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1. Introduction 

Aseptic loosening is still the most common late complication after total hip arthroplasty 

(THA) and one of the main reasons for its failure. Artificial joints are made of metallic, 

polymeric and ceramic components. In the process of prosthesis functioning in the 

recipient’s body implant materials are subject to wear and fretting as well as of influence of 

aggressive biological fluids. Wear debris particles, corrosion products and metal ions from 

the bearing and contact surfaces of the implant are released in the periprosthetic tissues. As 

a result of the processes taking part at the implant-bone interface osteolysis develops with 

subsequent loosening of the implant. 

Today, the most widely used bearing surface is a metal femoral head made of cobalt 

chromium molybdenum alloy coupled with a polymeric inlay fabricated from ultra-high 

molecular weight polyethylene (UHMWPE). For decades in clinical use, metal on 

polyethylene (MoPE) bearings in total hip arthroplasty provided consistent results. Despite 

the widespread use of UHMWPE as a bearing surface its wear is the main obstacle 

restricting the longevity of the artificial joint. With an average rate of polyethylene (PE) wear 

of 0.1mm per year, 100 million UHMWPE particles (assumed diameter of 1 μm) are 

liberated into the joint space on a daily basis (Muratoglu & Kurtz, 2002). It is now well 

established that cyclic mechanical loading, production of wear particles, and the ensuing 

cascade of adverse tissue response are all significant contributors to local osteolysis at the 

prosthesis–bone interface and in certain cases loosening of the prosthesis (Aspenberg & 

Herbertsson, 1996, Goldring et al., 1986, Schmalzried et al., 1992, Willert & Semtlitsch, 1977). 

Deterioration of clinical results with time and eventually revision of the arthroplasty were a 

very strong impetus for the search for the “ideal bearing” (Muratoglu & Kurtz, 2002). 

Improving longevity of the total hip arthroplasty by engineering of new bearing couples 

with improved biomechanical characteristics and lower rate of wear has been the main line 

of ongoing research in the orthopedic community. Today, orthopedic surgeons have a wide 

choice of implants and bearing couples for a particular patient. The new generation of joint 

bearings provides significantly lower wear rates and is anticipated to diminish the incidence 

of osteolysis and subsequent revisions. 
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Next to development of new bearing surfaces, the second line of research focuses on 
understanding of the underlying mechanisms of the process aseptic loosening of THA. 
Aseptic loosening is characterized with osteolysis and formation of thick membrane around 
the prostheses that eventually leads to its loosening. Currently, it is well established fact that 
loosening is a result of host response to wear debris and corrosion products of implant 
materials. Particles can readily be detected in the periprosthetic tissues as well as at remote 
locations such as lymph nodes, liver, spleen or bone marrow. Wear debris induce 
inflammation in the periprosthetic tissues that is sustained through the functioning of the 
implant as long as wear particles are produced. 
Metal wear debris, degradation and corrosion products, such as ions and reactive oxygen 
species (ROS), has been considered to be crucial factors in the process of loosening leading 
to the failure of metal implants (Tsaryk, 2009). Metal debris could induce inflammatory 
responses mediated by neutrophils, macrophages, fibroblasts and other cells. Metal ions and 
corrosion products are potentially toxic, can cause allergic reactions of hypersensitivity, 
chromosomal aberrations, and eventually malignancy (Keegan et al., 2007).  
Elevated oxidative stress has been proposed to be a causative factor in many inflammatory 

and degenerative disorders with tissue damage and fibrosis in different organs and systems 

(Hogg, 1998, Park et al., 2001). In addition, recent in vitro studies showed the combined 

effect of particles and macrophage and osteoclast activation on the increase of oxidative 

stress (Fleury et al., 2006, Petit et al., 2005, Wei et al., 2009). This suggests involvement of 

reactive oxygen species (ROS) in the mechanism of aseptic loosening of hip arthroplasty. 

The chronic inflammation state with the elevated oxidative stress results in extensive 

formation of granulation tissue and fibrous capsule, periprosthetic bone resorption due to 

osteoclast activation by inflammatory stimuli and finally aseptic loosening of the implant 

(Tsaryk, 2009). In support of this hypothesis we proved the involvement of ROS in excessive 

fibrosis around loose hip prostheses (Kinov et al., 2006). This suggests involvement of 

reactive oxygen species in the mechanism of aseptic loosening of hip arthroplasty leading to 

formation of the fibrous pseudocapsule that typically consists of a combination of fibrous 

tissue and macrophages. However, the mechanisms of involvement of ROS in aseptic 

loosening of THA are still to be elucidated. 

Some researchers further implicated that free radicals may be involved in the induction and 

maintenance of chronic inflammation with resulting periprosthetic bone resorption. In 

support of this hypothesis, recent studies on osteoporosis (Hamel et al., 2008, Li et al., 2009) 

show that elevated oxidative stress is involved in inhibiting osteoblastic differentiation and 

stimulating osteoclastogenesis. In addition, in vitro study showed the combined effect of 

particles and macrophage and osteoclast activation on release of reactive oxygen and 

nitrogen species (Wang et al., 2002). Different studies investigate the mechanisms of action 

of oxidative stress on bone formation (Bai et al., 2004, 2005, Chen et al., 2010, Kim et al., 2010, 

Mazière et al., 2010, Rached et al., 2010). However, the exact mechanism and actions of ROS 

on inhibition of osteoblasts are still largely unknown. Considering the fact that elevated 

oxidative stress induces bone loss in postmenopausal osteoporosis (Lean et al., 2005) 

whereas antioxidants suppress osteoclast activity and enhance differentiation of osteoblasts 

(Aitken et al., 2004, Mody et al., 2001) it is possible that ROS are involved in aseptic 

loosening of total hip arthroplasty. In support of this, in two previous studies, we have 

shown direct evidence for involvement of elevated oxidative stress in aseptic loosening of 

THA (Kinov et al., 2006, 2010). 
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2. Materials for bearings of hip prostheses 

Materials are very important for the long-term success of THA. Since the introduction of low 
friction arthroplasty (LFA) by Sir John Charnley in the 1960’s, much has been learned about 
the durability and biocompatibility of materials used in joint replacement. Concerns about 
higher rates of aseptic loosening and subsequent prosthesis revision among young and 
active patients have lead to the development of new implant designs and alternative 
bearings (Muratoglu & Kurtz, 2002). Strength and endurance, friction and wear properties, 
inertness and biocompatibility of the materials should be optimized in order to eliminate or 
diminish to a negligible extent the reaction of the organism to wear debris. 

2.1 Brief historical remarks 

Aseptic loosening has been observed since the beginning of hip replacement. Metal bearings 
were first introduced by Wiles in the 1930s (Wiles, 1957), but they received wider 
application in the 1950s and 1960s with the pioneer works of McKee-Farrar and Ring 
(McKee & Watson-Farrar, 1966, Ring, 1967). The earlier prototypes were manufactured of 
stainless steel and fracture of the prostheses was a frequent complication (McKee & Watson-
Farrar, 1966, Ring, 1967). To solve this problem the cobalt chromium molybdenum 
(CoCrMo/CoCrMo) articulation was developed. However, the metal-on-metal (MoM) 
bearing was eventually abandoned in the 1970’s in favor of the Charnley’s low friction 
arthroplasty. Next to biomechanical factors associated with the joint center and surgical 
implementation technique, two main reasons for shift from MoM bearing were 
manufacturing problems and long-term concerns associated with metal toxicity (Muratoglu 
& Kurtz, 2002).   
In 1958, Charnley introduced the “low friction arthroplasty” in which the initial bearing 
material was polytetrafluoroethylene (Charnley, 1979). Because of high rate of wear and 
“intense foreign-body reaction”, in 1962, polytetrafluoroethylene was replaced with ultra-
high molecular weight polyethylene. After use of UHMWPE the rate of wear and the need 
for revision decreased tremendously. In the cases that required revision the implant-bone 
interface was surrounded by granulomatous tissue rich of inflammatory cells. Charnley 
believed that those findings were a result of infection (Charnley et al., 1968). A benign, 
noninflammatory adverse tissue response was suggested (Harris et al., 1976). Willert and 
Semlitsch proposed that aseptic loosening resulted from reaction to wear debris ingested 
by the macrophages in the periprosthetic tissue (Willert & Semlitsch, 1977). Their findings 
were supported by Mirra et al. (Mirra et al., 1976), and Goldring et al. demonstrated that 
the periprosthetic membranes were capable of producing collagenase and prostaglandin 
E2, a powerful stimulator of bone resorption in vivo (Goldring et al., 1986). 
Polymethylmethacylate (PMMA) was proposed as a cause for osteolysis and loosening 
and the term “cement disease” was introduced (Jones & Hungerford, 1987). However, the 
problems of osteolysis and aseptic loosening persisted after the implementation of 
improved cementing techniques and cementless implants. This led researchers and 
clinicians to propose other causes for osteolysis and subsequent loosening such as 
polyethylene and metal debris. 
The first ceramic-on-ceramic (CoC) total hip arthroplasty was developed by Boutin in 

1970 (Boutin, 1971, Boutin & Blanquaert, 1981). The main advantages of ceramics are its 

superior wear characteristics and biocompatibility, along with better corrosion resistance 

compared to metallic alloys. Initially, application of ceramics in total hip arthroplasty 
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exclusively included use of alumina (Al2O3) (Boutin & Blanquaert, 1981). In the late 1980s, 

alumina was replaced with zirconia (ZrO2) due to its superior strength and toughness as 

compared with alumina (Willmann, 1998). Drawback of ceramic materials used for 

bearing couples is their inherently lower strength and toughness under tension and 

bending. Fracture of the ceramic bearing component is the main mode of failure that 

occurs even with modern ceramic composites. 

2.2 Ultra-high molecular weight polyethylene  

Since 1962, ultra-high molecular weight polyethylene has been successfully used in hip 

replacement for four decades. UHMWPE is a polymer with outstanding chemical and 

mechanical characteristics. The chemical composition of polyethylene is simple, consisting 

only of carbon and hydrogen. However, at molecular level the polymer is a complex 

crystalline structure and at super-molecular level it is in the form of powder (also known as 

resin) than must be consolidated by melting or pressure to form a solid body. By further 

processing complexity could be added to the chemical structure of the polymer. In joint 

replacement, of special importance are its chemical inertness, low friction, lubricity, impact 

resistance, and abrasion resistance (Muratoglu & Kurtz, 2002, Kurtz, 2004).  

After recognition of the problem of wear of the artificial bearing and the ensuing adverse 

tissue reaction to wear debris the issue is a focus of ongoing research. Alternative bearings 

were proposed with the goal of elongating longevity of the hip arthroplasty. Polyethylene is 

a crystalline polymer and its mechanical properties are dependent on its molecular weight 

and crystalinity. In its solid state, UHMWPE is a two-phase material with crystalline 

domains embedded within an amorphous phase. The complexities in the microstructure of 

UHMWPE give rise to a range in mechanical behavior depending upon the processing, 

thermal and radiation exposure, storage, and prior mechanical history of the polymer 

(Muratoglu & Kurtz, 2002). 

In the 1990s, radiation crosslinking combined with thermal treatment has emerged as a 
technology to improve the wear and oxidation resistance of UHMWPE acetabular 
components (McKellop et al., 1999, Muratoglu et al., 2001). The new bearing showed 
reduced wear rate in numerous in vitro and clinical studies (McKellop et al., 1999, 
Muratoglu et al., 2001, Campbell et al., 2010, Kurtz et al., 2010). The wear rate of the 
alternative bearing of highly cross-linked polyethylene and CoCr was significantly lower 
compared to conventional articulation (UHMWPE/CoCr) (McKellop et al., 1999). The 
reduced wear rates and enhanced strength allow wider clinical application of the highly 
cross-linked polyethylene. There is an opportunity to enlarge the diameter of the femoral 
head used in total hip arthroplasty. This will allow increased range of motion of the joint, 
increased activities in daily living, greater stability of the joint and reduced incidence of 
subluxation and dislocation, and less frequent impingement. 

2.3 Metal-on-metal bearings in hip arthroplasty 

Metal-on-metal hip prostheses made of cobalt-chromium-molybdenum alloys represent an 
alternative to metal-on-polyethylene bearings because of their substantially lower wear rates 
(Kurtz, 2004). MoM bearings were proposed in an effort to eliminate wear-induced 
osteolysis. However, the size, the shape, the number and the chemical characteristics of ion 
particles are different from the polyethylene particles (Sieber et al., 1999). Because of the 
difference in particle size, metal-on-metal bearings have been estimated to produce about 
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100 times more wear debris particles than CoCr/UHMWPE bearings (Doorn et al., 1999, 
Firkins et al., 2001). As a result of increased biological activity of the smaller metal particles 
different problems from those of MoPE bearings emerged. Adverse reactions to metal debris 
have been reported to be a cause of pain in metal-on-metal hip arthroplasty (Wynn-Jones et 
al., 2011) and potential carcinogenesis raised concerns (Keegan et al., 2007). Two important 
features determine the survivorship of each type of metal implant: metallurgy and implant 
design. They are interrelated and determine the biological response to an implant and the 
survivorship of THA. The properties of the bearing surface are dependent on the 
manufacturing process. This will result in different wear pattern and metal ion release 
(Catelas et al., 2003).  
Large femoral heads used with MoM bearing have certain advantages: allow accelerated 
rehabilitation, good range of motion, lesser possibility for impingement, greater intrinsic 
stability. However, MoM bearing is very sensitive to improper surgical technique. 
Suboptimal or improper positioning of the components of the arthroplasty leads to 
impingement, edge loading, reduced clearance that subsequently results in elevated 
production of metal wear debris. 

2.4 Ceramics in hip arthroplasty 

After the drawback of implant fracture in the 1970’s and early 1980’s, the very low wear rate 

of ceramic materials renewed interest in developing new designs of CoC bearings for 

clinical use in the 1990’s. Ceramics are brittle, polycrystalline hard bodies, characterized 

with high hardness and friction endurance. Particles produced by CoC articulations are 

considered biologically inert and could reduce the rate of osteolysis observed with 

conventional PE bearings. Despite their brittleness, ceramic materials have several 

tribological properties, including hardness, which contribute to wear and scratch resistance 

(Kurtz, 2004). There are three types of ceramics that are of interest in THA, including 

alumina, zirconia, and alumina matrix composites (Kurtz, 2004). The strength of the 

ceramics depends on the size of the alumina or zirconia powder grains and the distribution 

of internal defects, as well as on its composition (i.e., percentage of alumina versus zirconia). 

Advances in technology with diminishing of grain size have resulted in improved strength. 

However, the survival of the CoC hip arthroplasty is highly dependent on surgical 

implantation technique. This articulation is less forgiving than conventional UHMWPE 

bearing to improper positioning of the components with a subsequent risk of fracture. 

Although fracture risk is low, it continues to be an issue of debate among orthopedic 

surgeons. Another potential problem is chipping of the liner that occurs with impingement 

or during insertion with improper placement. 

Biomechanical studies show excellent wear resistance of ceramic bearings. However, clinical 

studies do not show significant advantage of ceramics compared to polyethylene. In two 

randomized studies, an alumina-on-alumina bearing was compared with cobalt-chrome-on-

polyethylene bearing (Bierbaum et al., 2002, Capello et al., 2005). There was no significant 

difference in clinical outcome between CoC and MoPE bearings.  

3. Wear debris and aseptic loosening of total hip arthroplasty 

Osteolysis and subsequent loosening remain the most frequent complication after THA and 

the main cause for its failure. Wear-induced particle debris and the associated host response 
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is principle factor in this process. Abundant evidence show that the macrophages play a key 

role in wear debris induced periprosthetic osteolysis (Brooks et al., 2002, Park et al., 2005, 

Purdue et al., 2006, Sabokbar et al., 1997, Wang et al., 2002). Phagocytosis of wear particles 

induces secretion of various proinflammatory cytokines such as tumor necrosis factor alpha 

(TNF-), IL-1 and PGE2 (Goldring, Lam et al., 2000, Yao et al., 2008). This inflammatory 

response is modulated by various factors including chemical composition, size, shape, and 

volume of the particles (Sieber et al., 1999, Yang et al., 2002). The prostheses-bone interface 

could be also influenced by other factors such as endotoxins (Kido et al., 2004), matrix 

metaloproreinases secreted from activated macrophages that directly resorb bone (Brooks et 

al., 2002), and mechanical factors such as high fluid pressure (Aspenberg & Van der Vis, 

1998,  Van der Vis et al., 1998). Although the inflammatory response to wear debris is central 

to the process of aseptic loosening, the detailed nature of the local response may vary based 

upon several parameters, including prosthetic type and material, patterns of wear, and 

patient-related factors (Purdue et al., 2006). 

Similar to polyethylene debris, metallic debris migrate in the periprosthetic tissues, and 

because of its smaller size is easily phagocytosed by histiocytes (Doorn et al., 1999). Metal 

ions can be involved in various cellular, local and systemic biological reactions. However, 

the mechanism of metal toxicity is not fully understood today. It is well known fact that 

metals are involved in production of reactive oxygen species (ROS), such as superoxide ions 

(O2·–), hydrogen peroxide (H2O2), hydroxyl radical (OH·), and nitrogen oxide (NO·) via 

Fenton/Haber-Weiss chemistry (Sawyer, 1990). Free radicals may damage purine and 

pyrimidine bases of DNA (Valko et al., 2006). Moreover, direct binding of Cr to DNA is 

reported (Wolf et al., 1989) that may inhibit the process of DNA repair (Witkiewicz-

Kucharczyk & Bal, 2006). These gene modifications and eventual mutations can lead to 

carcinogenesis. Metal ions have been also associated with a delayed immune reaction 

(hypersensitivity) (Hallab et al., 2001). It was suggested that a vicious circle of particle 

phagocytosis, cellular lysis and subsequent release of particles by the involved cells may 

play role in delayed hypersensitivity reaction mediated by T-lymphocytes (Hallab et al., 

2005). In addition to systemic and cellular reactions various local adverse reactions such as 

extensive necrosis (Ollivere et al., 2009), periprosthetic osteolysis (Amstutz et al., 2011) and 

pseudotumour reactions (either cystic or solid) (De Haan et al., 2008, Wynn-Jones et al., 

2011) have been reported with MoM bearings. Perivascular accumulation of activated 

macrophages and T-lymphocytes has also been associated with periprosthetic osteolysis 

(Park et al., 2005). In addition, direct toxicity may also be involved in bone loss (Fleury et al., 

2006, McKay et al., 1996).  

Cells in synovial membrane of the artificial hip joint generate synovial fluid that is called 

pseudosynovial fluid and secrete the mediators of inflammation into it. Schmalzried et al. 

hypothesized that wear debris is dispersed into the joint fluid (Schmalzried et al., 1992). 

Access to the joint fluid for the wear particles is dependent on the contact between implant 

and bone. Wear debris activates macrophages, which activate osteoclasts or become 

osteoclasts themselves and initiate bone resorption (Sabokbar et al., 1997). The resulting 

bone loss will enlarge the interface and ease the flow of joint fluid, resulting in higher 

transportation capacity of the debris and gradual loosening of the implant. This concept is in 

concordance with the high pressure theory that was suggested by Aspenberg and Van der 

Vis (Aspenberg & Van der Vis, 1998). 
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4. Oxidative stress 

Oxidative stress is a condition when the balance of formation of oxidants exceeds the rate of 
metabolism and the ability of antioxidant systems to remove ROS. High levels of ROS can 
damage proteins, lipids, and DNA, and eventually cause cell death.  
Alternatively, oxidative stress can trigger activation of specific physiologic signaling 
pathways (Rached et al., 2010). In several studies, reactive oxygen species have been 
demonstrated as one of the key factors in inflammation (Kamikawa et al., 2001, Wang et al., 
2002, Tsaryk, 2009). Because of the inflammatory nature of aseptic loosening of total hip 
replacement, arthroplasty, it is likely that free radicals play a major role in this condition as 
well. In the periprosthetic tissues, detection of reactive oxygen species provides evidence for 
the formation and activity of free radicals (Windhager et al., 1998, Kinov et al., 2006). Under 
physiological conditions, ROS are part of normal regulatory circuits, and the cellular redox 
state is tightly controlled by antioxidants. However, increased concentrations of ROS and 
loss of cellular redox homeostasis following extensive particulate challenge can lead to up-
regulation of inflammatory processes in the interface membrane. 
The interface between implant and bone is rich of transitional metals from the alloy of the 

implant. Transition elements like vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), 

cobalt (Co), nickel (Ni), molybdenum (Mo), so-called d-block elements, show variable valence, 

which allow them to undergo changes in oxidation state involving one electron. If free radicals 

have a causative role in aseptic loosening than transition metals would have a strong 

promotional effect (Windhager et al., 1998). Via the Fenton reaction they would greatly 

stimulate inflammation and loosening. Iron i.e., exerts its toxicity through a series of reactions 

with reactive oxygen species called modified Haber-Weiss or Fenton reaction (Fe2+ + H2O2 → 

Fe3+ [H2O2-] → .OH + -OH), generating the  highly toxic hydroxyl radical (.OH) (Lubec, 1996).  

The generation of hydroxyl radicals via Fenton chemistry represents one of the most important 
mechanisms in various pathologic conditions. Hydroxyl radicals can lead to DNA and protein 
damage and impairment of normal DNA and protein synthesis and cell proliferation and thus 
has been thought to be casually involved in the multistep process of loosening (Wang et al., 
2002). Furthermore, ferrous/ferric ion has a decisive function in lipid peroxidation process by 
direct reaction with unsaturated fatty acids or reaction with preformed lipid hydroperoxides 
to form chain-carrying alkoxyl and peroxyl radicals, leading to severe damage of cellular 
integrity (Lin & Girotti, 1993, Minotti & Aust, 1992, Schaich, 1992). 
The effects of the metal wear particles on oxidative stress are not augmented by 
polyethylene and cement wear debris, originating from materials used for implant fixation. 
In an in vitro study, Petit et al. compared the effects of different wear products from hip 
prostheses on the nitration of proteins (an evidence for oxidative damage) in macrophages 
(Petit et al., 2005). The effect of both Co(2+) and Cr(3+) ions was inhibited by glutathione 
monoethyl-ester that provides protection against oxidative stress. However, ultra-high 
molecular weight-polyethylene and alumina ceramic particles had no significant effect on 
the nitration of proteins.  
Because of their excellent mechanical properties, titanium and titanium alloys are widely 
used in orthopedic implants. Moreover, superb corrosion resistance and biocompatibility 
are characteristic for titanium and are the main reasons for its wide use in various 
biomaterials. However, as a result of wear and corrosion, titanium ions are released in the 
periprosthetic tissues and can be found in systemic circulation. Titanium may be directly 
involved in ROS production interacting with H2O2 leading to formation of hydroxyl radicals 
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(Lee et al., 2005). ROS production may exceed physiological protection mechanisms and can 
thus be referred to as oxidative stress (Tsaryk, 2009). 
CoCr alloys have higher corrosion rate compared to titanium and titanium alloys and 

release toxic Co and Cr ions. Furthermore, Co ions mediate oxidative stress and could 

increase up to eight times oxidative stress in the cell (Limbach et al., 2007). 

It proves that elevated oxidative stress in the setting of aseptic loosening is a local 

phenomenon. Recent studies showed that increased levels of Co and Cr ions are not 

connected with elevation of the level of oxidative stress in the blood of patients (Antoniou et 

al., 2008, Tkaczyk et al., 2010). 

4.1 Response to oxidative stress - oxidative stress and bone 

Excessive amounts of ROS are toxic to the organism and cells have specific protection 

mechanisms against oxidative stress. In ROS deactivation, superoxide dismutase (SOD), 

catalase and gluthatione (GSH-GSSG) system play central role. In one of the most important 

systems, glutathione peroxidases detoxifies peroxides with GSH acting as an electron donor 

in the reduction reaction, producing GSSG as an end product (Townsend et al., 2003). 

Hence, the balance between reduced (GSH) and oxidized gluthatione (GSSG) is very 

important for protection against oxidative stress. A deficiency of GSH puts the cell at risk for 

oxidative damage. It is not surprising that an imbalance of protection mechanisms against 

oxidative stress is observed in wide range of pathologies including inflammatory and 

degenerative disorders with tissue fibrosis.  

Elevated oxidative stress was associated with low bone mineral density (Ozgocmen et al., 

2007, Basu et al., 2001) and gene polymorphisms in antioxidant enzymes were also 

associated with low bone mineral density (Mlakar et al., 2010). Further research elucidated 

oxidative stress as a potential modulator of osteogenesis in different skeletal diseases (Liu et 

al., 2010). ROS have been involved in osteoporosis by causing cellular death and by 

inhibiting osteoblast proliferation and stimulating osteoclast differentiation (Hamel et al., 

2008, Weitzmann & Pacifici, 2006). It was proven that H2O2 inhibits osteoblast proliferation 

time- and dose-dependently (Li et al., 2009) and that decreasing oxidative stress normalizes 

bone formation and bone mass in mice (Rached et al., 2010). Although extensively studied 

(Bai et al., 2005, Basu et al., 2001, Mody et al., 2001, Rached et al., 2010)., the mechanisms of 

action of ROS on bone formation are not completely understood. (Bai et al., 2005, Basu et al., 

2001, Mody et al., 2001, Rached et al., 2010).  

5. Material and methods 

5.1 Patients 

In two studies, we investigated 58 total hip arthroplasties revised for aseptic loosening or 
high rate of wear of the polyethylene (40 hips) and osteolysis (12 hips) in order to clarify the 
involvement of ROS in the process of aseptic loosening.  
Between August 1999 and October 2002, periprosthetic tissues were consecutively 
obtained at revision of 40 primary THAs at the Department of Orthopedic Surgery, 
Medical University of Graz. Group I consisted of 8 men and 20 women, with mean age 66 
years (range, 32–88 years) at the time of revision. The mean interval between primary 
THA and revision was 126 months (range, 11–320 months). In Group II, there were three 
men and nine women with mean age 69 years (range, 54–84 years). In this group, the 
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mean interval between primary THA and revision was 97 months (range, 14–157 months) 
(p=0.405). As a control group, 16 samples of fascia lata were obtained from 16 patients 
during primary THA. 
In a second study, periprosthetic tissues and pseudosynovial fluid were obtained at revision 
of 18 consecutive primary THA performed at the Department of Orthopedics and 
Traumatology, Medical University of Sofia. The eight men and 10 women in the series had 
mean age 63.2 years (range, 52 to 78 years) at the time of revision. The mean interval 
between primary THA and revision was 10.8 years (range, 2.1 to 22.3 years). The 
pseudosynovial fluid was immediately deep frozen at –80°C until analysis. The 
periprosthetic samples were fixed in 10% formalin until being processed. Patients with 
multiple revisions and infections were excluded from the studies. As a control group, 18 
samples of joint fluid were obtained from 18 patients during primary TKA. 

5.2 Radiographic analysis 

Prostheses fixation was graded according to the criteria of Engh et al. (Engh et al., 1989) for 
the cementless and Harris & Penenberg (Harris & Penenberg, 1987) for the cemented 
components. Osteolysis was graded according to Paprosky (Paprosky & Burnett, 2002). 
Annual polyethylene wear was measured as described by Livermore et al. (Livermore et al., 
1990) and corrected for magnification. 

5.3 Histological examination 

A portion of each specimen was embedded in paraffin, processed with xylene, cut into 5-
mm thick sections, and stained with hematoxylin and eosin. All sections were studied 
blindly at a maximum magnification of 600x and were graded in a semiquantitative fashion 
for cellular constituents and particulate debris according to Mirra et al. (Mirra et al., 1976). 
Tissue necrosis was recorded as present or absent. 

5.4 Electron microscopic examination 

Evaluation of the ultrastructure of collagen was obtained by examination of ten 

representative cases with electron microscopy. These samples were fixed in glutharaldehyde 

and were processed with standard techniques. 

5.5 GSH and GSSG determination 

Reduced glutathione and oxidized glutathione was measured by spectrophotometry 
(Beckman Instruments, Fullerton, CA) according to the method of Tietze (Tietze, 1969). 
Measurements with GSH concentrations bellow 200 μmol/g wet weight were excluded 
from calculation because of high possibility for error. Results were then weighted for 
hydroxyproline content and expressed as μmol/mg. Samples were run in duplicates and 
run according to supplier’s instructions (OxisResearch, Portland, OR). 

5.6 Malondialdehyde determination  
5.6.1 Malondialdehyde determination in periprosthetic tissue 

Tissue malondialdehyde levels were determined by Khoschsorur’s method (Khoschsorur  et 
al., 2000). The samples were chromatographed on a high performance liquid chromatographer 
(HPLC) (Spectrochrom, Brackley, UK) interfaced to a LiChrosorb RP18 column. 
Fluorometric detection was performed with excitation at 527 nm and emission at 551 nm. 
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Arbitrary values obtained were compared with a series of standard solutions (Sigma-
Aldrich, St. Louis, MO). Results were expressed as nmol/mg hydroxyproline. 

5.6.2 Malondialdehyde determination in pseudojoint fluid 
Joint fluid malondialdehyde levels were determined by the modified method of Yagi (Yagi, 
1982). The samples were read with fluorometric detection at 515/553 nm. As a standard 
solution Tetraetoxypropane in concentration of 0.1 μmol/L was used. Results were 
expressed as nmol/L. 

5.7 Collagen determination 
Hydroxyproline content was evaluated according to the method of Reddy & Enwemeka 
(Reddy & Enwemeka, 1996). Absorbance of each sample was read at 550 nm using HPLC 
(Spectrochrom). Serial dilutions of commercial pure hydroxyproline (Sigma-Aldrich) were 
used as standard. All samples were assayed in duplicates. Results were expressed as mg/g 
wet tissue. 

5.8 Metal particle analysis  
Elemental concentrations were determined by Inductively Coupled Plasma-Mass 
Spectrometry (HP-4500; Agilent Technologies, Waldbronn, Germany). Standard reference 
material was obtained from NIST (RF 1577b, NIST, Gaithersburg, MD). Values were 
measured in μg/g wet weight. 

6. Results 

6.1 Histological examination 
Histological examination of the periprosthetic tissues showed large amounts of metal and 
polyethylene debris and a nonspecific chronic inflammatory reaction. Wear debris, 
macrophages that had phagocytosed small metal and polyethylene particles, fibroid 
necrosis, and proliferation of capillaries were seen more commonly in granulomas (Fig. 1). 
 

 

Fig. 1. Polyethylene and metal particles in the interstitium, giant cells and macrophages 
(Perle's iron stain, x500) 

www.intechopen.com



 
Evidence Linking Elevated Oxidative Stress and Aseptic Loosening of Hip Arthroplasty 

 

305 

In contrast, stroma rich of connective tissue, abundance of fibroblasts with less frequent 

macrophages were more prevalent in the fibrous pseudocapsule (Fig. 2). 

 

 

Fig. 2. Periprosthetic tissue from 72-year-old male, 9 years after implantation of cementless 
prosthesis. Adjacent to the implant synovia-like membrane with 1-2 cell layers (arrow), 
interstitial matrix rich of fibrous tissue with abundance of fibroblasts and macrophages 
digested wear debris (open arrow) (haematoxylene staining, x500).    

6.2 Electron microscopic examination 

Analysis of selected sections from ten representative cases by electron microscopy 
established damaged collagen fibers and presence of collagen cross-links. Their relative  
 

 

Fig. 3. Electron micrograph (x39 000) showing periprosthetic tissue taken from stable 
cementless hip replacement 86 months after implantation. The picture shows damaged 
collagen fibers (open arrows) with numerous cross-links (black arrows). 
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abundance compared to control samples taken from fascia lata supported the proposal that 
these findings were a result of ROS damage (Fig. 3). Wear debris inclusions were 
demonstrated in the various cells (Fig. 4).  
 

 

Fig. 4. Electron micrograph (x12 000) showing giant cell with ingested polyethylene (open 
arrow) and metal (black arrow) particles. 

6.3 Glutathione determination 

Level of reduced and oxidized glutathione was elevated in both groups compared to 

controls. However, a lower statistically significant GSH/GSSG ratio was detected only in 

Group II compared to Group I and controls (p=0.005 and p=0.024, respectively). GSH and 

GSSG concentrations and GSH/GSSG ratio in the two groups and controls are given in 

Table 1. 

 

Analyzed parameter Group I (N 28) Group II (N 12) Controls (N 16) 

GSH  74.1 67.3 *     58.7 35 *   18.9 20.9 

GSSG  19.3 26.4 * 21.8 12.6 *’***    4.3 4.4 

GSH/GSSG 5.4 3.6     3.1 1.4 **’****  4.4 1.5 

* p<0.0001, ** p<0.024 versus the control group; *** p<0.045, **** p<0.005 versus Group I 

Table 1. The levels of GSH, GSSG, as well as GSH/GSSG ratio in periprosthetic tissues and 

controls. Values measured in µmol/mg hydroxyproline. Data represented as mean SD. 

6.4 Malondialdehyde determination 
6.4.1 Malondialdehyde determination in periprosthetic tissues 

Determination of oxidative stress assessed by level of lipid peroxidation product MDA in 

periprosthetic tissues obtained from 40 primary THA, revised for loosening or high rate of 
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wear, showed higher oxidative stress in the two groups. The mean MDA value of the 28 

patients in Group I was 0.052 nmol/mg (±0.09 SD), and of the 12 patients with high rate of 

wear and osteolysis in Group II, 0.031 nmol/mg (±0.014 SD) (p=0.74). MDA levels in the 

control tissues (0.009 nmol/mg, ±0.0093 SD) were significantly lower than those in Group I 

(p<0.0001) and Group II (p<0.0001). Figure 5 shows the comparisons between the two 

groups and controls in graphical form. 

 

 

*p<0.0001 in comparison with controls. 

Fig. 5. The concentration of lipid peroxidation product, malondialdehyde (MDA), in 

periprosthetic tissues and controls. Values were measured in nmol/mg hydroxyproline. The 

lower and upper lines in the boxes represent the 25th and 75th percentiles, respectively, 

with the median marked in the box.  

6.4.2 Malondialdehyde determination in pseudosynovial fluid 

Determination of oxidative stress assessed by level of lipid peroxidation product MDA in 

pseudojoint fluid showed higher oxidative stress in revision cases. The mean MDA value of 

the 18 patients with loose hip prostheses was 27.5 nmol/L (±17.6 SD, range 13.5 to 82.9). 

MDA level in the pseudojoint fluid from controls was significantly lower – 14.9 nmol/L 

(±4.5 SD, range 10.7 to 28.9) (p=0.001). Figure 6 shows the comparison between patients and 

controls in graphical form. Although not significantly, MDA level correlated moderately 

with linear polyethylene wear and grade of femoral osteolysis (Spearman's rho=0.321 and 

rho=0.315, respectively). Oxidative stress measured by MDA level in pseudosynovial fluid 

did not correlate with pelvic osteolysis or time elapsed from previous surgery. 
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6.5 Hydroxyproline determination 

Mean value of hydroxyproline in both groups was 13.9 mg/g (±10.2 SD), and in controls, 
55.6 mg/g (±38.6 SD) ( p<0.013). 
 

 
p<0.001 

Fig. 6. The concentration of lipid peroxidation product - malondialdehyde in joint fluid. 
Values were measured in nmol/L. The lower and upper lines in the boxes represent the 25th 
and 75th percentiles, respectively, with the median marked in the box. 

6.6 Metal particle analysis 

The tissue concentrations of the different metals for the Co-Cr and Ti-alloy prostheses are 
shown in Table 2. The mean level of MDA in the 23 implants made of titanium alloy was 
0.059 µg/mg, and of the 9 implants made of Co-Cr alloy, 0.023 µg/mg. However, this 
difference was not significant (p=0.145). 
 

Composition 
Stem/Cup 

Ti V Fe Cr Co 

Co-Cr / Co-Cr alloy
(N 9) 

na na 13.5 11.2 75.3 160 *  33.2 34.5 
 

Ti / Ti alloy 
(N 23) 

  70.1 189.5 4.4 8.7 na na na 

Co-Cr / Ti alloy 
(N 8) 

381.8 911.9 20.6 46.5 11.2 12.2 2.7 4 * 4.1 5.6 

* p<0.013 in comparison between groups 

Table 2. Concentrations of various metals in periprosthetic tissues from Co-Cr alloy and 
titanium alloy prostheses. Values measured in µg/g wet tissue. Data represented as mean ±SD. 
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6.7 Correlations 

In the 40 hips, levels of MDA correlated with levels of GSH and GSSG (rho=0.509, p<0.0001, 

and rho=0.421, p<0.001, respectively). Because oxidative stress is a significant contributor to 

tissue fibrosis, a second set of correlations was calculated that measured the correlation 

between oxidative stress and hydroxyproline content. There was a correlation between 

GSH, GSSG, as well as MDA levels and periprosthetic collagen content. GSH/GSSG ratio 

and MDA level correlated with degree of osteolysis (rho=0.337, p=0.007, and rho=0.374, 

p=0.017, respectively). GSSG and MDA levels were higher in hips with greater annual wear 

of the polyethylene.  

7. Rationale of oxidative stress and aseptic loosening 

Three different mechanisms are mainly responsible for osteolysis and loosening: 

exacerbated inflammation caused by ROS production in the periprosthetic tissue; cascade of 

cellular and molecular interactions ultimately resulting in osteoclasts activation; and, 

compromised bone formation resulting from increased cytotoxicity on mesenchymal 

osteoprogenitors. 

Wear debris such as polyethylene, PMMA and metal particles, metal degradation products 
and ions may be exposed to the ROS produced by the inflammatory cells in the 
periprosthetic tissues. Mediators such as H2O2, NO and ONOO− are released by the 
macrophages and the inflammatory cells. Metal debris and metal degradation products 
could react with the free radicals resulting in elevation of oxidative stress. H2O2 in the cells 
can also undergo the Fenton reaction in the presence of metal ions with subsequent 
formation of highly toxic hydroxyl radical (Lubec, 1996, Sawyer, 1990). Various studies have 
reported that ROS are connected with tissue damage and fibrosis (Park et al., 2001, Riedle & 
Kerjaschki, 1997, Wang et al., 2002, Windhager et al., 1998). On the other hand, the effect of 
submicron wear debris on macrophage production of reactive oxygen species is largely 
unexplored. Thus, these facts led to the hypothesis that ROS play a role in aseptic loosening 
and formation of fibrous pseudocapsule around hip implants. Our results demonstrated in 
vivo elevated oxidative stress in periprosthetic tissues and pseudosynovial fluid from loose 
hip prostheses and hip implants with high rate of wear. This added further insight into the 
mechanism of aseptic loosening of hip arthroplasty. 
When the cells are exposed to a large amount of oxidants, the capacity of the regulatory 

mechanisms of cellular response to oxidative stress may be exceeded by the rate of ROS 

production, resulting in a condition of “oxidative stress”. In the present study, we found 

increased levels of markers of oxidative stress in periprosthetic tissues and pseudosynovial 

fluid from loose THAs. Our results are difficult to compare as the available studies on the 

possible role of oxidative stress in aseptic loosening of THA are in vitro experiments. We 

believe that, in the early stage of aseptic loosening, the exposure to wear debris could be 

responsible for the increase in the values of markers of oxidative stress in total hip 

arthroplasties with high rate of wear and osteolysis. Moreover, free radicals may be 

involved in sustaining the foreign-body reaction to wear debris. Later on, chronic exposure 

would result in a triggering of compensatory mechanisms leading to progressive increase in 

antioxidants and low oxidative stress as observed in the beginning of loosening (Table 1). 

This is consistent with the conception of oxidative stress regulation. However, other 

mechanisms may play role, too. 
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Lipids of cell membranes are a prominent target for free radicals generated in a complex 
series of oxygen-dependant reactions via Fenton’s chemistry (Sawyer, 1990). Iron-induced 
lipid peroxidation has been demonstrated in various studies (Marmunti et al., 2004, Lim & 
Vaziri, 2004). However, we could not establish correlation between levels of MDA and iron. 
As metal-catalyzed lipid peroxidation is dependent on metal as a catalyst, there might be 
little influence of metal concentrations, and many other factors might also contribute to 
MDA formation. On the opposite, we found elevated MDA level in hips with prostheses 
made of titanium alloy. This finding might be explained by higher rate of wear of titanium 
implants compared to Co-Cr implants (Table 2) (Wang et al., 2002). We hypothesized that 
the process of wear debris-mediated loosening leads to elevation of oxidative stress. In  
support of this, Wang et al. found that exposure to particles stimulates superoxide 
production by macrophages and osteoclasts (Wang et al., 2002). Furthermore, it was 
observed that the increase of free radicals on polyethylene correlated with the degree of 
inflammation of synovial cells in culture (Fiorito et al., 2001). The correlation between 
markers of oxidative stress and hydroxyproline levels suggest, first of all, that the increase 
of collagen in periprosthetic tissues in the presence of wear debris is due to elevated 
oxidative stress. Connective tissue metabolism is normally characterized by equilibrium 
between degradation and synthesis of extracellular matrix. Deviation from the 
equilibrium may lead to the replacement of extracellular matrix by fibrous tissue (Park et 
al., 2001, Riedle & Kerjaschki, 1997, Wang et al., 2002, Windhager et al., 1998). The fibrous 
pseudocapsule formed is probably related to high intraarticular pressure and expansion 
of the effective joint space as well as production of inflammatory substances and 
subsequent loosening of the implant (El-Warrak et al., 2004, Van der Vis et al., 1998). 
Most of the studies elucidating the mechanism of loosening of hip arthroplasty are 
performed on animal models or are in vitro studies. However, the results from in vitro or 
animal studies could not be easily translated to humans. The findings of our in vivo 
studies provide further insight into the possible mechanisms of aseptic loosening. The 
number of cases in the studies was relatively small but the differences in measurements of 
markers of oxidative stress between patients and controls were high which compensated 
for small sample size. 

8. Future perspectives 

Clinical results of total hip arthroplasty deteriorate with time with aseptic loosening being 
the main reason for its failure. Clinical and experimental studies show that aseptic loosening 
is a failure of fixation of the implant secondary to wear of the components of the prostheses 
(Bechtold et al., 2002, El-Warrak et al., 2004, Willert & Semlitsch, 1977).  
Improvements in bearing surfaces may diminish implant wear and associated osteolysis. For 

forty years, MoPE is the bearing of choice in THA. After recognition of the problem of wear 

alternative bearings were proposed. Metal-on-high cross-linked polyethylene, ceramic-on-

polyethylene, ceramic-on-ceramic, and metal-on-metal are becoming increasingly  

popular. 

However, reducing particle size may increase its biological activity (Sieber et al., 1999, Yang 

et al., 2002). Moreover, some of the new alternative bearings are very sensitive to improper 

surgical technique. 

The initial bone-implant interface is of paramount importance for the longevity of the joint 

reconstruction. After implantation the prosthesis is in contact with the bone, but as the 
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contact is not uniform along the entire surface there are gaps between the surfaces. During 

the healing phase, these gaps are filled with callus tissue which may mature in different 

directions, i.e. by bony healing or osseointegration, where there is no fibrous lining between 

the implant and the bone, or by soft tissue encapsulation with formation of synovial-like 

membrane (Albrektsson, 1990). In osseointegration of the prosthesis the interface can resist 

shearing as well as tensile loads whereas the fibrous tissue interface can withstand 

compressive and, to lesser extent, shear loads, but fails with tensile loads. In the case of soft 

tissue anchorage when the prosthesis is loaded there will be movements. As far as they are 

micro-movements the implant will be stable. Some bone resorption will occur, but it is 

usually compensated for by new bone formation to maintain equilibrium between applied 

load and strength of tissue. But even in the physiological range of movement there is a 

constant risk of overloading the device which will result in macro-movements and implant 

failure. Improving initial implant fixation with bisphosphonates may represent a promising 

strategy for improving initial fixation and clinical outcome after THA (Friedl et al., 2009, 

Kinov et al., 2006). 

Successful inhibition of osteoclast activity in postmenopausal osteoporosis and increase of 
bone mineral density with use of bisphosphonates turn research efforts in this direction. 
Osteoclast is the ultimate cell in the cascade of events that lead to periprosthetic osteolysis. 
Various in vitro and animal studies have shown encouraging results (Horowitz et al., 1996, 
Millett et al., 2002, Shanbhag et al., 1997, von Knoch et al., 2005). However currently, 
convincing results from clinical studies supporting the use of bisphosphonates are still lacking. 
The local inflammatory response to wear debris particles with cascade of cellular and 
molecular interactions ultimately results in periprosthetic osteolysis and aseptic loosening. 
Biological approach to prevention of this deleterious complication of THA seems promising. 
In-depth research into bone biology and molecular mechanisms of bone metabolism has led 
to the identification of novel possible strategies. Receptor activator of nuclear factor kappa-B 
ligand (RANKL) plays a key role in osteoclastogenesis which makes this cytokine an 
attractive target in efforts for prevention of osteolysis. Clinical studies have demonstrated its 
effectiveness in decreasing bone turnover and fracture prevention (Bekker et al., 2004, 
Cummings et al., 2009). However, its potent effect on osteoclast function has not been 
evaluated in periprosthetic osteolysis. 
Other promising novel therapeutical targets include: osteoclast protease cathepsin K; 
sclerostin and dickkopf-1, two endogenous inhibitors of bone formation; the osteoclast 
ATPase proton pump, vitronectin receptor, and src tyrosine kinase, all of which are required 
for resorption (Purdue et al., 2006).  
Such approaches would be expected to decrease bone loss, but not influence inflammation. It 

was proven that tumor necrosis factor alpha (TNF-) is capable of inducing osteoclastogenesis 
in presence of small amounts of RANKL (Lam et al., 2000) whereas interleukin-1 (IL-1) is 
directly involved into osteoclast differentiation (Yao et al., 2008). This suggests that effective 
inhibition of osteolysis includes blockade of proinflammatory mediators. In support of this 
direct evidence that cyclo-oxygenase 2 (COX-2) inhibits wear induced osteolysis in an animal 
model were provided (Zhang et al., 2001). However, these treatment possibilities should be 
approached with caution as signaling molecules are involved in variety of processes and their 
inconsiderate manipulation may have deleterious effects. 
The local inflammatory response of the organism to wear debris is the main cause for 

osteolysis and prostheses loosening. However, current knowledge of wear-induced 
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mechanism of aseptic loosening is not complete. Understanding of the mechanisms of wear-

induced osteolysis will help control undesirable processes at the implant-bone interface and 

extend longevity of hip arthroplasty. 

9. Conclusion 

Our study provided further insight into the mechanism of aseptic loosening of hip 

arthroplasty. The most interesting aspect of this study is the evidence of elevated production 

of ROS, which are known to cause tissue fibrosis and may help explain the initiation of 

aseptic loosening. We feel that the thick pseudocapsule around loose prostheses is not an 

adaptive but a reactive tissue as a result of decreased degradation and increased formation 

of collagen matrix and proliferation of fibroblasts due to high oxidative stress. Furthermore, 

we demonstrated that elevated oxidative stress is associated with aseptic loosening of hip 

arthroplasty, suggesting that oxidative stress might induce periprosthetic osteolysis and 

subsequent loosening. Research in this line may help introducing new strategies for 

therapeutic prevention and/or treatment of osteolysis and subsequent aseptic loosening of 

total hip arthroplasty. 
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