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1. Introduction

Large-scale emergencies, such as substantial acts of nature, large human-caused accidents,

and major terrorist attacks, are of high-consequence, low-probability (HCLP) events that may

result in loss of life and severe property damage. In recent years, developing decision-oriented

operations research models to improve preparation for and response to major emergencies has

drawn more and more attention (see Altay & Green (2006) and Larson et al. (2006)).

Relief resources play an important role in emergency management after disasters, such as

medicine, food, tent, etc. Due to scarce resources and overwhelming demands during an

emergency (especially in the early stages) careful pre-planning and efficient execution can

save lives. A key factor in an effective response to an emergency is the prompt availability

of necessary supplies at emergency sites. Therefore, efficient emergency logistics becomes

important in addressing and optimizing the complex distribution process. In most real-life

situations, the distribution process is typically divided into two decision stages. In the first

stage, supply quantity allocated to each demand location is determined. This is referred to as

the allocation problem. In the second stage, how supplies will be transported is determined,

which may be modeled as a Vehicle Routing Problem. Obviously, when supply is large

enough, the allocation problem is trivial, while the second stage is still a complex problem.

Traditional Vehicle Routing Problem (VRP) is to design the least cost routes for a vehicle fleet

to supply goods from inventory to customer locations. The problem was first introduced by

Dantzig & Ramser (1959) to solve a real-world application concerning the delivery of gasoline

to service stations. A comprehensive overview of the VRP can be found in Toth & Vigo (2002)

and other general surveys on the deterministic VRP can also be found in Laporte (1992).

Various specific VRP models, e.g. with time windows, multiple depots, dynamic routes,

and stochastic customer demands, etc. were published in Rathi et al. (1993) and Renaud et al.

(1996). Astrid & David (2003) considered vehicle routing problem with random travel time

and service time, while all vehicles departed from the same depot. Enrico & Maria (2002)

considered periodic vehicle routing problem (PVRP) while vehicles can renew their capacity

at some intermediate facilities. Recently, an exact algorithm was presented for PVRP in

*This work is partially supported by National Natural Science Foundation of China (71001099, 90924008)
and by the President Fund of GUCAS.
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2 Will-be-set-by-IN-TECH

Roberto et al. (2011). Dynamic request occurrence is considered in Lorini et al. (2011). Almost

all VRP models and algorithms are for "normal operation" that minimize cost represented by

travel distances or travel times and applied in daily operating logistic systems. Only several

works considered total arrival time (see Campbell et al. (2008) and Ngueveu et al. (2010)).

The highly unpredictable nature of large-scale emergencies, unfortunately, leads to significant

uncertainty both in demand and travel times. For example, in certain emergency cases,

medication or antidotes must be applied within a specific time limit from the occurrence

of the event to maximize their effectiveness to save lives. Requirement for the medication

may change rapidly along with the case development and is hard to predict. Traditional

pharmaceutical supply chains are no longer adequate to provide the rush demand. In

emergency cases the so called Strategic National Stockpile, a large managed inventory from

manufacturers, may be used. Vehicle fleet size can be uncertain due to emergency calls. The

vehicles may load supply from multiple depots (e.g. airports) and may not return to the

original depot location. Travel times of transporting the medication from the central supply to

the demand population areas also become uncertain in case of emergency because of sudden

road congestion and panic, or because of strict traffic control. Thus, the objectives of the

VRP for response to emergency are usually to minimize both the unmet demand and delay

time. Finally, an efficient algorithm to find a good solution is very important for emergency

operation managers.

As discussed above, transportation is an important issue in emergency response, which

is called emergency logistics. Emergency logistics management has also emerged as a

worldwide-noticeable theme. Sheu (2007) presented four main challenges under which

emergency logistics management can be characterized. Also as a sponsor, Sheu edited a

special issue of Transportation Research Part E, in which six papers on emergency logistics

were included. These papers concentrated on addressing the issue of relief distribution

to affected areas. Consignment of supply is typically examined in the literature as a

multi-commodity network flow problem, with a multi-period and/or multi-modal setting.

Haghani & Oh (1996) formulated a multi-commodity, multi-modal network flow model

with time windows for disaster response. Two heuristic algorithms were proposed. The

flow of supply over an urban transportation network was modeled as a multi-commodity,
multi-modal network flow problem by Barbarosoglu & Arda (2004). A two-stage stochastic

programming framework is formed as the solution approach. Another study on the topic,

conducted by Fiedrich et al.(2000), model the problem similar to a machine scheduling

problem proposing two heuristics, Simulated Annealing and Tabu Search. Yi & Ozdamar

(2004) considered a dynamic and fuzzy logistics coordination model for conducting disaster

response activities. The model was illustrated on an earthquake data set from Istanbul.

Also, Barbarosoglu & Arda (2004) proposed that their model could be used effectively within

a decision-aid tool by public and non-public response agencies that are obscured by the

variability of impact estimations under large number of different earthquake scenarios.

All these uncertain factors must be considered by an emergency operation manager in

dispatching vehicles to effectively deliver the life-saving demands to the people in need. Due

to the characteristics of uncertainty of large-scale emergency, a dynamic VRP can be stated as

follows:
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Supply Allocation and Vehicle Routing Problem with Multiple Depots in Large-Scale Emergencies1 3

1. when an emergency occurs, with reported demand calls, a responder must evaluate the

demand pattern, including locations, quantity, and time requirement for the deliveries.

2. organize the supplies and route the available vehicles to meet the emergency requirements

in an efficient way to minimize the unmet demand and the total time delay.

3. with the updated demand information, relocate medical supplies and vehicles, route and

dispatch next fleet with the same objective.

4. keep evaluating the updated demand and routing further vehicles, until all the demand is

met.

Shen et al. (2007) studied a stochastic VRP model with time windows that minimize unmet

demand for large-scale emergencies. In their paper, vehicle time delay is not allowed when

visiting a demand node. However this strict limitation may be unreasonable because in

emergency situations even the urgency of need for medical supplies may not be met from

a time perspective. The dispatcher will still send the supply to save as many lives as possible

with the least time delay. Liu et al. (2007) considered both the unmet demand and time delays.

This paper focuses on modeling and solution framework for the VRP in response to a

large-scale emergency. In Section 2, a deterministic VRP model with multiple depots will

be presented. In section 3, this model will be analyzed in detail. Then, an efficient heuristic

algorithm is designed for the proposed model in Section 4. Finally in Section 5„ numerical

experiments and a case simulation demonstrate that the model and algorithm can be very

useful as a decision tool for emergency responders.

2. A deterministic VRP model with multiple depots

In this paper, we consider a situation that several fleets of vehicles send emergency supply

from multiple depots (e.g. airport or central inventory) to demand locations (e.g. hospitals or

triage stations), and return to the original depots after delivery all the supply. Objectives of

the model is to minimize the maximum unsatisfied rate and the total weighted time delay.

According to emergency conditions, we have several assumptions:

1. There is limited amount of supply in each depot.

2. Each demand node has a deadline for supply, and delay is permitted.

3. The traveling time between each pair of nodes is deterministic.

4. Vehicles are not reusable.

In the model presented in this paper, the total weighted time delays are explicitly expressed

in the objective function as the most important factor.

Now, decision variables and parameters will be specified.

Set D represents demand nodes. L is denoted as supply set including depots and other

suppliers. We consider fleet sets K(l) of vehicles at supplier l. Let K =
⋃

l∈L K(l) for

simplification. The node set is expressed as C = D
⋃

L. Suppose from each node i to any

other node j there is a route, or an arc (i, j). Therefore a transport network can be expressed

by the node set C = D
⋃

L and arc set {(i, j), i, j ∈ C, i �= j}.
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Parameters:

n : number of available vehicles;

sl : total available supply at depot l;

ck : the maximum load of vehicle k;

di : the latest arrival time required by demand node i, or the expected deadline for node i;

τijk : the estimated time to traverse arc (i, j) for vehicle k;it is set to ∞ for nonexistent links;

ζi : amount of commodity needed at node i;

Decision Variables:

Xijk : a binary flow variable, equal to 1 if (i, j) is traversed by vehicle k and 0 otherwise;

Yik : delivery by vehicle k to the demand node i, integer value is assumed;

Ui : amount of unsatisfied demand at node i;

Tik : time at which vehicle k arriving at node i, the unload time is negligible; and

δik : delay time happened when vehicle k sends supply to node i.

If k arrives ilater than di, then δik > 0.

Vehicle scheduling should be made so as to minimize the next two objectives. The first one

is maximum unsatisfied rate among all demand points. This objective tries to create fairness

among all demand points.

max{
Ui

ζi
, i ∈ D} (1)

The second one is total weighted time delay. Here, δik is the time delay and Yik is the amount

of supply arriving at node i. Total weighted time delay is the product of these two variables.

This objective forces supply to arrive before due date.

∑
i∈D,k∈K

Yikδik (2)

The vehicle routing model (VRM) for emergency supply allocation and transportation with

multi-suppliers is formulated as follows:

min z1 = max{Ui
ζ i

, i ∈ D} (3)

min z2 = ∑
i∈D,k∈K

Yikδik (4)

subject to

∑
l∈L

∑
k∈K(l)

∑
j∈D

Xl jk ≤ n (5)

∑
j∈C

Xijk = ∑
j∈C

Xjik ≤ 1 (∀i ∈ C, k ∈ K) (6)

∑
i∈S

∑
j∈C\S

Xijk ≥ 1 (∀S ⊆ D, k ∈ K) (7)

∑
l∈L

∑
j∈C

Xl jk ≤ 1 (∀k ∈ K) (8)

∑
k∈K(l)

Tlk = 0 (∀l ∈ L) (9)
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0 ≤ Tik + τijk − Tjk ≤ (1 − Xijk)M (∀i ∈ C, j ∈ D, k ∈ K) (10)

0 ≤ Tik − δik ≤ di ∑
j∈C

Xijk (∀i ∈ D, k ∈ K) (11)

δik ≤ M ∑
j∈C

Xijk (∀i ∈ D, k ∈ K) (12)

sl − ∑
k∈K(l)

∑
i∈D

Yik ≥ 0 (∀l ∈ L) (13)

∑
i∈D

Yik ≤ ck (∀k ∈ K) (14)

Yik ≤ ck ∑
j∈D

Xijk (∀i ∈ D, k ∈ K) (15)

∑
k∈K

Yik + Ui − ζi ≥ 0 (∀i ∈ D) (16)

Xijk = {0, 1}; Tik ≥ 0; Yik ≥ 0; Ui ≥ 0; δik ≥ 0; (17)

The objective of the model is to minimize maximum unsatisfied rate among all demand points

and the total weighted time delay. Constraint set (5) specifies that the number of vehicles to

service must not exceed the available fleet size. Constraint (6) indicates that each vehicle

visits one demand point at most once and the vehicle must leave the demand node without

staying there. Constraints (7) are the subtour elimination constraints. A vehicle cannot

go to another depot according to constraint (8). This feasible route constraint allow split

delivery. Constraints (9)-(12) are time-window constraints that guarantee schedule feasibility

with respect to time considerations. Once a vehicle arrives at a demand point later than

the required deadline, a penalty δik ≥ 0 is observed. (13)-(16) state the construction on the

commodity flows, while constraint (17) specifies the binary and integer variables.

3. Model analysis

We will prove the above (VRM) problem is NP-hard by showing that the traveling salesman

problem(TSP) is a special case of the VRM.

Theorem 1. The VRM is NP-hard even if there is only one depot with one vehicle.

Proof. We will construct a special case of VRM, which is a TSP. First, assume that there is only

one depot and m demand nodes. Each demand node needs one unit of medical supply with

deadline 0. Also assume there is only one vehicle with capacity m at the depot to deliver all

m units to the demand nodes. The object is to minimize the total time delay. Under these

assumptions the VRM becomes a TSP.

The VRM is a multi-objective model and there are two objectives: maximum unsatisfied rate

and total weighted time delay. If we ignore the second objective, WRM can be solved in

polynomial time. At first, let’s consider the following model:

min max{
Ui

ζi
, i ∈ D} (18)
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subject to

∑
i∈D

(ζi − Ui) ≤ ∑
l∈L

sl (19)

Ui ≥ 0 (20)

This is a supply allocation model (SAM). By using a simple technique, the SAM can be

transformed to the following model:

min η (21)

subject to

Ui

ζi
≤ η, (∀i ∈ D) (22)

∑
i∈D

(ζi − Ui) ≤ ∑
l∈L

sl (23)

Ui ≥ 0, η ≥ 0 (24)

Obviously, this is a linear programming model. It means VRM without the second objective

can be easily solved within constraints (5-17).

In many situations, the data such as Ui, ζi, sl in model SAM are integers. Then the supply

allocation model with integer constraints (SAMI) is as follows.

min η (25)

subject to

Ui

ζi
≤ η, (∀i ∈ D) (26)

∑
i∈D

(ζi − Ui) ≤ ∑
l∈L

sl (27)

Ui ≥ 0 and integer, η ≥ 0 (28)

Next, we will propose an LP-rounding algorithm for the above model and show that this

algorithm can find the optimal solution in polynomial time.

Algorithm LPrA LP-ROUNDING ALGORITHM FOR SAMI

1. obtain the LP-relaxation of SAMI by deleting all integer constraints.

2. solve LP-relaxation, and get fractional optimal solution (U∗
i , η∗).

3. for each U∗
i

4. Ui = ⌈U∗
i ⌉

5. endfor

6. a = ∑l∈L sl − ∑i∈D(ζi − Ui)

7. while a > 0

8. for each i ∈ D
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9. ηi =
Ui
ζ i

10. endfor

11. η = maxi∈D{ηi}

12. choose k ∈ {i|ηi = η}

13. Uk = Uk − 1

14. a = a − 1

15. endwhile

16. η = maxi∈D{ηi =
Ui
ζ i
}

17. Q = {i|ηi > η∗, Ui+1
ζ i

< η}

18. while Q �= Φ

19. choose j such that ηj = η

20. choose k such that Uk+1
ζk

= maxi∈Q{
Ui+1

ζ i
}

21. Uk = Uk + 1

22. Uj = Uj − 1

23. η = maxi∈D{ηi =
Ui
ζ i
}

24. Q = {i|ηi > η∗, Ui+1
ζ i

< η}

25. endwhile

26. Output the integer solution Ui and unsatisfied rate η.

Theorem 2. The algorithm LPrA can find the optimal solution for SAMI in O(n2) time.

Proof. First, we will show the algorithm LPrA can stop within O(n2). According to the

definition of a, step 8-14 runs at most n times for a < n. Step 11 runs at most n times. Then

the total running time from step 7 to 15 is at most n2. Simultaneously, step 18-25 runs also at

most n2.

Second, we will prove the output solution is optimal by contradiction. Let {U1, U2, . . . , Un}
and η be the output solution of the algorithm LPrA. Then for 1 ≤ i ≤ n, ηi = Ui

ζ i
≤ η.

Without loss generality, suppose ηk = η. Now, suppose {U∗
1 , U∗

2 , . . . , U∗
n} and η∗ are the

optimal solution of SAMI problem, which satisfies η∗
< η. Let η∗

j = η∗ without loss of

generality. We have ηk = η > η∗ ≥ η∗
k , then Uk > U∗

k . On the other hand, ∑ Uk = ∑ U∗
k , then

there must exit l such that Ul < U∗
l . So ηl < η∗

l ≤ η∗
< η = ηk holds. Then, Ul+1

ζ l
≤ η∗

l < η,

l ∈ Q according to step 17 in algorithm LPrA, a contradiction.

Then, the complexity of VRM is totally up to the second objective, while this model for the

second objective is a vehicle routing problem. In the next section, we will propose a local

search algorithm.

4. Local search algorithm

Define a supply capability for each depot:

Ml = min{sl , ∑
k∈K(l)

ck} (∀l ∈ L)

81Supply Allocation and Vehicle Routing Problem with Multiple Depots in Large-Scale Emergencies
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The total supply capacity is:

M = ∑
l∈L

Ml

Let ζ = ∑i∈D ζi, then we have the next three situations.

1. When ζ − M > 0, this represents that there is not sufficient capacity to deliver all the

commodity to the demanding nodes.

2. When ζ − M = 0, there is a balanced capacity for supply and demand.

3. When ζ − M < 0, there is still surplus capacity.

Let θ = max{ζ − M, 0}. When θ = 0, the demand in each node is satisfied.

Before presenting our algorithm, we assume that |K| < |D|, i.e. the number of vehicles is less

than the number of demand nodes, otherwise the problem will be trivial. We also assume that

the route distances (or travel times) follow the triangle inequality, i.e. the direct distance or

travel time between any two nodes is less than that through a third node.

The local search algorithm can be divided into two stages: medical allocation and vehicle

routing. First, the amount of medical supplies allocated to each node are determined by using

algorithm LPrA. Then using a greedy algorithm the vehicles are scheduled. The details of the

algorithm are as follows.

Local search algorithm

Step 1:Obtain the amount of supply allocated to each node by using algorithm LPrA, ζ ′i .

Step 2:Let P = {pk} specify the current position of vehicle k ∈ K. Let Ui = ζ ′i , i ∈ D and

let pk = l, k ∈ K(l) to specify the vehicles departing from depot l, (∀l ∈ L). Tlk = 0, θ =
max{∑i∈D ζ ′i − M, 0}.

Step 3: Let Q = {i|Ui > 0}, K = {k|ck > 0}.

For all i ∈ Q, j ∈ K, compute

δij = max{0, Tpj
+ τpj ij − di}

Yij = min{cj, Ui}

Find

(q, k) ∈ {(i, j)|Yijδij = mini∈Q,j∈K{Yijδij}}

Update

Xpkqk := 1

pk := q

Ypkk := min{Upk
, ck}

ck := ck − Ypkk

Upk
:= Upk

− Ypkk

Step 4: If ∑i∈D Ui = θ, then Xpk lk = 1, Ylk = ck, ∀k ∈ K(l), l ∈ L, stop; otherwise go to Step 3.
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5. Simulation

Based on the above model and algorithm, we simulate an emergency situation when a

pandemic disease (e.g. SARS) happens in Beijing, China and a certain quantity of medication

need to be delivered from the airport and Beijing Emergency Medical Center(EMC) to major

downtown hospitals as soon as possible. Name of 16 hospitals and their locations are shown in

Table 1 and Figure 1. The distance are shown in table 2. Suppose we have a fleet of 5 identical
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Fig. 1. Hospitals, Airport and EMC in Beijing

trucks in the airport and 3 at the EMC to do the delivery. The capacity of each truck is 25.

The average speed of each truck is 40 kilometers per hour. According to the distance matrix,

we can obtain the travel time between each pair of nodes. All time units will be represented

in minutes. All case study settings are solved on a Windows XP-based Pentium(R) 4 CPU

2.93CHz personal computer using MATLAB 7.0 and its Optimization Toolbox.

There are 125 units of medication at the airport and 75 units at the EMC that need to be sent

to the 16 hospitals. The demand and deadline in each hospital are generated randomly from

a uniform distribution.

In the first case study, the deadlines are fixed, and we simulate the algorithm 30 times with

different demand randomly generated from a uniform distribution. Deadlines are shown in

Table 3. Demand in each hospital is generated randomly between 1 to 25 from a uniform
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label hospital

1 Peking Union Medical College Hospital (PUMCH)

2 China-Japan Friendship Hospital (CJFH)

3 Beijing Tongren Hospital (BTrH)

4 Beijing Ditan Hospital (BDH)

5 Beijing Chaoyang Hospital (BCH)

6 Beijing Obstetrics and Gynecology Hospital (BOGH)

7 Peking University Third Hospital (PUTH)

8 Peking University First Hospital (PUFH)

9 Peking University People Hospital (PUPH)

10 Beijing Ji Shui Tan Hospital (BJSYH)

11 Beijing Shijitan Hospital (BSH)

12 Beijing Tiantan Hospital (BTtH)

13 Beijing Friendship Hospital (BFH)

14 China Rehabilitation Research Center (CRRC)

15 Beijing Youan Hospital (BYH)

16 Beijing Hui Long Guan Hospital(BHLGH)

Table 1. Hospitals and their labels

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Airport

PUMCT 0 8 1.2 10.6 5 2 12.8 5.7 8.4 7.5 9.1 6.3 5.4 10.4 10.1 21.94 26.36

CJFH 8 0 8.8 4.4 7.8 8.2 7.7 8.8 9.8 8 16.6 13.8 13 21.6 18.4 16.63 22.67

BTrH 1.2 8.8 0 12 5.8 3 13.8 6.6 9.5 8.4 9.4 5 4.4 9 9.5 24.26 27.51

BDH 10.6 4.4 12 0 7.1 4.4 7.8 5.2 6.2 4.3 13 12.5 11.2 20 14.9 17.15 23.91

BCH 5 7.8 5.8 7.1 0 5.1 14.4 7 9.8 8.8 13.8 11.2 10.4 15.3 16.1 19.32 23.73

BOGH 2 8.2 3 4.4 5.1 0 11 3.7 6.5 5.4 9.2 6 5.3 10.8 11.2 21.21 29.14

PUTH 12.8 7.7 13.8 7.8 14.4 11 0 7.5 5.8 6 12.6 17 14.3 17.8 16 11.83 27.72

PUFH 5.7 8.8 6.6 5.2 7 3.7 7.5 0 2.8 1.7 8.5 8 7.6 11.1 9.34 17.73 27.73

PUPH 8.4 9.8 9.5 6.2 9.8 6.5 5.8 2.8 0 3.4 6.8 11.6 9 13.6 8.77 15.66 28.94

BJSYH 7.5 8 8.4 4.3 8.8 5.4 6 1.7 3.4 0 9.4 8.2 8.8 16 9.94 16.49 26.81

BSH 9.1 16.6 9.4 13 13.8 9.2 12.6 8.5 6.8 9.4 0 12 8.7 13.1 7.2 24.65 35.79

BTtH 6.3 13.8 5 12.5 11.2 6 17 8 11.6 8.2 12 0 1.8 4.9 4.6 26.86 32.63

BFH 5.4 13 4.4 11.2 10.4 5.3 14.3 7.6 9 8.8 8.7 1.8 0 6.5 4.88 24 32.12

CRRC 10.4 21.6 9 20 15.3 10.8 17.8 11.1 13.6 16 13.1 4.9 6.5 0 4.8 27.58 37.24

BYH 10.1 18.4 9.5 14.9 16.1 11.2 16 9.34 8.77 9.94 7.2 4.6 4.88 4.8 0 24.56 37.29

BHLGH 21.94 16.63 24.26 17.15 19.32 21.21 11.83 17.73 15.66 16.49 24.65 26.86 24 27.58 24.56 0 32.34

Airport 26.36 22.67 27.51 23.91 23.73 29.14 27.72 27.73 28.94 26.81 35.79 32.63 32.12 37.24 37.29 32.34 0

EMC 4.74 13.6 3.53 9.71 10.41 4.57 12.32 5.06 5.49 5.74 5.69 4.26 2.61 7.49 6.67 34.35 33.66

Table 2. Distance between hospitals, Airport and EMC (Kilometer)

distribution. In the second case study, demand is fixed, then we simulate the algorithm 30

times with different deadline randomly generated. Demand is shown in Table 5. Deadline in

each hospital is generated randomly between 40 to 90 minute from a uniform distribution.
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hospital 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
deadline 43 44 73 50 83 49 49 90 62 58 56 59 60 70 46 42

Table 3. Fixed deadline of each hospital(minutes)

Problem total total total maximum

No. supply unsatisfied demand weighted time delay unsatisfied rate

1 200 7 1370 0.0667

2 200 6 433 0.0526

3 200 14 193 0.1111

4 200 0 260 0

5 200 61 441 0.2500

6 200 21 949 0.1304

7 200 20 260 0.1200

8 200 0 452 0

9 200 0 48 0

10 200 0 499 0

11 200 38 1443 0.2000

12 200 0 599 0

13 200 3 376 0.0476

14 200 38 620 0.1875

15 200 16 1499 0.1176

16 200 15 99 0.1000

17 200 51 356 0.2353

18 200 3 228 0.0500

19 200 0 806 0

20 200 52 16 0.2381

21 200 31 198 0.1667

22 200 0 161 0

23 200 0 416 0

24 200 2 1120 0.0417

25 200 25 445 0.1500

26 200 0 585 0

27 200 0 54 0

28 200 4 627 0.0455

29 200 0 18 0

30 200 72 350 0.2857

average value 200 15.9667 497.3667 0.0866

Table 4. Simulation results
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hospital 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
demand 13 25 10 14 5 13 11 17 17 24 5 3 15 25 1 22

Table 5. Fixed demand of each hospital

Problem total total total maximum

No. supply unsatisfied demand weighted time delay unsatisfied rate

1 200 20 0 0.12

2 200 20 660 0.12

3 200 20 321 0.12

4 200 20 422 0.12

5 200 20 880 0.12

6 200 20 63 0.12

7 200 20 338 0.12

8 200 20 0 0.12

9 200 20 346 0.12

10 200 20 204 0.12

11 200 20 272 0.12

12 200 20 28 0.12

13 200 20 45 0.12

14 200 20 21 0.12

15 200 20 201 0.12

16 200 20 223 0.12

17 200 20 87 0.12

18 200 20 33 0.12

19 200 20 1261 0.12

20 200 20 46 0.12

21 200 20 233 0.12

22 200 20 237 0.12

23 200 20 109 0.12

24 200 20 6 0.12

25 200 20 312 0.12

26 200 20 432 0.12

27 200 20 40 0.12

28 200 20 188 0.12

29 200 20 725 0.12

30 200 20 60 0.12

average value 200 20 259.7667 0.12

Table 6. Simulation results
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From these two computational cases, the following observations can be made.

• For fixed deadline cases, the average maximum unsatisfied rate is 0.0866. Medical supplies
are allocated equitably. The same conclusion can be made for fixed demand.

• For each instance, the local search algorithm can present an efficient vehicle routing

schedule.

• The algorithm runs fast.

We specify another model where fairness is not considered. That means the first objective in

VRM is ignored, and we specify this model as VRM’. The aim of proposing this model is to

compare with VRM. Firstly, given three problems which information is shown in Table 7. Table

Problem No.

1 deadline 77,61,60,66,49,67,73,41,82,81,75,64,45,82,50,63

demand 1,8,22,21,9,23,12,15,16,17,16,18,13,18,13,16

total demand 238

total supply 200

2 deadline 89,82,56,70,47,53,81,74,41,69,63,86,55,44,64,90

demand 24,15,17,20,3,1,14,1,12,5,20,16,1,23,20,23

total demand 215

total supply 200

3 deadline 78,60,57,66,69,79,79,65,81,64,51,69,74,74,88,79

demand 19,22,25,13,16,20,12,14,5,4,6,3,4,12,20,8

total demand 203

total supply 200

Table 7. Problem information

8 shows the comparison between the solutions obtained from the above two models. When

the total unsatisfied demand is big as that of problem 1, the unsatisfied rate, obtained from

VRMąŕ, may be worse even though its total weighted time delay is smaller than that of VRM.

While total unsatisfied demand is small, the VRM can present better solution than VRM’, such

as problem 3. A sample vehicle routing scheme when information is confirmed. Each type of

line is corresponding to one vehicle route. For example, one vehicle drives from airport to

hospital 8, 13, 6, 9 according to the red line. With different data input we have simulated cases

Problem maximum total maximum

No. unsatisfied demand weighted time delay unsatisfied rate

VRM VRM’ VRM VRM’ VRM VRM’

1 38 38 325 435 0.1875 1

2 15 15 343 304 0.1 0.625

3 3 3 46 46 0.05 0.15

Table 8. Comparison between the above two models
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of severe supply shortage, tight deadline, large fleet, and large number of randomly generated

demand nodes. All these results show that the polynomial time algorithm is very efficient and

can be a very useful tool in routing vehicles during a large-scale emergency scenario.
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Fig. 2. Example for vehicles routing scheme

6. Conclusion

In this paper, we consider the vehicle routing problem under an emergency situation. A

multi-objective model is formulated. Supplies may arrive with time delay, and the first

objective is to minimize the total delay. We also consider fairness among demand nodes with

respect to their unsatisfied rates. A new model and local search algorithm are presented.

Simulation results show that the algorithm can be very useful for emergency responder to

effectively use the available vehicles in case of emergencies.

For future work, we are going to design new algorithms for this model by using some other

technique, such as heuristic algorithms. We will also try to formulate new models, when

information about the demand and deadline are uncertain.
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