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1. Introduction 

Phosphorus (P) is regarded as the most important soil nutrient after nitrogen (N) for plant 

growth and development as it plays key roles in plant metabolism, structure and energy 

transformation. It has also been recognized as a potential pollutant in waters (Anderson, 

1980). The P dynamics in soils and cycling in agro-ecosystems are of increased interest due 

to its contribution to the current environmental, agronomic and economic issues (Sharpley 

and Tunney, 2000). 

Soil P tests involve extraction of P from soils with chemical or ion-sink extractants followed 

by a quantification of P in the extracting solution. Soil test is expected to determine the 

amount of P that can contribute to crop growth or water contamination. From the 

standpoint of availability to plants, soil P can be divided into functional pools of differing 

bioavailability (Tiessen et al., 1982). The information on soil P transformation between those 

pools is useful to predict P bioavailability as well as the risk of P transfer from soil to surface 

waters. However, soil P transformation has received less attention attributable to the 

difficulties associated with separation of inorganic P (Pi) and organic P (Po) fractions and 

compositional identification of soil Po pools. Such investigation is currently possible with an 

improved sequential fractionation procedure and adoption of advanced techniques such as 

nuclear magnetic resonance spectroscopy (NMR) and synchrotron-based techniques like X-

ray absorption near-edge structure (XANES).  

In this chapter, soil P tests with chemical and ion-sink methods and the influences of 

farming practices on P status and P transformation in soils were summarized. The emphasis 

was on description of the interrelationships between soil P pools of differing bioavailability. 

The analytical methods to assess P transformation in soils including advanced techniques 

such as path analysis, modeling and synchrotron-based techniques were described briefly. 

The limitations of methodologies of soil P tests and P transformation analyses were 

discussed and findings from our studies were integrated in this context. 
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2. Soil tests for available P  

2.1 Conventional chemical extractions 

Available P is the amount of P in soils that can be extracted or mined by plant roots and 

utilized by plant for its growth and development. It is a quantitative (extensive) parameter 

and is influenced by the prevailing soil conditions at a particular time and the plant’s ability 

to extract P from soil solutions (Raven and Hossner, 1993; Holford, 1997). However, most 

people often use available P synonymously with P availability, an intensive parameter that 

does not reflect the amount or concentration of available P (White and Beckett, 1964). 

Availability of P for plant utilization is not a function of its concentration in soil, but rather 

on the rate of its release from soil surface into soil solution (Abdu, 2006). Available P is 

composed of soil solution P and is replenished by P that enters the solution by desorption or 

dissolution of Pi associated with the soil solid phase or by mineralization of Po (Hedley et al., 

1982). The measurement of available P therefore needs to consider both the amount and rate 

of release of P from the solid phase. Very few appropriate methods have been developed. 

Isotopic dilution (32P) techniques theoretically permit researchers to quantify the processes 

of Po mineralization, dissolution of insoluble minerals and desorption of aggregate P, and 

could be likely used for this purpose. But errors involved in the measurement of change 

rates make it difficult to extrapolate the continuing release (or isotopic dilution) rates to a 

temporal scale corresponding to cropping seasons and growth cycles under field conditions 

(Tran et al., 1988; Sharpley et al., 1994). Thus, some limitations have to be overcome to give 

results that have practical application. 

The most widely used soil P tests are chemical extractions that use chemical reagents to 

extract available P from soils. Water was probably the first extractant used to measure P in 

soils. The small amounts of soil P extracted by water and difficulties related to chemical 

analysis limit the use of water as an extractant. Bray and Kurtz (1945) used a combination of 

HCl and NH4F to remove easily acid soluble P forms, largely Al- and Fe-phosphates. In 

1953, Mehlich introduced a combination of HCl and H2SO4 acids (Mehlich 1) to extract P 

from soils in the north-central region of the U.S. In the early 1980s, Mehlich modified his 

initial soil test and developed a multi-element extractant (Mehlich 3) which is suitable for 

removing P and other elements in acid and neutral soils (Mehlich, 1984). Olsen et al. (1954) 

introduced 0.5 M sodium bicarbonate (NaHCO3) solution at a pH of 8.5 to extract P from 

calcareous, alkaline, and neutral soils. The routine soil P tests may not give insight into the 

level of plant available P as the chemical reagents may solubilize non-labile P. For instance, 

the acidic Bray and Mehlich I extractants can dissolve Al- and Fe-phosphates, while Olsen 

extractant removes dissolved and adsorbed P on calcium carbonate and Fe-oxide surfaces 

(Mallarino, 1997). Moreover, these chemical extractants are not applicable over all soil types, 

which underscore the use of them for soil P extractions (Myers et al., 2005). Bray and 

Mehlich-3 extractants were designed to extract P from non-calcareous soils, whereas the 

Olsen method was meant for non-acidic soils. Furthermore, those conventional soil P tests 

derived from mineral soils may not necessarily be applicable for organic soils, although 

some routine soil P tests are being adopted to make agronomic recommendations in muck 

soils (Castillo and Wright, 2008; Wright, 2009). This, however, is an “alternative-than-never” 

choice, at this moment without specific test for organic soils available. 
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2.2 Ion-sink extractions 

The ideal soil P test should be able to extract P in a similar manner as plant roots (Abdu, 

2006). Ion sink tests have been developed to simulate how plant roots extract available P 

from soils. Methodologies were detailed in Sibbesen (1978), Schoenau and Huang (1991), 

Chardon et al. (1996) and Myers et al. (2005).  

The ion-sink concept used in P extraction includes ionic exchange resin membranes, resin 

bags and FeO coated filter papers or strips. The exchange membrane resin is employed with 

either the batch or miscible displacement techniques. The batch technique involves the use of a 

wide soil to solution ratio, which varies the P concentration in the solution and the quantity of 

desorbed P as the reaction proceeds. If there is inadequate mixing of solution with the ion 

exchanger, a limited rate of reaction may occur (Sparks, 1985). This may also lead to a change 

in surface chemistry of the colloids and break down of soil particles (Barrow and Shaw, 1977). 

With miscible displacement technique, there can be error in dilution that leads to error in 

interpretation by altering the P concentration of soil (Sparks, 1999), which is more pronounced 

in colloids having low ion absorbing power (Carski and Sparks, 1985). Also, dispersion of soil 

colloids may not be fully achieved (Sparks, 1999). Even though anion exchange resin extracts 

more P than the FeO-coated papers, the additional P extracted may not be plant available 

(Robinson and Sharpley, 1994). Soil particles can contaminate the FeO-coated papers during 

shaking, which can lead to error in estimating desorbable P (Uusitalo and Yli-Halla 1999). This 

can, however, be minimized by the use of CaCl2 solution as the background electrolyte to 

minimize soil dispersion (Myers et al., 2005), but reaction with CaCl2 may reduce the amount 

of P extracted (Koopmans et al., 2001).  

In spite of the aforementioned disadvantages, ion-sink methods, especially the anion 

exchange membranes, are still regarded as the most effective method of plant available P 

extraction. In addition to their capability to extract P from a variety of soil types, regardless of 

soil properties (Sharpley et al., 1994), the ion-sink methods simulate plant roots and extract P 

from soil without alteration of the soil chemical and physical characteristics (Raven and 

Hossner, 1993). Further more, the resin membranes can be re-used several times without 

losing its extracting power (Schoenau and Huang, 1991). This property makes it relatively 

cheaper than the FeO-coated papers. The compatibility of resins with soil solution chemistry 

and pH can be achieved by charging the resins with either HCO-3 or Cl- (Agbenin and Raij, 

2001). The use of HCO3--resin is more advocated than Cl--resin, as plant roots accumulate 

bicarbonate in the rhizosphere, leading to an increase in rhizosphere pH in acid to neutral soils 

and a decrease in rhizosphere pH in calcareous soils (Sibbesen, 1978), while when Cl--resin is 

used, the Cl- accumulated in solution inhibits the exchange reaction (Myers et al., 2005).  

2.3 Phosphorus determination 

Analysis of extracted P is typically done by colorimetry, most notably the Murphy and Riley 

(1962) method. A specific ion reacts with the color developing reagents to form colorful 

complex (e.g. blue antimony phospho-molybdate), then light absorption by the formed 

complex is detected at a specific wavelength. Colorimetric procedures are sensitive, 

reproducible and enable to automated analysis. In addition, the methods can be 

accommodated to water samples, digested solutions and extracts (Pierzynski et al., 2008).  
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Inductively coupled plasma (ICP) spectrophotometry is also now commonly used for P 
determination, particularly in routine soil P tests offered by public and commercial 
laboratories. The use of ICP has increased as the use of multi-element soil extractants 
becomes more popular. Results from ICP are not always directly comparable to those from 
colorimetric analyses (Pierzynski et al., 2011), as ICP estimates the total P in a solution while 
the colorimetric procedures measure P that can react with the color developing reagents. 
Moreover, there are certain limitations that must be considered while evaluating data 
generated by ICP, such as the matrix effects, spectral interference, etc. (de Boer et al., 1998). 

Nuclear magnetic resonance (NMR) is a physical phenomenon based upon the magnetic 
property of atomic nucleus. It is observed that magnetic nuclei, like 1H, 13C and 31P, could 
absorb radio frequency when placed in a magnetic field with a specific strength, described as 
the resonance of the nucleus. Different atoms in a molecule resonate at different frequencies at 
a given field strength. This is a powerful method that allows researchers to determine the 
structure of chemical compounds. The use of solution 31P NMR spectroscopy has allowed us to 
identify P forms in soils and residual materials, and confirm P forms estimated by commonly 
used chemical extractants, such as sequential fractionation schemes. This technique has 
enabled more accurate determination of organic forms of P in soils and residual materials 
(Zhang et al., 1999; Turner and Leytem, 2008). In addition, the use of synchrotron-based 
techniques (e.g. XANES) has provided insights into both Pi and Po forms in soils and residual 
materials. Descriptions of these approaches were detailed by Beauchemin et al. (2003) and 
Shober et al. (2006). These analytical advances have been critical in gaining a more detailed 
understanding of soil P transformation and reaction products following land application of 
residual materials. This information has helped assess the fate, reactivity, behavior of specific 
forms of P and the environmental implications of land application of materials such as 
biosolids and animal manures (Pierzynski et al., 2008). 

3. Soil P transformation 

3.1 Soil P fractionation 

From the standpoint of availability to plants, soil P is divided into three functional fractions 
each including both Pi and Po forms: (1) readily labile P pools, (2) moderately labile P pools 
and (3) sparingly soluble P pools (Tiessen et al., 1982). Due to the technical difficulties 
involved in isolating specific P compounds from soils, the financial, practical and safety 
limitations of using P radioisotopes, and limited access to NMR spectroscopy and 
synchrotron-based techniques, most of field studies on P transformation in soils must rely 
on alternative methods of measuring changes in soil P fractions. One technique is to 
sequentially separate soil P into various Pi and Po fractions based on their bioavailability and 
biological associations, by first removing labile P, then more stable forms. This sequential 
extraction method was originally presented by Chang and Jackson (1957) and was later 
modified by Petersen and Corey (1966) and Williams et al. (1967). Briefly, this soil P 
sequential procedure uses NH4Cl to extract labile Pi, NH4F to dissolve specifically Al-
associated Pi followed by NaOH to extract Fe-bound Pi and by dithionite-citrate for 
reductant-soluble or 'occluded' Pi forms. The HCl dissolved Ca-bound Pi and the final 
residue is analyzed by Na2CO3 fusion for total P. However, the procedure presents many 
interpretational problems. Since Pi reprecipitates during the fluoride extraction, the 
separation of Al- and Fe-associated Pi is not reliable and the reductant-soluble or 'occluded' 
Pi is an ill-defined pool. Furthermore, the Po fraction is ignored (Williams et al. 1967).  
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An improved P fractionation scheme was developed by Hedley et al. (1982). This sequential 
extraction aimed to quantify labile Pi, Ca-associated Pi, Fe- and Al- associated Pi, as well as 
labile and more stable forms of Po. With this improved procedure, soil P is initially extracted 
with an anionic-exchange resin (resin-P), and then with NaHCO3 (NaHCO3-Pi/Po). Resin-P 
and NaHCO3-P are assumed to be the readily plant-available fractions and generally 
regarded as P that is sorbed on carbonates, sesquioxides or crystalline minerals (Mattingly, 
1975). Moderately labile P, sorbed on amorphous Fe and Al minerals and the 'protected P' 
that is occluded or contained within aggregates, is then extracted with NaOH (NaOH-
Pi/Po). The sparingly soluble apatite-type P minerals are extracted with HCl (HCl-P), and 
the residual P is dissolved by a H2O2 (or K2S2O8)-H2SO4 digestion (residual H2SO4-P). The 
H2SO4-P fraction, chemically stable and not readily available to plants, may consist of either 
Po or Pi, or both. This approach is currently the only one to evaluate both available Pi and Po 
in soils with moderate success (Tiessen and Moir, 1993), although modifications to the 
procedure are often study-specific, for example, the use of de-ionized water instead of 
anionic-exchange resins to extract readily labile P. It was proven useful for establishing the 
effects of long-term cropping practices on Pi and Po fractions and transformation 
(O'Halloran et al., 1987a; Paniagua et al., 1995; Richards et al., 1995; Tran and N’dayegamiye, 
1995; Zhang and Mackenzie, 1997a, 1997c; Zhang et al., 2004; Zheng et al. 2001, 2002, 2004a) 
and for assessing soil P status in field soils (Simard et al., 1995; Beauchemin and Simard, 
2000; Zheng et al., 2004b). It was also valuable for quantifying changes in soil P fractions in 
short-term incubations (Hedley et al., 1982; Iyamuremye et al., 1996) and from greenhouse 
experiments (Ivarsson, 1990). In addition, it offers a useful index of the relative importance 
of P cycling by biological versus geochemical processes in soils at different stages of 
development (Cross and Schlesinger, 1995). 

3.2 Conceptual model of soil P transformation 

The P transformation in soils involves complex mineralogical, chemical and biological 
processes (Fig. 1). The P cycle in soil is a cohesive dynamic system under the influence of 
long-term chemical transformations and short-term changes due to plant uptake or 
cropping. The leaching of bases, the removal of carbonates and the increasing Fe and Al 
activity that accompany the development of soils cause a shift from primary to secondary Pi 
forms and also influence the stabilization of organic matter and its associated Po (Walker 
and Syers, 1976). The abundance and activity of various Pi forms and the turnover of Po in 
soils control the replenishment of labile solution P following plant uptake. Surface 
associated or amorphous Pi replenishes the labile P pool while more stable crystalline 
species act as a sink as well as long-term reservoir of P, depending on other soil properties 
such as pH (Murrman and Peech, 1969). In this way, hydroxide or acid extractable Pi 
(NaOH-Pi or HCl-P) may act as the quantity factor that buffers the more labile P forms. The 
Po may perform a similar function through controlled mineralization-immobilization 
processes (McGill and Cole, 1981). Soil organic carbon has a major role of promoting 
processes involved in P transformation, through its contribution as energy source for 
microbial activity (Stevenson, 1986). Microbes are heavily involved in P transformation in 
three ways: (1) by decomposition of Po compounds, with release of available Pi; (2) by 
immobilization available P into cellular material; and (3) by promoting the solubilization of 
fixed or insoluble mineral forms of P, such as through the production of chelating agents 
(Stevenson, 1986; Frossard et al., 2000).  
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Fig. 1. A conceptual model of soil phosphorus transformation with its measurable 
components (Source: Tiessen et al., 1984) 

3.3 Impacts of farming practices on soil P fractions and transformation 

3.3.1 Effects of fertilization 

Numerous studies have investigated the effects of fertilizer additions on P fractions and 

transformation. Generally, resin-P, NaHCO3-Pi and NaOH-Pi reflect the difference between 

fertilizer P and crop P removal. Stable fractions are less affected by inorganic fertilizer P or 

manure application (O'Halloran, 1993; Richards et al., 1995; Tran and N’dayegamiye, 1995; 

Zhang and MacKenzie, 1997a, 1997c). The Po fraction is either unaffected by excess inorganic 

fertilizer P (McKenzie et al., 1992a, 1992b; Zhang and MacKenzie, 1997a; Zheng et al., 2001) 

or increased with high rates (Schmidt et al., 1996), but it increases when inorganic fertilizer 

is combined with farmyard manure (O’Halloran, 1993; Tran and N’dayegamiye, 1995; 

Zhang and MacKenzie, 1997a). The Po is a source of P to plants when fertilizer P is 
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inadequate to meet crop P requirements (Zhang and MacKenzie, 1997a, Zheng et al., 2001, 

2004b). In many cases, the readily labile P increases more when the two P nutrient sources 

are applied together than when only one is applied (Paniagua et al., 1995). Consequently, 

the effects of P fertilization on different P pools in soils depend on nutrient sources and rates 

of P applied as chemical fertilizer or manure (O'Halloran, 1993; Zhang and MacKenzie, 

1997a, 1997b; Zheng et al., 2001, 2002). 

Long-term organic residues or manure application increases microbial activity and potential 

mineralization of soil organic matter (N'dayegamiye and Angers, 1990). Consequently, it 

may induce transformation of soil Po to Pi fractions and increase the available P in surface 

and subsurface soil horizons (Sharpley et al., 1984; Tran and N’dayegamiye, 1995, Zheng et 

al., 2002, 2004a). This mineralization of Po during the growing season is very important for P 

availability to plants. Nevertheless, the excessive application of manure or of P-rich organic 

amendments plays a significant role in decreasing the P sorption capacity in soils (Sharpley 

et al., 1993; Simard et al., 1995; Beauchemin et al., 1996; Zheng et al., 2001). Decreased P 

sorption capacities might increase the risk of contamination of the receiving water bodies. 

3.3.2 Effects of tillage 

The impacts of tillage on P forms and availability have been the subject of many 

investigations. There was an increase in total and labile P contents in surface soil layer due 

to no-till operations (Cruse et al., 1983; Weill et al., 1990; Selles et al., 1997). This was 

attributed to the enhanced microbial activity and mineralization of soil Po (Follett and 

Peterson, 1988) or to a lack of soil mixing with fertilizer P thus reducing P fixation by soil 

colloids (Sweeney, 1993; Selles et al., 1997, 1999). As a result, extractable P in surface soils is 

increased in no-tillage compared to conventional tillage. Soil Po is generally increased near 

the bottom of plow layer by tillage due to the incorporation of crop residues (Dick, 1983, 

Weill et al., 1990). Nevertheless, O'Halloran et al. (1987a) did not observe a significant 

difference in the size of soil P fractions except for NaOH-Po between stubble mulch, bare sod 

and no-till practices in a grassland soil. On the other hand, Sharpley et al. (1993) found that 

no-till plots tended to have higher soil moisture content and lower temperature, which 

resulted in more dissolved P in the runoff than conventionally tilled plots. Blevins et al. 

(1990) observed that movement of P was reduced using a system of chisel plowing 

compared to direct seeding or conventional plowing. The chisel plowing was associated 

with a reduced runoff following the spreading of fertilizers on the soil surface. Therefore, as 

with fertilization, tillage can alter distribution of P fractions and affect the transformation 

and transfer of P in soils. 

3.3.3 Effects of cropping systems 

Cropping systems also have major effects on changes in P fractions in soils. As cropping 

systems change from less intensive systems (i.e. crop-summer fallow) to more intensive 

cropping sequences (i.e. continuous wheat and wheat-wheat-fallow), soil P availability and 

transformation become less predictable due to larger Pi and Po components from greater 

residue and litter which are maintained on soil surface (O'Halloran, 1987a, b). Wagar et al. 

(1986) found a buildup of Po occurred with and without added P fertilizer when cropping 
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systems changed from conventional winter wheat-fallow to more intensive rotations. 

Bowman and Halvorson (1997) observed that a change from wheat-fallow to continuous 

wheat cropping produced a significant increase of labile P fractions in 0-5 cm surface soils. 

Zheng et al. (2001) observed that forage-forage-barley rotation produced larger labile P 

fractions than barley monoculture in the 30-60 cm layer in a Labarre silty clay after 10 

years of cultivation. Recently, Zhang et al. (2006) investigated the P status after 45 years of 

consistent cropping practices under three cropping systems of continuous corn, rotation 

corn and continuous bluegrass. Compared to the adjacent native soil in forest ecosystem, 

the study showed that continuous cropping without P fertilization decreased all P forms 

significantly except for water extractable Po, with the largest decrease in labile Pi and 

moderately labile Po; continuous cropping with fertilization resulted in comparable total P 

concentrations in the continuous corn and rotation corn systems and increased total P in 

the continuous bluegrass sod. The study also indicated that long-term cropping 

significantly enhanced the rate of moderately labile Po mineralization, regardless of P 

fertilization, especially for continuous corn cropping system. However, compared to 

monoculture, crop rotations showed no effect on nutrient contents in the 0-20 cm soil 

layer in an experiment with soybean, corn and wheat in an Oxisol and in a Rhodic 

Ferralsol (DeMaria et al., 1999).  

3.4 Soil texture effects on soil P fractions and transformation 

Soil texture can be related to changes in P fractions and transformation. O'Halloran et al. 

(1985) found that up to 90% of the spatial variability in total P content of a Mollisol was 

explained by texture. A similar study showed that significant proportions of variability of all 

P fractions, except for H2SO4-P in a Brown Chernozemic loam, could be attributed to 

changes in sand content (O’Halloran et al., 1987b). Increasing silt plus clay content has been 

significantly correlated with larger soil resin-P, NaHCO3-Pi/Po and NaOH-Pi/Po pools. HCl-

P was positively correlated with sand content (O'Halloran et al., 1987b). There is evidence 

that P transformation in soils were closely linked to microbial activity and C dynamics, 

which affect P mineralization and immobilization (Hedley et al., 1982). For example, a loam 

soil supported higher microbial biomass than the sandy loam and sandy soils (Cooper and 

Warman, 1997). Huffman et al. (1996) indicated that soil texture had a greater effect on P 

transformation than did the combined effects of residue addition, residue placement and 

nutrient addition, because soil texture affected the labile Pi, liable Po, and microbial P pools. 

Therefore, among those factors, the particle size of soil fractions tends to account for larger 

proportion of variability in soil P fractions. Those findings emphasize the importance of 

considering soil texture when planning studies of the effects of cropping practices on P 

fractions and transformation. 

3.5 Profile-wise distribution of soil P fractions 

Much effort has been devoted to investigate the vertical changes in forms and distribution of 

soil P as influenced by cropping practices. These changes in P forms were mainly limited to 

the top of 30 cm (O'Halloran, 1993; Sharpley et al., 1993; Bowman and Halvorson, 1997; 

Selles et al., 1997), or to depths of 65 cm (Reddy et al., 1980; Mozaffari and Sims, 1994; 

Richards et al., 1995), with a few studies extending to depths ≥ 90 cm (Chang et al., 1991; 
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Simard et al., 1995; Beauchemin et al., 1996; Zheng et al., 2001). These studies suggested that 

the impacts of cropping practices on soil P fractions extended deeper in soil profile than the 

depth distributed by primary tillage, and P profile-wise distribution was often complicated 

by P downward movement. The Po movement in soils was greater than that of Pi 

(O'Halloran, 1993; Richards et al., 1995). This may be due to the fact that Po was not retained 

as strongly as Pi by sorbing components of solid phase, or perhaps that Po movement was 

driven by mineralization process. The Po migrated to subsoil can be mineralized, since Po 

was used by microorganisms as an energy source for their metabolism in reduced layers of 

poorly drained soils (Zheng et al., 2001).  

The downward migration of P is associated with changes in soil P sorption capacity 

(Reddy et al., 1980). Simard et al. (1995) found that P sorption index (Psi) in agricultural 

soils was markedly decreased in all three horizons compared with forest soils from a 

watershed in Quebec. Accumulation of added P has lead to an increase in total labile P 

pool in the A horizon (0-30 cm), while resilient P pools were the major sinks for mobile P 

in the B (30-60 cm) and C (60-90 cm) horizons in agricultural soils (Simard et al., 1995; 

Beauchemin et al., 1996; Zheng et al., 2001). This finding was in line with previous studies 

suggesting that repeated additions of manure decreased P sorption capacity of soils and 

accelerated P downward movement (Reddy et al., 1980; Sharpley et al., 1993; Mozaffari 

and Sims, 1994).  

4. Analysis of P transformation in soils 

4.1 Path analysis of soil P transformation 

Path analysis is a statistical technique used to examine interrelationships among variables 

that are often illustrated by a path diagram. It provides not only plausible explanations of 

observed correlations by constructing the cause-and-effect model, but also allows 

decomposition of observed correlations into direct and indirect effects (Johnson and 

Wichern, 1988). Path analysis was useful in linking changes in soil P fractions and clarifying 

concepts of P transformation in soils (Tiessen et al., 1984; Beck and Sanchez, 1994; Zhang 

and MacKenzie, 1997a; Zheng et al., 2002, 2004a). Using path analysis, Tiessen et al. (1984) 

found that in Mollisols, much of resin-Pi was derived from NaHCO3-Pi and NaOH-Pi 

fractions, and in more weathered Ultisols, 80% of variability in labile P was accounted for by 

Po forms. Beck and Sanchez (1994) showed that the NaOH-Pi fraction acted as a major sink 

for fertilizer P in soils and Po was a major primary source of plant-available P in unfertilized 

soils of Peru. Zhang and MacKenzie (1997a), using the same approach for soils receiving 

manure and fertilizer P, indicated that Po accumulated as NaOH-Po through NaHCO3-Pi. 

The NaHCO3-Pi and NaOH-Pi were major sinks for added P. When mineral fertilizer was 

the only source of P, most NaHCO3-Pi was directly supplied from fertilizer P through 

NaOH-Pi. Zheng et al. (2002, 2004a) investigated the P transformation in a Labarre silty clay 

as affected by nutrient sources and cropping systems in a long term study and showed that 

the roles of Po pools were more important than Pi pools for P transformation and NaHCO3-

Po was sensitive to P source and was likely acted as a transitory pool rather than as a sink or 

source of soil P (Fig. 2). Thus, path analysis can reflect the changes in P transformation 

depending on soil type, climatic conditions and cropping practices.   
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Fig. 2. Pathways of P transformation after 10 annual applications of mineral fertilizer (A) 
and liquid dairy manure (B) in the 0-15 cm soil of a Labarre silty clay under barley 
monoculture. The percentage value indicates the partial correlation between assed Pi and 
resin-P; numbers are path coefficients; NS, not significant at P ≤ 0.05 (Source: Zheng et al., 
2004a) 
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4.2 Modeling of soil P transformation 

The P concentration in soil solution is in turn controlled by P transformation processes such 
as mineralization, precipitation and adsorption. The complexity of interactions among these 
processes has led to the use of both descriptive and mechanistic mathematical models to 
describe them. The interpretation of changes in P concentrations in soil solution has been 
modeled using a variety of approaches, such as adsorption model, sorption-transport model 
and multi-reaction model. Most of earlier simulations of P adsorption have been based on 
simple rate constants (Jones et al., 1984), such as Langmuir (Enfield et al., 1981), Freundlich 
(Shaviv and Shacher, 1989) and Elovich equations (Chien and Clayton, 1980). A few studies 
have used kinetic equations such as first- or second-order reaction rates to describe the P 
sorption in soils (Bowden et al., 1980; Beauchemin et al., 1996). Nevertheless, adsorption 
models did not fully describe the mechanisms of P transformation in soils, and hence were 
unlikely to be generally applicable. Van de Zee and Gjaltema (1992) proposed a sorption-
transport model in which both sorption reversibility and precipitation irreversibility were 
taken into account, but reaction rates remained uncertain.  

A mechanistic multi-reaction model was conceived to represent P concentrations under 

dynamic boundary conditions, and to explain temporal and spatial P distribution among 

water soluble and resin-, NaHCO3-, NaOH-, and HCl-P fractions (Grant and Heaney, 1997; 

Grant et al., 2004). The model describes adsorption-desorption, precipitation-dissolution and 

ion pairing. The model can explain the temporal and spatial distribution of soluble and solid 

fractions under specified changes in boundary conditions in different soil types. However, 

the model requires more detailed, explicit information about soil chemical composition, 

which may not be readily available in routine fashion for many soils. Thus, where necessary, 

some assumptions must be made. To date, despite several P transformation models have 

been developed to describe certain processes, the majority of existing models need to be 

verified in heterogeneous soils under field conditions. Furthermore, it is unlikely that one 

model can kinetically represent all processes involved in P transformation. 

5. Summary 

Phosphorus is an essential element for plant growth and development, as it plays key roles 
in plant metabolism, structure and energy transformation. It is also a potential pollutant of 
water. The P dynamics in plant-soil-water systems is of increased interest due to its 
importance for environmental, agronomic and economic issues.  

Soil P test involves P extraction from soils followed by a quantification of the nutrient in the 

extracting solution. The most widely used soil P tests are chemical extractions, such as Bray 

1 & 2, Olsen, Mehlich I & III methods. Those chemical extractants are not applicable over all 

soil types, which is a limitation for soil P extraction. The ion-sink extractions, including ionic 

exchange resin membranes, resin bags, FeO coated filter papers or strips, simulate plant 

roots to extract P from soils without alteration of soil characteristics and have the advantage 

of extracting P from variety of soil type regardless of soil properties. The mainstay of P 

determination is the use of colorimetric procedures, most notably Murphy and Riley (1962). 

Inductively coupled plasma (ICP) spectrophotometry is becoming more popular for multi-

element determination. The isotopic dilution (32P) techniques, the 31P NMR solution and the 

synchrotron-based techniques can provide insights into P chemistry and forms in soil and 
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residual materials. Although these advanced analytical techniques are capable of gaining 

more detailed understanding of P dynamics in soils, unfortunately not all researchers have 

access to the required instrumentation.  

Based on its availability to plants, soil P can be divided into functional groups of readily 

labile P pools, moderately labile P pools and sparingly soluble P pools, each includes both Pi 

and Po forms. The P transformation in soils plays important roles in P bioavailability and 

mobility from soil to water, and was intensively affected by cropping practices, i.e. 

fertilization, tillage and cropping systems. It involves complex chemical, mineralogical and 

biological processes. The complexity of interactions among these processes has led to the use 

of both descriptive and mechanistic mathematical models to describe them. Path analysis is 

powerful in plausibly explaining interrelationships among P pools of differing 

bioavailability and clarifying changes in P fractions and transformation in soils. Mechanistic 

multi-reaction models that describe transformation processes of mineralization-

mobilization, adsorption-desorption, precipitation-dissolution and ion pairing are available 

to interpret the temporal and spatial distribution of P fractions in soils. However, the models 

require more detailed, explicit information on soil chemical composition that are not 

routinely available for many soils. Furthermore, most mechanistic models need to be 

verified in heterogeneous soils under field conditions. 
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