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1. Introduction 

Molten salts and especially fused chlorides are the convenient medium for selective 

dissolution and deposition of metals. The existence of a wide spectrum of individual salt 

melts and their mixtures with different cation and anion composition gives the real 

possibility of use the solvents with the optimum electrochemical and physical-chemical 

properties, which are necessary for solving specific radiochemistry objects. Also molten 

alkali metal chlorides have a high radiation resistance and are not the moderator of neutrons 

as aqua and organic mediums [Uozumi, 2004; Willit, 2005]. 

Nowadays electrochemical reprocessing in molten salts is applied to the oxide and metal 

fuel. Partitioning and Transmutation (P&T) concept is one of the strategies for reducing 

the long-term radiotoxicity of the nuclear waste. For this case pyrochemical reprocessing 

methods including the recycling and transmutation can be successfully used for 

conversion more hazardous radionuclides into short-lived or even stable elements. For 

that first of all it is necessary to separate minor actinides (Np, Am, Cm) from other fission 

products (FP). 

Pyrochemical reprocessing methods are based on a good knowledge of the basic chemical 

and electrochemical properties of actinides and fission products. This information is 

necessary for creation the effective technological process [Bermejo et al., 2007, 2008; 

Castrillejo et al., 2005a, 2005b, 2009; De Cordoba et al., 2004, 2008; Fusselman et al., 1999; 

Kuznetsov et al., 2006; Morss, 2008; Novoselova & Smolenski, 2010, 2011; Osipenko et al., 

2010, 2011; Roy et al., 1996; Sakamura et al., 1998; Serp et al., 2004, 2005a, 2005b, 2006; 

Serrano & Taxil, 1999; Shirai et al., 2000; Smolenski et al., 2008, 2009]. 

Curium isotopes in nuclear spent fuel have a large specific thermal flux and a long half-life. 

So, they must be effectively separated from highly active waste and then undergo 

transmutation. 

The goal of this work is the investigation of electrochemical and thermodynamic properties 

of oxide and oxygen free curium compounds in fused chlorides. 
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2. Experimental 

2.1 Preparation of starting materials 

The solvents LiCl (Roth, 99.9%), NaCl (Reachim, 99.9%), KCl (Reachim, 99.9%), and CsCl 

(REP, 99.9%) were purified under vacuum in the temperatures range 293-773 K. Then the 

reagents were fused under dry argon atmosphere. Afterwards these reagents were purified 

by the operation of the direct crystallization [Shishkin & Mityaev, 1982]. The calculated 

amounts of prepared solvents were melted in the cell before any experiment [Korshunov et 

al., 1979]. 

Curium trichloride was prepared by using the operation of carbochlorination of curium 

oxide in fused solvents in vitreous carbon crucibles. Cm3+ ions, in the concentration range 

10-2-10-3 mol kg-1 were introduced into the bath in the form of CmCl3 solvent mixture. 

The obtained electrolytes were kept into glass ampoules under atmosphere of dry argon in 

inert glove box. 

2.2 Potentiometric method 

The investigations were carried out in the cell, containing platinum-oxygen electrode 
with solid electrolyte membrane which was made from ZrO2 stabilized by Y2O3 supplied 
by Interbil Spain (inner diameter 4 mm, outer diameter 6 mm). This electrode was used 
as indicating electrode for measuring the oxygen ions activity in the investigated melt. 
The measurements were carried out versus classic Cl-/Cl2 reference electrode [Smirnov, 
1973]. The difference between indicator and reference electrodes in the following 
galvanic cell 

  ( ), 2( ) 2 2 3 2( ), ( )s g g sPt O ZrO Y O Melt under test Solvent melt Cl С  (1) 

is equal to 

 
2

2

2

2 1/2
ln

2

Clo O

OCl

a pRT

F a p
 






 


 (2) 

where a is the activity of the soluble product in the melt (in mol·kg-1); P is the gas pressure 

(in atm.); o  is the difference of standard electrode potentials of the reaction 3 (in V); T is the 

absolute temperature (in K); R is the ideal gas constant (in J·mol-1·K-1); n is the number of 

electrons exchanged and F is the Faraday constant (96500 C·mol-1). 

 2
( ) 2( ) ( ) 2( )2 1 / 2l g l gCl O O Cl    . (3) 

The value o  of the reaction (3) is the following 

 2
2 2/ / 2

o
o o o

Cl Cl O O

G
E E

F
  


    (4) 

where oG  is the change of the standard Gibbs energy of the reaction 3 (in kJ·mol-1·K-1). 
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  2 2
2 2

2ln
2

eqO O O O

RT
E E m O

F
 

       (5) 

where 2
2O O

E   is the equilibrium potential of O2/O2- system (in V); 2
2O O

E 
  is an apparent 

standard potential of the system (in V). 

The value of apparent standard potential E  in contrast to the standard potential oE  

describes the dilute solutions, where the activity coefficient 2O
  is constant at low 

concentrations [Smirnov, 1973] and depends from the nature of molten salts. It can be 

calculated experimentally with high precision according to expression (5). The introducing 

of oxide ions in the solution was done by dropping calculated amounts of BaO (Merck, 

99,999%) which completely dissociates in the melt [Cherginetz, 2004]. 

All reagents were handled in a glove box to avoid contamination of moisture. The 
experiments were performed under an inert argon atmosphere. 

The potentiometric study was performed with Autolab PGSTAT302 potentiostat/galvanostat 
(Eco-Chimie) with specific GPES electrochemical software (version 4.9.006). 

2.3 Transient electrochemical technique 

The experiments were carried out under inert argon atmosphere using a standard 
electrochemical quartz sealed cell using a three electrodes setup. Different transient 
electrochemical techniques were used such as linear sweep, cyclic, square wave, differential 
and semi-integral voltammetry, as well as potentiometry at zero current. The 
electrochemical measurements were carried out using an Autolab PGSTAT302 potentiostat-
galvanostat (Eco-Chimie) with specific GPES electrochemical software (version 4.9.006). 

The inert working electrode was prepared using a 1.8 mm metallic W wire (Goodfellow, 
99.9%). It was immersed into the molten bath between 3 - 7 mm. The active surface area was 
determined after each experiment by measuring the immersion depth of the electrode. The 
counter electrode consisted of a vitreous carbon crucible (SU - 2000). The Cl–/Cl2 or Ag/Ag+ 
(0.75 mol·kg-1 AgCl) electrodes were used as standard reference electrodes. The experiments 
were carried out in vitreous carbon crucibles; the amount of salt was (40-60 g). The total 
curium concentrations were determined by taking samples from the melt and then analyzed 
by ICP-MS. 

3. Results and discussion 

3.1 Potentiometric investigations 

The preliminary investigations of fused 3LiCl-2KCl eutectic and equimolar NaCl-KCl by of 
O2- ions are present in Table 1. In this case, the potential of the pO2- indicator electrode vs. 
the concentrations of added O2- ions follows a Nernst behavior (eq. 5). The experiment slope 
is closed to its theoretical value for a two-electron process, which shows the Nernstian 
behavior of the system. 

To identify curium oxide species and to determine their stability, the titration of Cm3+ by O2- 
ions was performed. To estimate stoichiometric coefficients of reactions that involve initial 
components, the ligand number “α” was used. 
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Molten solvent Temperature, K 
2

2O O
E 
 (in V vs. 

Cl-/Cl2) 2

RT

F
(exp.) 

2

RT

F
(theor.) 

3LiCl-2KCl 

723 -1.087±0.001 0.072±0.001 0.072 

823 -1.102±0.001 0.082±0.001 0.082 

923 -1.275±0.004 0.091±0.001 0.0911 

NaCl-KCl 

1023 -1.351±0.001 0.101±0.001 0.101 

1073 -1.448±0.003 0.134±0.002 0.106 

1123 -1.374±0.001 0.111±0.001 0.111 

NaCl-2CsCl 

823 -0.751±0.001 0.083±0.001 0.083 

923 -0.771±0.001 0.092±0.001 0.092 

1023 -0.985±0.001 0.113±0.009 0.102 

Table 1. The parameters of calibration curve for 3LiCl-2KCl, NaCl-KCl and NaCl-2CsCl 
melts, (molality scale) 

 

2

3
added

initial

O

Cm






 
 
 
 

 (6) 

where 2

added
O  
   is the added concentration of oxide ions in the melt, (in mol·kg-1); 

3

initial
Cm  
   is the initial Cm3+ concentration, (in mol·kg-1). 

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

p
O

2
-

α  

Fig. 1. Potentiometric titration of Cm3+ solution by O2- ions in NaCl-2CsCl at 1023 K. [Cm3+] 
= 1.2·10-3 mol·kg-1 
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The potentiometric titration curve pO2- versus α in the NaCl-2CsCl-CmCl3 melt shows 

one equivalent point for α equal to 1, Fig. 1. This can be assigned to the production of 

solid oxycloride, CmOCl. The shape of an experimental curve shows the possibility of 

formation of soluble product CmO+ in the beginning of titration [Cherginetz, 2004]. The 

precipitation of Cm2O3 did not fixed on experimental curves. One of the reasons of these 

phenomena may be the kinetic predicaments in formation of insoluble compound 

Cm2O3. 

Therefore, the titration reactions can be written as: 

Cm3+(l) + O2-(l)  CmO+(l) (0 < α < 0.5) (7) 

Cm3+(l) + O2-(l) + Cl-(l)  CmOCl(s) (0.5 < α < 1.0) (8) 

2CmOCl(s) + O2-(l)  Cm2O3(s) + 2Cl-(l) (1.0 < α < 1.5) (9) 

Combine expressions (8) and (9), Cm2O3(s) formation is described by (10): 

 2Cm3+(l) + 3O2-(l)  Cm2O3(s) (10) 

The chloride ions activity in the melt is one. By applying mass balance equations (11, 12) and 

the expressions of the equilibrium constant of the reaction (7) and the solubility constants of 

the reactions (8, 10) it is possible to calculate the concentration of CmO+ ions and the 

solubility of CmOCl and Cm2O3 in the melt: 

    2 2
2 33

precipitated precipitatedbulk added bulk
O O CmO CmOCl Cm O                 (11) 

    3 3
2 32

precipitated precipitatedbulk initial bulk
Cm Cm CmO CmOCl Cm O                 (12) 

where 2

bulk
O  
   is the equilibrium concentration of oxide ions in the melt, (in mol·kg-1); 

3

bulk
Cm  
   is the equilibrium concentration of curium ions in the melt, (in mol·kg-1); 

bulk
CmO 
   is the equilibrium concentration of curium oxide ions in the melt, (in mol·kg-1). 

 
3 2

CmO
eq

CmO
K

Cm O




 

 
 

      
 (13) 

 3 2CmOCl
sK Cm O Cl                (14) 

 2 3
2 33 2Cm O

sK Cm O          (15) 

The formation of CmO+ ions in the range (0 < α < 0.5) is described by the following 

theoretical titration curve: 
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2 2

3

3

2

1

CmO
eq

bulk bulk

initial

eq
bulk

K
O O

Cm

Cm

K O





 






 
          
  
   

   

 (16) 

When CmOCl is precipitating (0.5 < α < 1.0), the theoretical titration curve can be written as: 

 2

3 2

1
1

CmOCl
s

bulk

initial bulk

K
O

Cm O
 

 

 
         

    

 (17) 

In the range (1.0 < α < 1.5), where Cm2O3 is precipitating, the theoretical titration curve is: 

 
 2 3

1 2)

2
3 23 2

1.51
1.5

Cm O
s

bulk

initial bulk

K
O

Cm O
 

 

               

 (18) 

 

Molten solvent 

 
Temperature, K CmO

eqpK


 CmOCl
spK  2 3Cm O

spK  

3LiCl-2KCl 

723 

823 

923 

2.5±0.2 

2.4±0.2 

0.8±0.1 

7.5±0.2 

5.7±0.2 

5.2±0.2 

15.5±0.5 

12.7±0.5 

12.5±0.5 

NaCl-KCl 

1023 

1073 

1123 

2.6±0.2 

2.4±0.2 

1.3±0.1 

5.9±0.2 

5.8±0.2 

5.6±0.2 

12.9±0.4 

12.6±0.4 

12.1±0.4 

NaCl-2CsCl 

829 

923 

1023 

4.2±0.2 

3.4±0.2 

3.7±0.2 

7.9±0.2 

7.5±0.2 

6.7±0.2 

20.1±0.3 

18.5±0.3 

16.8±0.3 

Table 2. The experimental values of dissociation constants of CmO+, CmOCl и Cm2O3 in 
fused solvents at different temperatures, (molatility scale) 

The best conformity of the experimental and theoretical titration curves at different 

temperatures is obtained with the constants, offers in Table 2. All results are presented in 

Tables 3-5. Thermodynamic data allowed us to draw the potential–pO2- diagrams, Fig. 2-4, 

which summarized the stability areas of curium compounds in different solvents a various 

temperatures. 

The decreasing of the temperature and the shift of the ionic radius of the solvent (in z/r, nm) 

[Lebedev, 1993] from LiCl up to CsCl mixtures show regular decreasing of the solubility of 

curium in the solvents [Yamana, 2003]. 
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System 
Expression for equilibrium 

potential 

Apparent standard 
potential (V vs. Cl-/Cl2) 

[Cm3+] = 1 mol·kg-1 

1. Cm3+ + 3e-↔ Cm 
 
 
2. CmO+ + 3e- ↔ Cm + O2- 
 
 
 
 
 
3. CmOCl + 3e- ↔ Cm + O2- + 
Cl- 
 
 
 
 
4. Cm2O3 + 6e- ↔ 2Cm +3O2- 
 
 
 

 
5. Cm3+ + O2- ↔ CmO+ 

 
6. Cm3+ + O2- + Cl- ↔ CmOCl 

 
7. 2Cm3+ + 3O2- ↔ Cm2O3 

* 3
1 1

2.3
log

3

RT
E E Cm

F
      

 

*
2 1 ( )

2.3

3 eq CmO

RT
E E pK

F
  

2.3 2.3
log

3 3

RT RT
CmO p

F F
   

 

*
3 1 ( )

2.3

3
S CmOCl

RT
E E pK

F
  

22.3

3

RT
pO

F
  

 
 

2 3

*
4 1 ( )

2.3

6
S Cm O

RT
E E pK

F
  

22.3

2

RT
pO

F
  

 

-4.7455+5426/TeqpK   

 

1.5132+3394/TspK   

 

0.779+10407.5/TspK   

*(1) 2.924E    

 
(2) 3.055E    

 
 
 

 
*(3) 3.220E    

 
 
 
 
 

*(4) 3.286E    

 
 
 
 
 

2.5eqpK   

 

7.5spK   

 

15.5spK   

 
 

 

Table 3. Equilibrium potentials and values of apparent standard potentials of redox system 
in 3LiCl-2KCl at 723 K. [Cm3+] = 1 mol·kg-1. Potentials are given vs. Cl-/Cl2 reference 
electrode 
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Fig. 2. Potential–pO2- diagram for curium in 3LiCl-2KCl eutectic at 723 K. [Cm3+] = 1 mol·kg-1. 
Potentials are given vs. Cl-/Cl2 reference electrode 
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Fig. 3. Potential–pO2- diagram for curium in equimolar NaCl-KCl at 1023 K. [Cm3+] = 1 
mol·kg-1. Potentials are given vs. Cl-/Cl2 reference electrode 
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System 
Expression for equilibrium 

potential 

Apparent standard potential 
(V vs. Cl-/Cl2) [Cm3+] = 1 

mol·kg -1 

1. Cm3+ + 3e-↔ Cm 
 

 
2. CmO+ + 3e- ↔ Cm + O2- 
 
 
 
 
 
3. CmOCl + 3e- ↔ Cm + O2-  
+ Cl- 
 
 
 
4. Cm2O3 + 6e- ↔ 2Cm +3O2-

 
 
 

 
5. Cm3+ + O2- ↔ CmO+ 

 
6. Cm3+ + O2- + Cl- ↔ CmOCl

 
7. 2Cm3+ + 3O2- ↔ Cm2O3 

* 3
1 1

2.3
log

3

RT
E E Cm

F
      

 

*
2 1 ( )

2.3

3 eq CmO

RT
E E pK

F
  

2.3 2.3
log

3 3

RT RT
CmO pO

F F
   

 

*
3 1 ( )

2.3

3
S CmOCl

RT
E E pK

F
    

22.3

3

RT
pO

F
  

 

2 3

*
4 1 ( )

2.3

6
S Cm O

RT
E E pK

F
    

22.3

2

RT
pO

F
  

 

-4.7455+5426/TeqpK   

 

1.5132+3394/TspK   

 

0.779+10407.5/TspK   

*(1) 2.727E    

 
 

*(2) 2.915E    

 

 
 
 

*(3) 3.128E    

 
 
 
 

*(4) 3.165E    

 
 
 

 
2.6eqpK   

 

5.9spK   

 

12.9spK   

 
 

 

Table 4. Equilibrium potentials and values of apparent standard potentials of redox system 
in equimolar NaCl-KCl at 1023 K. [Cm3+] = 1 mol·kg-1. Potentials are given vs. Cl-/Cl2 
reference electrode 
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System  
Expression for equilibrium 

potential 

Apparent standard 
potential (V vs. Cl-/Cl2) 

[Cm3+] = 1 mol·kg -1 

1. Cm3+ + 3e-↔ Cm 
 
 
 
2. CmO+ + 3e- ↔ Cm + O2- 
 
 
 
 
3. CmOCl + 3e- ↔ Cm +     O2-  
+ Cl- 
 
 
 
 
 

4. Cm2O3 + 6e- ↔ 2Cm +3O2- 
 
 
 
 
5. Cm3+ + O2- ↔ CmO+ 

 
6. Cm3+ + O2- + Cl- ↔ CmOCl 

 
7. 2Cm3+ + 3O2- ↔ Cm2O3 

* 3
1 1

2.3
log

3

RT
E E Cm

F
    

 

*
2 1 ( )

2.3

3 eq CmO

RT
E E pK

F
  

2.3 2.3
log

3 3

RT RT
CmO

F F
   

 

*
3 1 ( )

2.3

3
S CmOCl

RT
E E pK

F
  

22.3

3

RT
pO

F
  

 
 

2 3

*
4 1 ( )

2.3

6
S Cm O

RT
E E pK

F
  

22.3

2

RT
pO

F
  

 

-4.7455+5426/TeqpK   

 

1.5132+3394/TspK   

 

0.779+10407.5/TspK   

*(1) 2.996E    

 

 

(2) 3.220E    

 
 

 
 

* (3) 3.430E    

 
 
 
 

 
* (4) 3.546E    

 
 
 

 

4.2eqpK   

 

7.9spK   

 

20.1spK   

 

 

 

 

Table 5. Equilibrium potentials and values of apparent standard potentials of redox system 
in NaCl-2CsCl eutectic at 829 K. [Cm3+] = 1 mol·kg-1. Potentials are given vs. Cl-/Cl2 
reference electrode 
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Fig. 4. Potential–pO2- diagram for curium in equimolar NaCl-2CsCl at 829 K. [Cm3+] = 1 
mol·kg-1. Potentials are given vs. Cl-/Cl2 reference electrode 

3.2 Transient electrochemical technique 

3.2.1 Voltammetric studies on inert electrodes 

The reaction mechanism of the soluble-insoluble Cm(III)/Cm(0) redox system was 
investigated by analyzing the cyclic voltammetric curves obtained at several scan rates, Fig. 
5, 6. It shows that the cathodic peak potential (Ep) is constant from 0.04 V/s up to 0.1 V/s 
and independent of the potential sweep rate, Fig. 7. It means that at small scan rates the 
reaction Cm(III)/Cm(0) is reversible. In the range from 0.1 V/s up to 1.0 V/s the 
dependence is linear and shifts to the negative values with the increasing of the sweep rate. 
So in this case (scan range > 0.1 V/s) the reaction Cm(III)/Cm(0) is irreversible and 
controlled by the rate of the charge transfer. On the other hand the cathodic peak current (Ip) 
is directly proportional to the square root of the polarization rate (υ). According to the 
theory of the linear sweep voltammetry technique [Bard & Folkner, 1980] the redox system 
Cm(III)/Cm(0) is reversible and controlled by the rate of the mass transfer at small scan 
rates and is irreversible and controlled by the rate of the charge transfer at high scan rates. 

The number of electrons of the reduction of Cm(III) ions for the reversible system was 
calculated at scan rates from 0.04 up to 0.1 V/s: 

 2 0.77p p

RT
E E

nF
    (19) 

where EP is a peak potential (V), EP/2 is a half-peak potential (V), F is the Faraday constant 
(96500 C·mol-1), R is the ideal gas constant (J·K-1·mol-1) and T is the absolute temperature (K), 
n is the number of exchanged electrons. The results are 3.01±0.04. 
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Fig. 5. Cyclic voltammograms of fused 2LiCl-3KCl-CmCl3 salt at different sweep potential 
rates at 723 K. Working electrode: W (S = 0.36 cm2). [Cm(III)] = 5.0·10-2 mol·kg-1 
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Fig. 6. Cyclic voltammograms of NaCl-2CsCl-CmCl3 at different sweep potential rates at 823 
K. Working electrode: W (S = 0.31 cm2). [Cm(III)] = 4.4·10-2 mol·kg-1 

www.intechopen.com



 
Electrochemistry of Curium in Molten Chlorides 

 

23 

-2.12

-2.10

-2.08

-2.06

-2.04

-2.02

-2.00

-1.98

-1.96

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

lnV /ln(V/s)

E
P

C
/V

 v
s
. A

g
/A

g
+

 

Fig. 7. Variation of the cathodic peak potential as a function Naperian logarithm of the 
sweep rate in fused NaCl-2CsCl-CmCl3 at 823K. Working electrode: W (S = 0.59 cm2). 
[Cm(III)] = 4.4·10-2 mol·kg-1 
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Fig. 8. Square wave voltammogram of NaCl-2CsCl-CmCl3 at 25 Hz at 823 K. Working 
electrode: W (S = 0.29 cm2). [Cm(III)] = 9.7·10-3 mol·kg-1 

The square wave voltammetry technique was used also to determine the number of 
electrons exchanged in the reduction of Cm(III) ions in the molten eutectic NaCl-2CsCl. Fig. 
8 shows the cathodic wave obtained at 823 K. The number of electrons exchanged is 
determined by measuring the width at half height of the reduction peak, W1/2 (V), registered 
at different frequencies (6–80 Hz), using the following equation [Bard & Folkner, 1980]: 

 1/2 3.52
RT

W
nF

  (20) 
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where T is the temperature (in K), R is the ideal gas constant (in J·K-1·mol-1), n is the number 
of electrons exchanged and F is the Faraday constant (in C·mol-1). 

At middle frequencies (12-30 Hz), a linear relationship between the cathodic peak current 
and the square root of the frequency was found. The number of electrons exchanged 
determined this way was close to three (n = 2.99±0.15). 

The same results were found in the system 3LiCl-2KCl-CmCl3 [Osipenko, 2011]. 

On differentional pulse voltammogram only one peak was fixed at potential range from -1.5 
up to -2.2 V vs. Ag/Ag+ reference electrode, Fig. 9. It means that the curium ions reduction 
process at the electrode is a single step process. 

Potentiostatic electrolysis at potentials of the cathodic peaks shows the formation of the 
solid phase on tungsten surface after polarization. One plateau on the dependence potential 
– time curves was obtained, Fig. 10. 

So the mechanism of the cathodic reduction of curium (III) ions is the following: 

 Cm(III) +3 ē  Cm(0) (21) 
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Fig. 9. Differential pulse voltammogram of NaCl-2CsCl-CmCl3 melt at 923 K. [Cm(III)] = 
4.4·10-2 mol·kg-1 

3.2.2 Diffusion coefficient of Cm (III) ions 

The diffusion coefficient of Cm(III) ions in molten chloride media was determined using the 

cyclic voltammetry technique and applying Berzins–Delahay equation, valid for reversible 

soluble-insoluble system at the scan rates 0.04-0.1 V/s [Bard & Faulkner, 1980]: 

  
1 2

3 2
00.61p

Dv
I nF C S

RT

   
 

 (22) 
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Fig. 10. The potential–time dependences after anodic polarization of W working electrode in 
NaCl-2CsCl-CmCl3 melt at different temperatures. [Cm(III)] = 4.4·10-2 mol·kg-1. The value of 
polarization is equal -2.1  -2.2 V. The time of polarization is equal 5 15 s. 1 – 1023 K; 2 – 
923 K; 3 – 823K 

where S is the electrode surface area (in cm2), C0 is the solute concentration (in mol·cm-3), D 
is the diffusion coefficient (in cm2·s-1), F is the Faraday constant (in 96500 C·mol-1), R is the 
ideal gas constant (in J·K-1·mol-1), n is the number of exchanged electrons, v is the potential 
sweep rate (in V/s) and T is the absolute temperature (in K). 

The values obtained for the different molten chlorides tested at several temperatures are 
quoted in Table 6. 

The diffusion coefficient values have been used to calculate the activation energy for the 
diffusion process. The influence of the temperature on the diffusion coefficient obeys the 
Arrhenius’s law through the following equation: 

 exp A
o

E
D D

RT

     
 

 (23) 

 

Solvent T/K D/cm2·s-1 -EA/kJ·mol-1 

LiCl-KCl 
723 
823 
923 

9.27·10-6 

1.62·10-5 
2.57·10-5 

28.2 

NaCl-2CsCl 
873 
973 
1023 

6.97·10-6 
1.33·10-5 
2.49·10-5 

44.5 

Table 6. Diffusion coefficient of Cm(III) ions in molten alkali metal chlorides at several 
temperatures. Activation energy for the curium ions diffusion process 
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where EA is the activation energy for the diffusion process (in kJ·mol-1), Do is the pre-

exponential term (in cm2·s-1) and  is the experimental error. 

From this expression, the value of the activation energy for the Cm(III) ions diffusion 

process was calculated in the different melts tested (Table 6). 

The average value of the radius of molten mixtures  R
r   was calculated by using the 

following equation [Lebedev, 1993]: 

 
1

N

i iR
i

r c r


  (24) 

where ic  is the mole fraction of i cations; ir  is the radius of i cations in molten mixture, 

consist of N different alkali chlorides, nm. 

The diffusion coefficient of curium (III) ions becomes smaller with the increase of the radius 

of the cation of alkali metal in the line from Li to Cs (Table 6). Such behaviour takes place 

due to an increasing on the strength of complex ions and the decrease in contribution of D to 

the “hopping” mechanism. The increase of temperature leads to the increase of the diffusion 

coefficients in all the solvents. 

3.2.3 Apparent standard potentials of the redox couple Cm(III)/Cm(0) 

The apparent standard potential of the redox couple Cm(III)/Cm(0) was determined at 

several temperatures. For the measurement, the technique of open-circuit 

chronopotentiometry of a solution containing a CmCl3 was used (e.g. Fig. 10). A short 

cathodic polarisation was applied, 5-15 seconds, in order to form in situ a metallic deposit of 

Cm on the W electrode, and then the open circuit potential of the electrode was measured 

versus time (Fig. 10). The pseudo-equilibrium potential of the redox couple Cm(III)/Cm(0) 

was measured and the apparent standard potential, E*, was determined using the Nernst 

equation: 

 
3

*
( )/ (0) ( )/ (0) lnCm III Cm Cm III Cm CmCl

RT
E E X

nF
   (25) 

being, 

 
3

*
( )/ (0) ( )/ (0) lnCm III Cm Cm III Cm CmCl

RT
E E

nF
   (26) 

The apparent standard potential is obtained in the mole fraction scale versus the Ag/AgCl 

(0.75 mol·kg-1) reference electrode and then transformed into values of potential versus the 

Cl-/Cl2 reference electrode scale or direct versus Cl-/Cl2 reference electrode. For this 

purpose the special measurements were carried out for building the temperature 

dependence between Ag/AgCl (0.75 mol·kg-1) and Cl-/Cl2 reference electrodes. From the 

experimental data obtained in this work the following empirical equation for the apparent 

standard potential of the Cm(III)/Cm(0) system versus the Cl-/Cl2 reference electrode was 

obtained using: 
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* 4
( ) (0) (3.285 0.004) (5.48 0.15) 10 0.002Cm III CmE T V        [3LiCl-2KCl, 723-923 K] (27) 

* 4
( ) (0) (3.750 0.006) (9.98 0.16) 10 0.003Cm III CmE T V        [NaCl-KCl, 1023-1123 K] (28) 

* 4
( ) (0) (3.407 0.005) (5.42 0.14) 10 0.002Cm III CmE T V        [NaCl-2CsCl, 823-1023 K] (29) 

The relative stability of complex actinides ions increases with the increase of the solvent 
cation radius, and the apparent standard redox potential shifts to more negative values 
[Barbanel, 1985]. Our results are in a good agreement with the literature ones [Smirnov, 
1973]. 

3.2.4 Thermodynamics properties 

The apparent standard Gibbs energy of formation 
3

*
CmClG  was calculated according by the 

following expression: 

 
3

* *
( )/ (0)CmCl Cm III CmG nFE   (30) 

The least square fit of the standard Gibbs energy versus the temperature allowed us to 
determine the values of ∆H* and ∆S* more precisely by the following equation: 

 
3 3 3

* * *
CmCl CmCl CmClG H T S      (31) 

from which, values of enthalpy and entropy of formation can be obtained: 

 
3

* 950.5 0.182 0.6CmClG T       kJ·mol-1    3LiCl-2KCl (32) 

 
3

* 1085.3 0.312 0.8CmClG T         kJ·mol-1   NaCl-KCl (33) 

 
3

* 986.4 0.174 0.6CmClG T         kJ·mol-1   NaCl-2CsCl (34) 

The calculated values are summarized in Table 7. The average value of the radius of these 

molten mixtures in this line, pro tanto, is 0.094 nm for fused 3LiCl-2KCl eutectic; 0.1155 nm 

for fused equimolar NaCl-KCl and 0.143 nm for fused NaCl-2CsCl eutectic [Lebedev, 1993]. 

From the data given in Table 7 one can see that the relative stability of curium (III) 

complexes ions is naturally increased in the line (3LiCl-2KCl)eut. – (NaCl-2CsCl)eut.. 

 

Thermodynamic properties 3LiCl-2KCl NaCl-KCl NaCl-2CsCl 

E*/V -2.752 -2.779 -2.880 

∆G*/(kJ·mol-1) -773.4 -781.7 817.1 

∆H*/(kJ·mol-1) -950.5 -1085.3 -986.4 

∆S*/(J·K-1·mol-1) 0.182 0.312 0.174 

Table 7. The comparison of the base thermodynamic properties of Cm in molten alkali metal 
chlorides at 973 K. Apparent standard redox potentials are given in the molar fraction scale 
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The changes of the thermodynamic parameters of curium versus the radius of the solvent 

cation show the increasing in strength of the Cm-Cl bond in the complex ions   3
6CmCl


 in 

the line from LiCl to CsCl [Barbanel, 1985]. 

4. Conclusion 

The electrochemical behaviour of CmCl3 in molten alkali metal chlorides has been 
investigated using inert (W) electrode at the temperatures range 723-1123 K. Different 
behaviour was found for the reduction process. At low scan rates (< 0.1 V/s) Cm(III) ions 
are reversible reduced to metallic curium in a single step, but at scan rates (>0.1 V/s) this 
reaction is irreversible. 

The diffusion coefficient of Cm(III) ions was determined at different temperatures by cyclic 
voltammetry. The diffusion coefficient showed temperature dependence according to the 
Arrhenius law. The activation energy for diffusion process was found. 

Potentiostatic electrolysis showed the formation of curium deposits on inert electrodes. 

The apparent standard potential and the Gibbs energy of formation of CmCl3 have been 
measured using the chronopotentiometry at open circuit technique. 

The influence of the nature of the solvent (ionic radius) on the thermodynamic properties of 
curium compound was assessed. It was found that the strength of the Cm–Cl bond increases 
in the line from Li to Cs cation. 

The obtained fundamental data can be subsequently used for feasibility assessment of the 
curium recovery processes in molten chlorides. 
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