RR interval

x2 • pre-RR interval
x3 • post-RR interval
x4 • Difference between RR and pre–RR intervals, x4 = x1 − x2
x5 • Difference between post–RR and RR intervals, x5 = x3 − x1
x6 • Continuous APB∗ heartbeat type, (eq. 1)
x7 Morphology • QRS matching by Dynamic time warping
x8 and representation • Polarity of QRS complex
x9 • Energy of QRS complex

x10, . . . , x19 • First 10 Hermite–based coefficients
x20, . . . , x90 • Db2 (A4: 20 − 25, D4: 26 − 31, D3: 32 − 41, D2: 43 − 58, D1:

59 − 90)
x91, . . . , x100 • var{A4, D4, D3, D2, D1}, max {A4, D4, D3, D2, D1}
The notation APB∗ stands for Atrial Premature Beat, being a sort of S heartbeats.

Table 2. Feature set considered for Holter monitoring of cardiac arrhythmias.

It should be noted that atrial (S) and ventricular (V) ectopic beats manifest abrupt changes
on fiducial point intervals, which in turn, affect the respective values of heartbeat interval
features.

– Prematurity features (x4, x5, x6): Defined parameters, x4 = x1 − x2 and x5 = x3 − x1, are
assumed to be relevant, since they make possible the identification of S type arrhythmia,
when reflecting the increase or decrease of heart rate. Besides, if any heartbeat occurs after
another S–labeled event, it is regarded as normal, and the above mentioned features will
change of sign. Feature x6 accounts for the number of consecutive S that is also sensitive
to an increase of the heart rate, exceeding the normal range set for x4. The parameter x6 is
expressed as follows:

x6 =

(
x3

x1

)2

+

(
x2

x1

)2

−
(

1
3

3

∑
i=1

x2
i log(xi)

2

)
. (1)

The first and second squared terms in Eq. (1) are sensitive to abrupt changes of heart rate,
whereas, the last addend is inferred as unnormalized Shannon entropy, which increases
the value of x6 whenever heart rate is steadily increasing.

4.2.2 Morphological and spectral features (x7, . . . , x100).
Since most analyzed arrhythmias change the shape of QRS complexes, their characterization
can be achieved by commonly used time and spectral–based techniques Cuesta et al. (2003).
Therefore, regarding the former techniques, the following features are worth to be considered:
A couple of features that are sensitive to abnormal QRS complexes: x7, It computes a
morphological dissimilarity by means of Dynamic Time Warping (DTW) approach between
current QRS complex and linearly averaged QRS complex of the last n heartbeats Cuesta et al.
(2003).

x8 =
∣∣∣max{dj}/min{dj}

∣∣∣ , being dj the current QRS complex. This feature is sensitive

to ventricular arrhythmias that exhibit abnormal QRS complexes such as ventricular
extrasystoles or branch blocks Cuesta et al. (2007). Because of the noticeable morphological
characteristic of branch block heartbeats, the QRS energy, which is a straightforward feature
to detect previously described type of heartbeats, is estimated as x9 = ∑

Ld

i=1 dj[i]
2, where Ld is

the processing length of the j-th QRS complex.
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On the other hand, spectral–based representation features used in the field of signal
compression are also taken into account, since only a few coefficients are needed to reconstruct
the signal Lagerholm et al. (2000). In this line of analysis, the Hermite coefficient hi related to
i-th order base is used and calculated as follows:

hi =
1
Fs
〈dj, φσ

i 〉, φσ
i (t) =

e−t2/2σ2

√
2ii!

√
π

Hi(t/σ) (2)

where 〈·, ·〉 is the inner product, Hi is a Hermite polynomial of degree i and σ a parameter
determining the window length.
Wavelet decomposition coefficients are also studied. Specifically, 4–level coefficients of
Daubechies–2 class (dB2) are computed. They have been proved to describe properly
different heartbeat morphologies, as discussed in Cvetkovic et al. (2008). The following
statistical descriptors are extracted from decomposition coefficients: mean value, variance,
and maximum values are estimated.
As a result, given an i-th observation heartbeat, the respective feature vector {xi ∈ R

p : i =
1, . . . , n}, p = 100, is assumed to be the input training space toward arrhythmia classification
stage.

4.3 Analysis of relevance

Since there is a huge amount of information stored during Holter monitoring, classification of
heartbeats usually becomes quite time–consuming; that is the reason why any automated
processing of the recording would be of benefit; particularly, the dimensional reduction
procedure can be considered. In this sense, and based on multivariate representation
of input data, a direct approach is the use of linear decomposition methods to decrease
the dimensionality of the resulting feature space from heartbeat characterization. Among
linear decomposition methods, the PCA and its variations have shown to be a good
alternative for this aim Perlibakas (2004). Moreover, the non–parametric nature, feasibility
of implementation and versatility are some advantages of PCA. Nonetheless, Holter
monitoring of cardiac arrhythmias is an application where the conventional PCA might not be
recommended because it gives the same importance to all observations, being sensitive to the
presence of outliers and noise in the data. In fact, strong asymmetry among class observations
requires a properly selection of heartbeat features to provide convenient separability among
heartbeat types Cuesta et al. (2007); Sotelo, Frau, Ordónez, Domínguez & Novak (2009). To
that end, a weighted version of PCA (termed WPCA) is used, where introduced weights are
given depending on variable–wise relevance criteria; this in turn makes possible to assess the
relative importance of each feature (variable) immersed on the original data representation by
using a kind of weighting factor. The following two linear projection methods to estimate the
feature–wise weighting factor, namely, Minimum Square Error (MSE) and M–inner product
are described in the next paragraphs.
Given a set of p-dimensional vector data, {xi}, being centered, i.e., E {xi} = 0, ∀i, where all
n observations can be aligned in the input matrix X = [x1 | · · · | xn]T ∈ R

n×p, then the
respective linear projection is Y = XV , Y ∈ R

n×p. Generally, the ortonormal projection is
performed to a q–dimensional space (q < p), being V ∈ R

p×p an orthogonal matrix, where
the representation quality of X is measured by using a given error function ε between the
original data and the truncated orthonormal projection V̂ ∈ R

p×q. This can be expressed as
a distance measure: ε = d(X , X̂), where X̂ = Ŷ V̂ T, being X̂ ∈ R

n×p the truncated input
matrix. There exist several alternatives for calculating this distance, such as, the Minkowski
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distance (Lp metrics), square Euclidean distance, angle–based distance, Mahalanobis, among
others, as discussed in Perlibakas (2004). Commonly, analysis of relevance methods aim to
minimize ε.
Denoting X̃ = XW as the weighted data matrix, we can estimate a set of their q most relevant
eigenvalues. The weighted relevance (weighting covariance) matrix is introduced as follows
Yue & Tomoyasu (2004):

Σ̃X = X̃TX̃ = W TXTXW , Σ̃X ∈ R
p×p (3)

where W ∈ R
p×p is a diagonal weighting matrix.

4.3.1 MSE–based approach

The main goal of conventional PCA is to find out the optimum fitting for a given data in
terms of least squares. This technique has been considered as the simplest eigenvector–
based multivariate analysis, where the linear decomposition of matrix X by singular value
decomposition takes place, X = UΛXV T = ∑

p
i=1 μiuiv

T
i . Matrix ΛX = diag(μ) is

the singular values matrix, U ∈ R
n×n corresponds to eigenvectors of XX

T, and V holds
eigenvectors of Σ̃X when W = diag(1p) and 1p is a p-dimensional all–ones vector.
Therefore, the minimum square error (MSE) distance is achieved to assess the representation
quality, which yields to the following minimization problem:

min
V̂ T

{ε} = E

{
min{(X − Ŷ V̂ T)T(X − Ŷ V̂ T)}

}
(4)

Let, x(l) ∈ R
n×1, l = 1, . . . , p, the l-th feature of the input matrix, X that can be

approximated by its truncated version in a q-dimensional ortonormal space by the following
linear combination:

x̂(l) =
q

∑
i=1

c
(l)
i ui (5)

then, the MSE value between the original and the reconstructed features is estimated as,

e2 = E

{
(x(l) − x̂(l))T(x(l) − x̂(l))

}
= E

⎧
⎨
⎩(

p

∑
i=q+1

c
(l)
i ui)

T(
p

∑
i=q+1

c
(l)
i ui)

⎫
⎬
⎭ (6)

that can be minimized if maximizing its complement, and therefore the following expression
takes place:

E

{
(

q

∑
i=1

c
(l)
i ui)

T(
q

∑
i=1

c
(l)
i ui)

}
= E

{
q

∑
i=1

(c
(l)
i )

2
}

(7)

The coefficients of the linear combination in Eq. (5) are given by c
(l)
i = μiv

(l)
i where v

(l)
i ,

estimated for the matrix V , is the i-th element of the respective l feature. Replacing c
(l)
i , the

expression (7) is rewritten as follows:

E

{
q

∑
i=1

(c
(l)
i )

2
}

= E

{
q

∑
i=1

(μi)
2(v

(l)
i )2

}
= E

{
q

∑
i=1

λi(v
(l)
i )2

}
(8)
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where λ = [λ1, . . . , λp] is the vector of the eigenvalues of Σ̃X . As a result, generalizing the last
expression for the p features, and having the simple average as an estimation of expectance
operator, then the relevance measure is assumed as follows:

ρ =
1
q

q

∑
i=1

λiνννi, (9)

where νννi is a vector composed by the square of each of vi elements. It should be remarked that
vector ρ yields a relevance index, which measures the accumulated variance of eigenvalues
and eigenvectors, and such vector is used as a weighting factor. Then, accordingly to the
quadratic form of the generalized covariance matrix (see Eq. (3)), the weighting matrix
can be obtained as W = diag(

√
ρ). Lastly, the commonly known criterion of variance

explained is used to find q, which rejects the elements that do not significantly contribute
to the accumulated variance of data set. In addition, since the first principal component holds
most of explained variance, the particular case q = 1 is also analyzed throughout this section.

4.3.2 M-inner product approach

This case considers the M-inner product as an error measure between the original variable
and its orthonormal projection. Let Up ∈ R

p×p be an arbitrary orthonormal matrix, and

x̂(l) = u
(l)T

p X the linear combination to estimate the l-th feature. Then, the error measure for
each feature is given by:

dA(x(l), x̂(l)) = 〈x(l), x̂(l)〉A = x(l)TAx̂(l) (10)

where 〈·, ·〉A is the M-inner product regarding a symmetric positive definite matrix A ∈
R

n×n, which is related to the inner product between observations, i.e., A = ∑
p
i=1 xix

T
i . If

definition for the l-th estimated feature x(l), given by Eq. (5), is replaced in Eq. (10), the
following expression holds:

(x(l) − x̂(l))TA(x(l) − x̂(l)) =

⎛
⎝

p

∑
i=q+1

c
(l)
i ui

⎞
⎠

T

A

⎛
⎝

p

∑
i=q+1

c
(l)
i ui

⎞
⎠ (11)

that can be minimized if maximizing its complement, i.e, x̂(l)TAx̂(l). Thus, replacing A and
x̂(l) given in Eq. (5), and generalizing for all variables, the following expression yields the
value:

tr(XTAX) = tr(XTXXTX) =
q

∑
i=1

λ2
i (12)

where λ are the eigenvalues of XXT.
Furthermore, the eigenvalues of X̂TX̂ matrix are the first p eigenvalues of X̂X̂T, then,
maximizing Eq. (12) is equivalent to maximizing the expression:

tr(XXTXXT) = tr(AA) =
q

∑
i=1

λ2
i (13)

Next, establishing a weighted relevance matrix, Aα = XWWXT, where W = diag(
√
α)

and α ∈ R
p×1 is a weighting vector, and assuming the orthonormal invariance criterion
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Algorithm 1 Power-embedded Q − α method Wolf & Shashua (2005)

1. Initialize: M = XT, chose at random k × n matrix Q(0) (Q(0)TQ(0) = In), mi ← (mi −
μ(mi))/‖mi‖.
2. Make G : gij = (mT

i mj)m
T
i QQTmj

3. Compute α as the eigenvector associated with the major eigenvalue of G.

4. Compute auxiliar matrix Cα = MTdiag(α)M

5. Compute the orthonormal transformation: Z[r] = Cα[r]U [r − 1]

6. Compute QR decomposition: [Q[r],R] = qr (Z[r])

7. Make r ← r + 1 and return to the step 2

Yu & Shi (2003), the optimization problem can be rewritten as:

max
α

tr(QTAαAαQ) =
q

∑
i=1

λ2
i (14)

s.t. αTα = 1, QTQ = I

being matrix Q ∈ R
n×n an arbitrary orthonormal matrix that will be explained in detail

further. Besides, the weighting vector is adjusted to be
√
α to make the optimization problem

in hand to be bilinear regarding α, thus, X̃ = Xdiag(
√
α). The weighting vector α and

the orthonormal matrix Q are determined at the maximal point of the optimization problem.
Finally, the objective function can be rewriting as the following quadratic form:

max
α

αTGα (15)

s.t. αTα = 1

where G ∈ R
p×p is a matrix with gij = (mT

i mj)m
T
i QQTmj, i, j = 1, . . . , p, elements and

M = XT. As a consequence, the previous equation becomes the objective function to be used
in the unsupervised Q − α algorithm, as described in Wolf & Shashua (2005).
It must be quoted that the matrix G is obtained from an arbitrary orthonormal transformation,
it is necessary to apply an iterative method to tune the matrix Q and the weighting vector
α. From the optimization problem, described by Eq. (15), it can be observed that vector α

points out to the direction of most relevant features, whereas matrix Q means its rotation.
Therefore, the adjustment of these parameters should be mutually dependent and must be
achieved on an alternating way, as shown in algorithm 1. In steps 5 and 6, it introduces an
auxiliar orthonormal projection of Cα and QR decomposition, respectively, to refine matrix
Q at each iteration. Then, the q most relevant features are those elements of M that satisfy
∑

q
i=1 α2

i ≈ σe/100, for a given percentage fraction σe of explained variance.
Convergence of the algorithm 1 is discussed in detail in Wolf & Shashua (2005) (with r < 5
iterations). However, an indicator of the algorithm convergence could be the change of the
vector α, i.e, the difference between the current and preceding vector: ‖α[r]−α[r − 1]‖ < δ,
where δ ≥ 0 stands for any needed accurate amount, being χ[r] the achieved value of χ at the
r-th iteration.
The procedure for computing the weighting vector, α, is refined iteratively, and the whole
data set is to be used, where the orthonormal matrix is updated per iteration to get the
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Algorithm 2 Projection of weighted data.

1. (Initialization): Normalize X , μ(xi) = 0, ‖xi‖ = 1, 1 ≤ i ≤ p

2. Choose a method to find the weighting vector w

(a) w ← √
α, Eigenvector corresponding to the largest eigenvalue of G (algorithm 1, r ←

last iteration)

(b) w ←
√
α̂, Eigenvector corresponding to the largest eigenvalue of (XTX) ·2 .

(c) w ← √
ρ, see Eq. (9), removing eigenvectors [q + 1, . . . , p] that do not significantly

contribute to variance.

(d) w ←
√
ρ̂, see Eq. (9), q = 1.

3. Weight original data X̃ = Xdiag(w)

4. Compute principal components Ṽ of X̃
5. Project data Y = X̃Ṽ

subset of relevant features. As a result, the computational load may increase. Nonetheless,
based on variance criterion, it can be inferred that the first q components of x̂(l) hold the
most informative directions of weighting data. Thus, the l (q + 1 ≤ l ≤ p) directions do
not contribute significantly to the explained variance. Time calculation when computing
the vector α can be diminished just to one iteration with no significant decrease of accuracy
Wolf & Shashua (2005). With this in mind, the feature relevance may be preserved optimizing
the p original variables or the first q variables. Indeed, maximizing tr(QTAαAαQ)
is equivalent to maximize tr(AαAα) = tr(Xdiag(α)XTXdiag(α)XT). Since, this
expression is bilinear regarding α, the objective function can be re-written as αTHα, where
Hij = tr(xT

i xix
T
j xj) = xix

T
j tr(xT

i xj) = (xix
T
j )

2. Accordingly, it can be inferred that the
approximate vector of relevance α̂ is the eigenvector corresponding to the largest eigenvalue
of (XTX)·2 (where notation (χ)·2 stands for the square of each one of the elements of the
involved matrix χ).
In conclusion, the weighting factor is related to either vectors: α (complete case) and α̂

(approximate case). The weighting matrices become Wα = diag(
√

α) and Wα̂ = diag(
√

α̂),
respectively.

4.3.3 Projection of weighted data

As described above, the data are weighted by the diagonal matrix W = diag(w), where
w is the weighting vector calculated using either the MSE or the M inner-product-based
approaches previously explained. Therefore, weighting data X̃ = XW is linearly projected,
so: Y = X̃Ṽ , where Ṽ are the principal components of X̃, Ṽ = V , if W = diag(1p). The
achieved procedure for relevance analysis and rotation of weighted data based on described
methods is described in algorithm 2.

4.4 Clustering of cardiac arrhythmias

The projected weighted data Y are clustered in three stages. Firstly, the estimation of number
of groups is carried out by means of spectral analysis of affinity measure, as described
in Ng et al. (2001). Secondly, center initialization is achieved based on the J–H–means
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clustering algorithm Hansen & Mladenovic (2001), where objective function corresponds to
the Minimum Sum–of–Squares (MSS), as suggested in Rodríguez-Sotelo et al. (2009). To carry
out the above process, a random initialization is developed where every point yi out of a
sphere of radius ǫ has a center at ζj, j = 1 : k (ζj is the j-th of the k centers)and is considered
a center candidate. yi replaces a current center ζj. Once updating and computing the MSS,
the process is repeated as long as MSS reaches the optimal value. The process stops whenever
there is no further MSS optimization. This initialization is aimed to avoid local minima. Lastly,
the third clustering stage computes the final partition based on the Gaussian Expectation
Maximization Clustering (GEMC) algorithm Cvetkovic et al. (2008), having as an objective
function a linear combination of centered gaussian distributions over each centroid:

θ(Y , ζ) = −
n

∑
i=1

log

⎛
⎝

k

∑
j=1

p(yi | ζj)p(ζj)

⎞
⎠ , (16)

where p(yi | ζj), assumed as gaussian distribution centered at ζj, is the probability of yi , and
p(ζj) is the a priori probability of the j-th cluster. For sake of simplicity, the log function is
used, while the minus sign accounts for minimization. Besides, the GEMC employs a soft
member function, fm(·), assigning a membership level to yi for every cluster, as described in
Hamerly & Elkan (2002).
Further decreasing of computational load can be reached if sectioning the whole input
recording into divisions for localized processing. At the beginning, a proper length of
frame division to be clustered is estimated. It is assumed that its validity measures provide
an equivalent performance compared to the full length processing of input recordings.
Selecting proper number of localized clustering segments is constrained by the following
restrictions: twice of number of features must exceed the amount of heartbeats per segment,
and the minimum computational cost should be reached. At the end of the grouping step,
combination of clustered segments is developed based on estimation of the proximities
between each chosen cluster and the remaining clusters.
In this regard, DTW algorithm, noted as dtw(·, ·), is used as a dissimilarity measure among
heartbeats related to the set of centroids of a given cluster, as detailed in Cuesta et al. (2007).
Thus, considering P i = {J i

1, . . . ,J i
ki} as the partition estimated for i–th segment, where J i

ji

is the j-th cluster associated to i-th segment and ki is the number of assumed groups for the
same partition, {ζ i

1, . . . , ζ i
ki} are the centroids of i–cluster, and Y (ζ) stands for the projected

data related to ζ centroid, then, a combination of clusters follows next rule:

υ(ji, ji−1) = dtw
(
y(ζ i

ji ),y(ζ i−1
ji−1 )

)
(17)

that is, if an estimated measure υ(ji, ji−1) lies within assumed proximity interval, then
both chosen clusters are to be combined. Otherwise, following comparison of cluster is
accomplished. Nonetheless, if there is any cluster not fulfilling the proximity measure
during the current i-th iteration, it is no discarded but considered later during the coming
next iterations. Therefore, incorrect clustering of minority classes is avoided whereas
computational load is decreased.

4.5 Performance measures

clustering index, as a validity measure, is expressed as the relationship between the expected
value of the GEMC objective function, given in Eq. (16), and assessed if considering an
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ideal partition (θ2), and the current value estimated for the final partition (θ1), i.e θ1/θ2, as
introduced in Sotelo, Peluffo, Frau, Ordónez & Domínguez (2009). Since θ2 ≥ θ1, one might
infer that index is regarded to a proper clustering if its value lies closer to 1. It must be quoted
that the proposed above measure is not sensitive to the assumed number of clusters.
Another cluster validity measure that can be considered is the clustering quality developed
by spectral graph partitioning Yu & Shi (2003), when a proper clustering means that tight
connection is reached within partitions, there is a loose connection between partitions. Thus,
the cluster coherence is computed as follows:

ǫB =
1
k

k

∑
l=1

BT
l ABl

BT
l DBl

(18)

where B = [B1, . . . ,Bk], B ∈ R
n×k is a binary matrix comprised by the membership values

of all elements to each cluster: bij = ⌊max argj fm(yi/ζj)⌋, j = 1, . . . , k, where ⌊·⌋ is 1 if its

argument is true and 0 otherwise. A is the affinity matrix and D ∈ R
n×n is the degree of

matrix A.
Due to normalization with respect to the affinity matrix, the maximum value of ǫB is 1,
resulting in evidencing a good clustering if its value is closer to 1. Clustering is penalized
when there is a large set of groups. In addition, supervised measures are accomplished
to contrast with another similar references, taking advantage of recording labels, as further
described. Particularly, each assembled cluster can be split into two clases: one holding the
majority heartbeats regarding to the class of interest (MC), and another having the minority
beatings being of different classes (OC). The following quantitative measures are defined:
True Positive (TP), heartbeats MC classified correctly, True negative (TN), heartbeats OC,
classified correctly, False positive (FP), heartbeats OC classified as MC and False negative (FN),
heartbeats MC classified as OC.
After computing the above described measures, the following values of sensitivity (Se),
specificity (Sp), and clustering performance (CP) are estimated:

Se =
TN

TN + FP

Sp =
TP

TP + FN

CP =
TN + TP

TN + FP + TP + FN

Since there is no ideal partition, there are more clusters than classes expected. Therefore, the
partition might be penalized when holding a relatively large number of clusters, for instance,
by means of a factor as eηkr/ka , where kr is the number of groups resulting from the clustering,
ka is the admissibility value of groups, and η, 0 < η ≤ 1, is an adjusting value. In this way,
the measure ϕ that can be Se, Sp or CP is weighted as follows:

ϕ =

{
ϕeηkr/ka kr > ka

ϕ, kr ≤ ka
(19)
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Fig. 7. First 3 principal components after weighting the data matrix for recording 217 with
different w (algorithm 2)

5. Relevant experiments and discussion

Training is carried out over a set of ECG MIT-BIH database, which holds different types of
arrhythmia, as previously discussed 1. The analysis is carried out over the whole data set
for the MIT/BIH arrhythmia database that holds 48 recordings each one being of about 30
minutes long. It is important to note that the recording analysis is performed one by one, and
some recordings exhibit strong unbalanced number of observation per class. Namely, it can
be found some recordings holding just one–two heartbeats of class F, a few of S (less than 10),
whereas its number of normal heartbeats may be very huge (more than 3000!).

5.1 Analysis of relevance results

Figure 7 shows an example for relevance analysis stage using the proposed scheme, taking
into account the last 5 minutes of recording numbered as 217. It can be observed that there is a
short separation of first 3 principal components. Remaining subfigures show the transformed
data using the methods studied, where a better separability can be noted when using w =

√
ρ̂

and w =
√
α. Particulary, in case of ρ̂, the ignored eigenvectors (see Eq. (9)) for computing

the relevance generate an homogeneous weighting of the analyzed features set, resulting in a
lower selectivity, i.e., w =

√
ρ, having similar separability to w = 1p (i.e. Conventional PCA).

The variable weighting using the analyzed methods is shown in Fig. 8. It exhibits a similarity
between w =

√
α and w =

√
ρ̂. The weighting obtained from iterative Q − α algorithm

stands out mainly due to the quadratic nature of the objective function to be maximized, which
employs M-inner product as distance measure. Although, it is not possible to generalize the
results to all recordings because of ECG signal variability, this behavior is observed in most
cases.
Figure 9 shows the dynamic of the calculated relevance of variables according to morphology
type of each recording. Three segments of 207-th recording are analyzed. The first segment
corresponds to the first 5 minutes of recording, which contains type L, R and V beats. The
second one corresponds to a period between 20 minutes and 25 minutes, that only has type L
and V beats. The last one contains type A and E beats corresponding to the last 5 minutes of
recording.
It can be seen that in the first segment, the relevant variables correspond to the WT features
(table 2) while in the second one, the Hermite coefficients had higher weight since these
coefficients characterize appropriately to the morphology of type L and V beats. Finally, in
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Fig. 8. Relevance of the features (table 2) for the last 5 minutes of recording 217 using all
methods to estimate w (algorithm 2)
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Fig. 9. Results of the relevance of the features with Q-α method, for 3 segments of the
recording 207. Si, corresponds to the i-th segment of the recording 207, which holds 5
minutes of length.

the last analyzed segment the weight for each one of the first 3 variables (HRV features)
is increased. According to this, it can be concluded that segment analysis allows a local
analysis of relevance and achieves good performance after the final partition, as discussed
in the following section.
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θ1/θ2 ǫB kend q Time [s]
μ − σ2

α 0.95 - 0.08 0.86 - 0.12 9 - 2.43 6 - 0.86 37.20 - 7.65
ρ 0.94 - 0.10 0.82 - 0.14 11 - 2.67 10 - 1.78 38.52 - 7.52
ρ̂ 0.94 - 0.10 0.83 - 0.14 11 - 2.66 9 - 1.77 37.47 - 7.66
α̂ 0.95 - 0.08 0.84 - 0.12 9 - 2.44 6 - 1.16 36.20 - 7.54

Table 3. Clustering performance using non–supervised indices (θ1/θ2, ǫB), number of
resultant groups (kend), number of relevant features (q) and processing time [s].

It can be highlighted the fact that the variability features (HRV, table 2) are essential to
discriminate between normal heartbeats and supraventricular ectopic beats, both of them
having similar morphology. Most important morphological features correspond to those
based on WT, which discriminate between type V and Q heartbeats.

5.2 Computing clustering performance

The results of clustering are accomplished by framing each recording into 6 divisions and the
resulting clusters are merged as described in section 4.4. The number of segments is achieved
experimentally, improving the trade–off among the number of segments, computational cost
and quality of partition. Thus, the segment analysis enhances the performance if compared
to the whole data clustering. In fact, it reduces the probability that a minority class heartbeat
might be clustered wrongly. Furthermore, in most cases, the sum of processing times over all
segments turns out to be considerably shorter than the time of analysis of the whole recording
data for one iteration. As a result, the introduced framing approach significantly reduces the
computational cost.
Table 3 depicts the whole system performance using the non–supervised indices, as discussed
in section 4.4, and parameters for computational cost and the number of resulting groups are
displayed, as well. The first column refers to the index θ1/θ2, the second one to ǫB , the third
one corresponds to the resulting clusters (kend) after processing all segments of each recording,
the fourth one is the number of selected features before projecting the data, and the last one is
the time fixed from filtering to clustering stages. The rows show the methods considered for
weighting of variables.
Evaluation of the quality of partition is provided by the index θ1/θ2 that has been introduced
in Sotelo, Peluffo, Frau, Ordónez & Domínguez (2009), where a maximum index value of
θ1/θ2 = 0.98 was achieved over only 14 recordings of the entire MIT/BIH database. In this
chapter, the maximum index achieved is close to (∼ 0.96), over the whole recording set if
providing framed division analysis; pointing out to have a better generalization ability. If
increasing the number of groups k, then index θ1/θ2 tends to 1. Nonetheless, a very high
number of k leads to a more difficult evaluation by specialists. Specifically, in Lagerholm et al.
(2000), the total number of groups representing the entire MIT/BIH database is assumed to
be 25, while in Rodríguez-Sotelo et al. (2009), when considering only some recordings from
MIT/BIH database, the average number of groups diminishes to 15. In this chapter, for the
entire MIT/BIH database the value k ranges within 9 ≤ k ≤ 11, still showing a better
performance.
As discussed above, the non–supervised measure ǫB penalizes the number of groups after
the final partition. In fact, if the clustering procedure is carried out for a value less than or
equal to the proper value of k, then ǫB tends to 1. Otherwise, this value becomes far from 1, as
the amount of k is increased, due to the upper bound monotonicity theorem Yu & Shi (2003).
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N S V F Q
μ − σ2 μ − σ2 μ − σ2 μ − σ2 μ − σ2

α

Se 99.25− 2.48 91.11−15.66 96.11− 8.24 70.73−32.05 91.9 −17.83
Sp 95.77− 9.12 99.36− 2.19 99.87− 0.24 99.59− 0.77 99.79− 0.47
CP 99.16− 2.5 96.18− 6.15 98.29− 3.37 93.29−10.62 99.91− 0.21

α̂

Se 99.06− 3.5 90.52−16.54 96.31− 7.03 50.59−35.33 87.88−26.77
Sp 95.32− 9.49 99.49− 1.62 99.84− 0.31 99.51− 0.99 99.6 − 0.73
CP 99.25− 2.01 96.24− 6.67 98.13− 3.86 81.64−32.51 99.96− 0.06

ρ̂

Se 99.27− 2.55 91.26−15.26 91.5 −21.52 50.57−34.63 79.91−44.67
Sp 92.19−19.06 99.5 − 1.51 99.86− 0.26 99.6 − 0.76 99.85− 0.34
CP 99.14− 2.46 95.68− 7.47 93.71−20.77 81.05−33.04 79.93−44.68

ρ

Se 99.24− 2.79 90.08−18.57 91.62−21.61 42.44−39.57 87.86−26.75
Sp 92.17−19.37 99.58− 1.22 99.85− 0.28 99.53− 0.92 99.79− 0.47
CP 99.12− 2.58 96.16− 6.07 93.77−20.79 68.87−41.56 99.91− 0.21

Table 4. Clustering results by using supervised measures for all groups of arrhythmias

Concretely, a value of k less than 6 can be taken as an admisible number of groups because 5
classes are considered in the present arrhythmia analysis.
Table 3 shows that the achieved values for ǫB are ranging within interval 0.82 ≤ ǫM ≤ 0.86,
which can be considered as a realistic outcome to quantify the resultant partition. Still, this
measure does not reach the value 1, as if grouping were absolutely correct, because of the
effect of penalization regarding the number of groups and also the sensitivity to the affinity
matrix. Besides, the average number is shown for the relevant features q before the WPCA
projection (see section 4.3) that most of them contribute to the clustering process. As seen, the
range of values of q is 6 ≤ q ≤ 10, showing admisible values with respect to the total number
of features. Additionally, the average computing time needed to process the whole recording
is 37 s, being a reasonable time for each considered recording.
Table 4 shows the arithmetic mean (μ) and variance (σ2) of supervised measures, discussed
in section 4.4, over the entire database for each group of arrhythmias, using the proposed
weighting methods (see algorithm 2). In Rodríguez-Sotelo et al. (2009), the clustering
performance is evaluated only considering three arrhythmia groups, namely, N, S and V (see
table 1). Nonetheless, the performance measures are calculated by couples of arrhythmias
and, as a consequence, the value of measures tends to increase. The reported results are
SeS = 93.3% and SpS = 99.5%, which can be compared with the second column of table
4, where the maximum values are SeS = 91.3% and SpS = 99.5%. Although, sensitivity is
less than the reported in Rodríguez-Sotelo et al. (2009), it should be noted that among results
of this work, all recordings from the database with S-type arrhythmias (the class of interest)
and the remaining groups as another class are analyzed. Thus, the proposed method provides
more robustness when considering other types of arrhythmias.
For some considered arrhythmia groups, the performance results in table 4 became
remarkable, e.g. SeN = 99.25%, SeV = 96.5%. In other cases, e.g. F group, the performance
values decreases, SeF = 70.7%, due to the low number of representative heartbeats of some
classes. Still, one can infer that the best performance is provided when the data are weighted
by using α.
Finally, in Figure 10, an example of clustered heartbeats is presented by using the recording
217 of the MIT/BIH arrhythmia database which contains heartbeats of type: N, V, f and P (in
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Figure, the symbol P is represented as /, which corresponds to the original tag for paced beats
in the MIT/BIH database).
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Fig. 10. General methodology applied over recording 217.
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6. Conclusions

The proposed methodology for unsupervised Holter monitoring of cardiac arrhythmias
that is based on variable–wise relevance analysis leads to an improvement of clustering
of those heartbeat types recommended by AAMI. Because of strong asymmetry among
class observations, the heartbeat–derived features should be properly selected by their
weighting projection. This makes possible to assess the relative importance of each feature
immersed on the original data representation. In addition, because of restrictions for reducing
computational load, proposed methodology is carried out by successive division analysis
along the time, where each recording is separately processed, and thus significantly reduces
the processing time.
It must be noted that the relevance analysis provides enough generalization capability, mainly,
because of most informative features are weighted and projected. In general, in this work,
the M-inner product-based approach showed better performance than MSE-based approach,
and although its iterative nature leads to high computational cost, the segment analysis
compensates for this effect. This it is possible its implementation for real time applications.
Besides, the assuming grouping that includes initial parameters estimation (estimation of
number of groups and center initialization), which is based on spectral techniques and soft
partitional clustering, generates a proper final partition.
The methodology provides an useful tool to analyze cardiac arrhythmias with suitable quality
since it is based on non-supervised training. That is, there is no need for labelling of
recordings, which mostly is not feasible for Holter monitoring.
Testing of considered methodology by using introduced cluster validity measures shows
a comparable performance in comparison to another referenced works based on either
supervised or unsupervised training and carried out for the MIT/BIH database.
As future work, additional spectral clustering stages should be explored with the possibility
of unifying the stages of feature selection and clustering, in order to improve accuracy and
computational load for the system.
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