
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

1. Introduction

The last years have been characterized by the arising of highly distributed computing
platforms composed of a heterogeneity of computing and communication resources including
centralized high-performance computing architectures (e.g. clusters or large shared-memory
machines), as well as multi-/many-core components also integrated into mobile nodes
and network facilities. The emerging of computational paradigms such as Grid and Cloud
Computing, provides potential solutions to integrate such platforms with data systems, natural
phenomena simulations, knowledge discovery and decision support systems responding to a
dynamic demand of remote computing and communication resources and services.

In this context time-critical applications, notably emergency management systems, are
composed of complex sets of application components specialized for executing specific
computations, which are able to cooperate in such a way as to perform a global goal in a
distributed manner. Since the last years the scientific community has been involved in facing
with the programming issues of distributed systems, aimed at the definition of applications
featuring an increasing complexity in the number of distributed components, in the spatial
distribution and cooperation between interested parties and in their degree of heterogeneity.

Over the last decade the research trend in distributed computing has been focused on
a crucial objective. The wide-ranging composition of distributed platforms in terms of
different classes of computing nodes and network technologies, the strong diffusion of
applications that require real-time elaborations and online compute-intensive processing as
in the case of emergency management systems, lead to a pronounced tendency of systems
towards properties like self-managing, self-organization, self-controlling and strictly speaking
adaptivity.

Adaptivity implies the development, deployment, execution and management of applications
that, in general, are dynamic in nature. Dynamicity concerns the number and the specific
identification of cooperating components, the deployment and composition of the most
suitable versions of software components on processing and networking resources and
services, i.e., both the quantity and the quality of the application components to achieve
the needed Quality of Service (QoS). In time-critical applications the QoS specification
can dynamically vary during the execution, according to the user intentions and the

Developing Real-Time Emergency
Management Applications: Methodology for

a Novel Programming Model Approach

Gabriele Mencagli and Marco Vanneschi
Department of Computer Science, University of Pisa, L. Bruno Pontecorvo, Pisa

Italy

2

www.intechopen.com

2 Will-be-set-by-IN-TECH

information produced by sensors and services, as well as according to the monitored state
and performance of networks and nodes.

The general reference point for this kind of systems is the Grid paradigm which, by
definition, aims to enable the access, selection and aggregation of a variety of distributed and
heterogeneous resources and services. However, though notable advancements have been
achieved in recent years, current Grid technology is not yet able to supply the needed software
tools with the features of high adaptivity, ubiquity, proactivity, self-organization, scalability
and performance, interoperability, as well as fault tolerance and security, of the emerging
applications.

For this reason in this chapter we will study a methodology for designing high-performance
computations able to exploit the heterogeneity and dynamicity of distributed environments
by expressing adaptivity and QoS-awareness directly at the application level. An effective
approach needs to address issues like QoS predictability of different application configurations
as well as the predictability of reconfiguration costs. Moreover adaptation strategies need to
be developed assuring properties like the stability degree of a reconfiguration decision and the
execution optimality (i.e. select reconfigurations accounting proper trade-offs among different
QoS objectives). In this chapter we will present the basic points of a novel approach that lays
the foundations for future programming model environments for time-critical applications
such as emergency management systems.

The organization of this chapter is the following. In Section 2 we will compare the existing
research works for developing adaptive systems in critical environments, highlighting their
drawbacks and inefficiencies. In Section 3, in order to clarify the application scenarios that
we are considering, we will present an emergency management system in which the run-time
selection of proper application configuration parameters is of great importance for meeting the
desired QoS constraints. In Section 4 we will describe the basic points of our approach in terms
of how compute-intensive operations can be programmed, how they can be dynamically
modified and how adaptation strategies can be expressed. In Section 5 our approach will
be contextualize to the definition of an adaptive parallel module, which is a building block
for composing complex and distributed adaptive computations. Finally in Section 6 we will
describe a set of experimental results that show the viability of our approach and in Section 7
we will give the concluding remarks of this chapter.

2. Related works

When a distributed application is executed on a dynamic execution environment, where the
number and features of nodes and network facilities but also the desired QoS level may
vary significantly and in unpredictable ways, we need to design systems which are able
to modify their actual configuration for maintaining and respecting the desired objectives.
For application configuration we intend a specific identification of application components,
their mapping onto the available computing resources, the specification of their internal
behaviors (e.g. if they exploit a sequential or a parallel elaboration) and the way in which the
computations are performed (i.e. for a sequential component the selected algorithm whereas
for a parallel computation the exploited parallelism scheme). The actual system configuration
can be modified by exploiting dynamic reconfiguration activities classified in four general

12 Emergency Management

www.intechopen.com

Developing Real-time Emergency Management Applications: Methodology for a Novel Programming Model Approach 3

categories (Arshad et al., 2007; Gomes et al., 2007; Hillman & Warren, 2004; Tsai et al., 2007;
Vanneschi & Veraldi, 2007):

• Geometrical Changes: affect the mapping between the internal structure of an application
component and the system resources on which it is currently executed. Such class of
changes consist in migrating a component in response to specific conditions, e.g. when
a system resource fails or a new node is included in the system. These reconfigurations
can be useful for load-balancing or for improving the service reliability;

• Structural Changes: affect the internal structure of an application component. A notable
case is that of a distributed component featuring a parallel implementation in terms of
multiple concurrent processes. In this situation structural changes consist in modifying
the number of executed processes. This occurs when an insufficient number of nodes are
available or if the task scheduler decides to change the set of processors allocated to a
specific component;

• Implementation Changes: are modifications of the behavior of an application component,
which changes completely its internal algorithm but preserving the elaboration semantics
and the input and output interfaces with the other application components;

• Interface Changes: are intensive modifications of the component behavior, which
completely changes the set of its provided external operations and services.

The existing programming models face the reconfiguration support development in two
different ways. The first solution consists in putting everything concerning the adaptive
behavior of a distributed application, like reconfiguration implementations, inside the
run-time support system in such a way as to completely hide these aspects from the
programmer standpoint. This transparent-approach requires a deep knowledge of the
application structures so that the reconfiguration code can be automatically extracted by a
static process of compilation of the program. In this scenario the programmer is freed from
directly programming the reconfiguration phase but it is only involved in defining, by means
of proper directives or programming constructs, the reconfigurations that are admissible
(e.g. the compatibility between different versions of a component). On the other hand
other programming models adopt a completely different approach to adaptivity, in which the
programmer is directly involved in defining the reconfiguration activities. For each possible
reconfiguration the programmer must provide the implementation that performs the dynamic
reconfiguration, and it is also responsible for performing these activities in a fully correct and
consistent manner.

Based on the guidelines provided above, in the rest of this section we will introduce some
interesting programming models and frameworks for distributed environments. In the
first part we will introduce frameworks for developing adaptive distributed applications
for mobile and pervasive systems, whereas in the second part we will concentrate on
programming models and tools for adaptive high-performance computations.

2.1 Exploiting adaptive behaviors in mobile and pervasive environments

Some research works provide programming frameworks for mobile applications that
adapt their behavior in response to the actual level of resource availability (especially
of communication networks). For instance in Odyssey (Noble et al., 1997) mobile
applications exploit run-time reconfigurations which are noticed by the final users as a

13Developing Real-Time Emergency Management
Applications: Methodology for a Novel Programming Model Approach

www.intechopen.com

4 Will-be-set-by-IN-TECH

change in the application execution quality. The Odyssey operating system is responsible
for exploiting periodically resource monitoring activities and for interacting with mobile
applications raising or lowering their corresponding quality level. In this approach all
reconfiguration actions are automatically triggered by the run-time system without any direct
user intervention. Nevertheless the most important drawback of this approach is the quite
limited definition of the quality concept: in many cases it only consists in the quality of
the visualized data but this assumption can be restrictive when we consider more complex
applications involving an intensive cooperation between computation, communication and
visualization phases.

In past researches, adaptivity consists in migrating specific parts of a distributed computation
for optimizing performance and energy parameters as well as for reliability reasons. As
an example in Aura (Garlan et al., 2002) adaptivity is expressed introducing the abstract
concept of task: i.e. a specific work that a user has submitted to the system which can be
completed by several distinct applications suitable for different classes of computing resources
(e.g. workstations and smartphones). The framework is responsible for exploiting migration
activities in a fully transparent way w.r.t the final users. Unfortunately this approach
has been developed for very simple user tasks (e.g. writing a document or preparing a
presentation). On the other hand, if we consider more complex mobile applications (e.g. that
involve compute-intensive computations), transferring a partially computed task to a different
platform can be a critical issue concerning both performance and consistency issues that have
not been analyzed in these frameworks.

Recently the execution of high-performance parallel applications on mobile computing
platforms have been addressed in some preliminary research works. A relevant example is
MB++ (Lillethun et al., 2007), a framework for developing compute-intensive programs for
mobile and pervasive environments. In this approach one of the most important shortfalls
is the quite limited utilization of mobile nodes, which are limited to pre-processing or
post-processing activities whereas compute-intensive elaborations are executed only on HPC
resources. In many time-critical scenarios, such as emergency management systems, we
often require the possibility to execute forecasting models and decision support systems on a
distributed set of localized mobile resources, equipped with a sufficient computational power
(e.g. multicore smartphones).

2.2 Existing programming models for high-performance adaptive applications

Parallel computations are a particular class of tightly coupled distributed applications
composed of several cooperating parallel modules. Adaptivity for parallel applications
executed on traditional HPC architectures is an important feature, especially for real-time
processing in which the presence of strong real-time deadlines and performance constraints
require the capability of automatically adapting the application configuration for quickly
responding to platform changes. Emergency management systems (e.g. disaster prediction
and management, risk mitigation of floods and earthquakes) are notable examples in which
the behavior of a time-critical processing needs to be periodically monitored and adapted
throughout the execution.

One of the most widespread programming models for parallel applications is based on the
MPI (Snir et al., 1995) (Message Passing Interface) communication library. In this case parallel

14 Emergency Management

www.intechopen.com

Developing Real-time Emergency Management Applications: Methodology for a Novel Programming Model Approach 5

programs are expressed in an un-structured way by describing the behavior of a set of
distributed processes cooperating by using communication channels. Last implementations
of the MPI library provide some form of support to dynamic reconfigurations. MPI2 (Lusk,
2002) provides a mechanism for instantiating new processes at run-time: this feature can be
exploited in such a way as to perform structural changes of a parallel program, for instance it
is possible to increase the parallelism degree (e.g. the number of executed processes) achieving
in this way an expected better performance. In general the management of adaptivity issues
in MPI is completely left to the programmer, which is heavily involved in ensuring and
maintaining the consistency and the correctness of the computation during and after the
reconfiguration phase.

In order to partially solve the complexity issues of un-structured parallel programming,
some notable research works have been proposed as the ASSIST (Vanneschi, 2002)
programming environment. ASSIST is a general parallel programming framework for
several classes of computing architectures, from shared-memory platforms as SMP and
NUMA multi-processors to distributed-memory multicomputers as cluster of workstations
and large-scale Grids (Coppola et al., 2007a). The most important novelty of this approach
is the structured methodology for expressing parallel computations, which are instances of
well-known parallelism schemes (e.g. task-parallel programs as task-farm or pipeline and
data-parallel computations as map, reduce or communication stencils). This approach is
known to the scientific community as Structured Parallel Programming (Cole, 2004).

In ASSIST a run-time support to dynamic reconfigurations (Aldinucci et al., 2005; Vanneschi
& Veraldi, 2007) is rendered by exploiting a transparent-approach to adaptivity. A dynamic
reconfiguration is a change involving a specific application component by modifying: (i) the
mapping between execution processes and underlying computing resources (i.e. geometrical
changes); (ii) by increasing or decreasing the number of execution processes of a component
(i.e. structural changes). Some papers (Coppola et al., 2007b; Danelutto et al., 2007)
describe how adaptivity is exploited in the ASSIST framework. Reconfigurations are
performance-oriented (Aldinucci et al., 2006): dynamic changes of application components are
triggered by the run-time support in presence of QoS violations of a pre-defined performance
contract.

Another interesting work is the Behavioural Skeleton (Aldinucci et al., 2008) approach.
Adaptivity for distributed high-performance computations is exploited by means of the Grid
Component Model (Ahumada et al., 2007; Mathias et al., 2008) (GCM) and the structured
parallel programming paradigm (which the authors also call skeleton-based programming).
In GCM a self-adaptive component is composed of two main parts: the Membrane which
is an abstract unit responsible for controlling the adaptive behavior of the component, and
the Content composed of a set of processes performing the corresponding functional logic of
the computation. These entities can also be other GCM components (i.e. inner components):
therefore the GCM model makes it possible a natural hierarchical nesting between several
self-adaptive components.

This approach is characterized by very interesting run-time mechanisms for controlling
multiple non-functional concerns (e.g. it is possible to simultaneously control different
parameters as performance and security objectives). In this case the solution proposed
in (Aldinucci et al., 2009) provides multiple autonomic managers for a single component,

15Developing Real-Time Emergency Management
Applications: Methodology for a Novel Programming Model Approach

www.intechopen.com

6 Will-be-set-by-IN-TECH

each one controlling a specific non-functional concern by using a set of event-condition-action
(ECA) policy rules. Different policies can lead to some conflicting decisions: in this case the
authors propose distributed consensus-based solutions.

In this section we have presented the actual state of the art concerning self-adaptive
systems for mobile applications and for traditional high-performance computing problems.
From our point of view there is not yet a unified approach for programming adaptive
high-performance computations executed on highly heterogeneous and dynamic execution
environments, such as pervasive and mobile grid infrastructures. Some research works
focus on HPC computations in real-time environments, but in these approaches the "mobile
part" of application definition is essentially missing. Other research works achieve the
necessary expressiveness to define mobile adaptive applications, but they do not face on
compute-intensive real-time computations.

3. Application scenarios

In this chapter we are interested in describing the design and the developing issues of
time-critical systems as emergency management applications. They are a notable example
of systems that exploit highly heterogeneous distributed computing platforms, composed of
traditional high-performance architectures as well as mobile nodes and sensors, providing
system features and services according to precise QoS constraints. Such QoS is typically
related to the performance at which computing results or communication facilities are
provided to users and/or to the service availability and reliability w.r.t. software and
hardware failures.

A main issue in executing this class of applications on heterogeneous platforms is hence
given by the chance of defining proper programming models and run-time supports aiming
at enabling the definition and dynamic satisfaction of QoS constraints. This issue can be
seen as even more complex by considering the strong dynamic variability of computing and
communication services provided by these platforms, also given by the mobility of some of
its nodes and their geographical distribution.

Emergency management systems include data- and compute-intensive processing e.g.
forecasting and decision support models) not only for off-line centralized activities, but also
for on-line and decentralized activities. Consider the execution of software components
performing a forecasting model, which is a critical compute-intensive computation to be
executed respecting precise operational real-time deadlines. In "normal" conditions (e.g.
concerning the network availability and the emergency scenario itself), we could be able to
execute these components on a centralized server, exploiting its processing power to achieve
the highest performance possible. Critical conditions in the application scenario (e.g. an
emergency detection) can lead to different user requirements (e.g. increasing the performance
to complete the forecasting computation within a given, new deadline). Moreover, changes
in network conditions (e.g. of the interconnection network with HPC centralized resources)
or in computing resource availability can lead to the necessity to execute proper versions of
the application components directly on localized mobile resources which are available to the
users (e.g. civil protection personnel, rescuers and stakeholders).

16 Emergency Management

www.intechopen.com

Developing Real-time Emergency Management Applications: Methodology for a Novel Programming Model Approach 7

In such cases, compute-intensive elaborations that need to be periodically executed for
monitoring, predicting and taking response actions during an emergency phase, can be
alternatively executed on different or additional computing resources, including sets of
distributed mobile resources running properly developed versions of these computations.
In other words, in these scenarios it is important to assure the service continuity, adapting
the application to different user requirements but also to the so-called execution context,
which corresponds to the actual conditions of the both the surrounding environment
and the computing and communication platform. So the key issues in the definition of
high-performance parallel programming paradigms, models, and frameworks to design and
develop these kinds of complex and dynamic applications, is adaptivity (possibility to adapt
the application behavior changing component versions and the platforms on which they are
executed) and Context Awareness (knowledge about the current condition of the reference
environment).

The general reference point for these kinds of applications is the Grid paradigm (Berman
et al., 2003) which, by definition, aims to enabling the access, selection and aggregation of a
variety of distributed and heterogeneous resources and services. However, though notable
advancements have been achieved in recent years, current Grid technology is not yet able to
supply the needed software tools to match the high-performance feature with high adaptivity,
ubiquity, proactivity, self-organization, scalability, interoperability, as well as fault tolerance
and security, of the emerging applications running on a very large number of fixed and mobile
nodes connected by various kinds of networks.

We claim that a high-level programming model is the only viable solution to design and
develop such kind of distributed applications. A novel approach needs to provide a
proper combination of high-performance programming models and pervasive and mobile
computing frameworks, in such a way to express a QoS-driven adaptive behavior for critical
high-performance applications on heterogeneous contexts. In the following section the main
features of a novel approach will be discussed in more detail.

4. Features and requirements of a novel approach

A novel approach needs to be characterized by a strong synergy between two different
research fields: Pervasive and Mobile Computing (Hansmann et al., 2003) and Grid Computing
(Berman et al., 2003). Pervasive and Mobile Computing is centered upon the creation of
systems characterized by a multitude of different computing and communication resources,
whose integration aims at offering seamless services to the users according to their current
and time-varying needs and intentions. On the other hand Grid Computing focuses on the
efficient execution of compute-intensive processes by using geographically distributed sets of
computing resources.

To merge these two areas, an effective integration must provide a proper combination of
high-performance programming models and mobile computing frameworks in such a way
as to express a QoS-driven adaptive behavior for distributed applications like emergency
management systems. In this section we will highlight the main guidelines that need to be
followed for exploiting such integration. They can be summarized in three different points:
(i) how compute-intensive processing for heterogeneous environments can be programmed

17Developing Real-Time Emergency Management
Applications: Methodology for a Novel Programming Model Approach

www.intechopen.com

8 Will-be-set-by-IN-TECH

and their performance formally analyzed; (ii) how a distributed application can change its
QoS behavior at run-time; (iii) when it is necessary to execute an application reconfiguration.

4.1 Structured Parallel Programming

First of all we require a structured methodology for expressing parallel and distributed
programs in such a way as to make the programming effort less costly and less
time-consuming and to have a predictable QoS behavior for such applications. This means
that we need sufficient high-level abstractions featuring a large-degree of programmability,
compositionality and performance portability. Portability plays a central role in heterogeneous
contexts: portable parallel applications are able to achieve acceptable performance results on
different computing platforms, trying to exploit in the best way as possible the underlying
physical aspects of the target machine. This can be done by tuning proper application
parameters (e.g. parallelism degree and task granularity) statically, during the compiling
phase, or dynamically through run-time reconfiguration processes.

For these reasons Structured Parallel Programming (SPP) (Cole, 2004) has been proposed as
an effective and attractive approach to parallel programming featuring interesting properties
in terms of high-level programmability and performance portability. According to the SPP
methodology a parallel computation is expressed by using well-known abstract parallelism
schemes for which parametric implementations of communication and computation patterns
are known. In fact the experience in parallel programming suggests that parallel programs
make use of a limited number of parallelism patterns exhibiting regular structures, both
concerning data organization and partitioning or replication of functions. In this way we can
identify several parallelism paradigms as data parallelism schemes (e.g. map, reduce, parallel
prefix and communication stencils) and task parallelism structures (e.g. pipeline, task-farm
and data-flow). Furthermore the performance behavior of these parallelism schemes has been
studied by exploiting formal analysis (i.e. performance models) based on queueing theory and
queueing network fundamental results, thus rendering the performance modeling of this class
of computations usable also from automatic tools as compilers (e.g. for statically deciding
the best application configuration) and from run-time supports (e.g. for providing efficient
fault-tolerance (Bertolli, 2009) mechanisms but also for deciding the execution of dynamic
reconfigurations (Vanneschi & Veraldi, 2007)).

The SPP methodology is based on the concept of parallelism schemes that exhibit the
following features: (i) they are characterized by constrains in the parallel computation
structure; (ii) they have a precise semantics; (iii) they are characterized by a specific
performance model; (iv) they can be composed each other to form complex graph
computations. A central property of these schemes is the complete knowledge of their
computation structure, e.g. in terms of data and functions replication and/or partitioning.
For instance task-farm paradigm exploits replication only, applied to functions and to
non-modifiable data. Pipeline exploits a partition of the sequential elaboration in a
sequence of multiple successive phases each one using a set of replicated (non-modifiable)
or partitioned (modifiable) data. On the opposite direction data-parallel schemes correspond
to the replication of the same functionality and to the partitioning of data, so that distinct
parallel units are able to apply the same operations to different data partitions in parallel.

18 Emergency Management

www.intechopen.com

Developing Real-time Emergency Management Applications: Methodology for a Novel Programming Model Approach 9

Performance of parallel computations can be measured in terms of throughput, i.e. completed
tasks per time unit, and computation latency, i.e. the average time needed to execute the
computation on just one input task. Parallelism schemes can have different impacts on
these two performance measurements. Task-farm and pipeline, though able to increase
the throughput of the computation, also tend to increase the latency compared to the
sequential implementation due to communication overhead. Data-parallel and data-flow tend
to improve both the computation latency and the throughput, but they can be hampered by
load-balancing issues. Finally parallelism schemes are also characterized by a different degree
of memory utilization. Task-farm tends to increase the memory capacity, the others, being
based on data partitioning, tend to decrease it.

As far as composability is concerned, parallel distributed applications can be represented as
graphs of modules. Each module can exploit a sequential or a parallel computation based on
a specific parallelism scheme (intra-module parallelism), whereas modules can be composed in
general complex graph structures (inter-module parallelism).

4.2 Dynamic reconfigurations of parallel programs

Previously in this chapter we have introduced the concept of application configuration. Any
run-time activity that modifies the parallelism degree, the parallel version (e.g. parallelism
scheme and parallelized sequential algorithm) or the execution platform of a module is
indicated as a dynamic reconfiguration process.

Although there are specific situations in which the "best" configuration for each module can
be statically selected during the system design phase (e.g optimizing performance parameters
and memory and energy usage), in dynamic execution conditions this best configuration
might not be identifiable without run-time information. As an example consider the following
situations:

• in dynamic environments, the degree of availability of computing and network resources
can dynamically vary also in unexpected ways;

• for compute-intensive elaborations (as forecasting models and simulations), precise user
requirements can be requested. For instance when an emergency scenario is detected, the
decision support model that assists civil protection personnel could require to be executed
until a maximum completion time;

• for irregular parallel problems, characterized by computations whose size, distribution
and complexity depends on the properties of input data, a run-time support to dynamic
reconfigurations is an unavoidable feature that needs to be provided.

For structured parallel computations we can classify the set of adaptation processes
involving a single application module in two categories namely non-functional and functional
reconfigurations.

Non-functional Reconfigurations are adaptation processes involving the run-time
modification of some implementation aspects of a parallel module of the application
graph. For implementation aspects we intend that:

• it is possible to modify the current parallelism degree of a module, e.g. increasing the
number of implementation processes in such a way as to achieve a better performance level
(e.g. response time for each request or the completion time of the entire computation);

19Developing Real-Time Emergency Management
Applications: Methodology for a Novel Programming Model Approach

www.intechopen.com

10 Will-be-set-by-IN-TECH

• the run-time support can modify the mapping (i.e. geometrical changes) between
implementation processes of a parallel module and underlying physical computing
resources on which they are executed;

• the run-time support can provide another important class of geometrical changes
involving the run-time data re-distribution among the set of worker processes of a parallel
module. Such changes are an effective approach for addressing potential workload
un-balancing problems of data-parallel parallelizations.

The most important aspect characterizing non-functional reconfigurations is that in every case
these processes do not modify the sequential algorithm performed by the parallel module,
neither the exploited parallelization scheme.

Another important and, in some sense, intuitive concept is that the same problem can usually
be solved in a parallel fashion by exploiting several different parallelization schemes. For
instance let us consider a simple example in which a parallel module periodically receives
a sequence of input tasks each one consisting in a pair of a matrix and a vector. For each
task the module performs a matrix vector product and the result vector is transmitted to a
destination module. According to the way in which we perform data distribution among
parallel entities, we can parallelize this problem in several ways. A task-farm scheme consists
in replicating the entire matrix-vector computation on multiple independent workers that
apply the computation on a different set of scheduled input tasks. In this way we are able
to improve the throughput of the computation but not the computation latency. For this
simple example several data-parallel schemes can also be adopted. For each input task, if
we partition the input matrix among a set of parallel processes and we replicate the input
vector, we are able to exploit a classic data-parallel map scheme in which each process exploits
the matrix-vector computation on its partition without requiring inter-process data exchange
and synchronizations. Moreover, if the input vector instead of being replicated is partitioned
among processes, we are able to exploit a data-parallel approach with a communication stencil.
In both the cases the data-parallel approach improve latency of the computation as well as its
memory occupation w.r.t the task-farm implementation. Moreover the stencil version requires
a higher number of exchanged data during the computation.

The previous scenario suggests that we can use this important feature of structured parallel
programming in such a way as to effectively deal with highly dynamic and heterogeneous
execution environments. For each application module several alternative versions can
be provided, and Functional Reconfigurations are implementation changes that consist
in changing at run-time the version which is currently executed by a parallel module.
Versions can have a different but compatible semantics: they can exploit different sequential
algorithms, parallelization schemes or optimizations, but preserving the module interfaces in
such a way that the selection of a specific version does not modify the global application
behavior. Each version of the same parallel module is optimized for being executed
whenever certain execution conditions are satisfied (e.g. depending on the actual levels of
communication bandwidth, power supply, available memory) or on the presence of specific
classes of computing resources.

Another important advantage of this methodology w.r.t non-structured parallel programming
models is that it renders feasible a transparent approach to application reconfigurations
(see Section 2). As demonstrated in (Aldinucci et al., 2006; Vanneschi, 2002; Vanneschi

20 Emergency Management

www.intechopen.com

Developing Real-time Emergency Management Applications: Methodology for a Novel Programming Model Approach 11

& Veraldi, 2007), the reconfiguration code that performs non-functional reconfigurations
(as parallelism degree variations) can be automatically extracted from the knowledge of
the parallelism scheme that needs to be modified. In this case the programmer is only
involved in providing the implementation of the high-level functions executed by a set
of worker processes, and their number and the interconnections for task reception and
result transmission are completely managed by the run-time support system. Moreover, for
functional reconfigurations, in (Bertolli et al., 2011) formal consistent reconfiguration protocols
have been presented for switching between different structured parallelism schemes.

4.3 Exploiting adaptation strategies for parallel programs

An adaptive application is a system which evolves over time changing its initial configuration
in response to external events. Providing a run-time support to dynamic reconfiguration
activities is a first and essential requirement for developing adaptive high-performance
applications. Although many research works (Aldinucci et al., 2008; 2005; 2006; Coppola et al.,
2007a; Vanneschi & Veraldi, 2007) focus on specific implementation issues describing several
optimizations for reducing reconfiguration costs in terms of performance degradations for
certain parallelization schemes and their compositions, they do not pay sufficient attention
to the decision process that triggers the execution of these reconfigurations. We refer to this
process as an Adaptation Strategy, that is a plan or a set of rules used by the system for
achieving the specific objectives of its adaptive behavior.

Especially for emergency management systems several constraints need to be satisfied
throughout the execution. The system must offer its functionalities to the users according
to different QoS notions:

• in many adaptive systems we need to control the execution progress preserving observed
metrics within user-defined ranges. Classic examples are: e.g. maintaining the mean
response time of the system within a window of tolerance, i.e. between a maximum and
a minimum acceptable threshold over the execution. In this case we refer to this objective
as a threshold specification problem;

• alternatively we might require to maintain some quantitative execution metrics as closer as
possible to a set of desired reference values. For instance it could be necessary to maintain
the mean service time of a computation equal to a specified target value desired by the
final user. We refer to this approach as a set-point regulation problem;

• more often we need to control several execution measurements of the system, as the
performance, energy and memory requirements, number of utilized computing and
network resources. In this situation we need to find a control law such that a certain
optimality criterion is achieved. This problem can be casted into a mathematical fashion
introducing an objective function F(x1, x2, . . . , xn) of n input parameters whose value
should be minimized or maximized. Inputs are system controllable features, and the
adaptation strategy is aimed at optimizing this multi-variable function during the system
execution. This formulation is known as an utility/cost optimization problem.

In different research fields (e.g. Autonomic Computing (Huebscher & McCann, 2008) and
Control Theory) general adaptive systems have been described in terms of a reference control
architecture (see Figure 1) composed of two main parts and proper interaction phases between
them. The two parts are:

21Developing Real-Time Emergency Management
Applications: Methodology for a Novel Programming Model Approach

www.intechopen.com

12 Will-be-set-by-IN-TECH

• the target controlled system (namely plant) that we want to control. It takes
functional inputs and generates functional outputs according to the semantics of its
computation. However, for controlling the behavior of a system, other relationships among
non-functional inputs and outputs are also important. System execution can be influenced
by a specific set of manipulated control inputs, whose values strictly affect the way in which
the system execution is exploited. Based on the desired control objectives, the quality of
system operation is evaluated by measuring non-functional outputs also called observed
outputs (e.g. the current level of some performance metrics);

• a controller, which is an independent entity able to monitor and affect the system
operational conditions by taking and analyzing observed outputs and promptly decide
the corresponding set of control inputs.

Monitoring

Phase

Reconfiguration

Phase

Planning Phase

Execution

Plant

Controller

Fig. 1. Control-loop scheme of an Adaptive system: the cycle evolves according to a
monitoring phase, a planning phase and a reconfiguration phase.

Interactions between these entities follows a classic closed-loop feedback scheme composed
of different phases. Monitoring phase involves capturing current properties and measurements
of the system which are effective for identifying when the execution of a dynamic
reconfiguration can be useful for achieving the desired objectives. Planning phase consists
in a set of concrete actions aimed to select a new set of control inputs that are the best
response to the current observed outputs of the system. Finally the Reconfiguration phase
applies the decided set of control inputs to the controlled system. In this part of the chapter
we are interested in understanding how the planning phase can be exploited and what
methodologies can be used. The following two sections will present two different approaches
that can be used for addressing the adaptation strategy specification for adaptive systems.

4.3.1 Adaptation strategies expressed by logic rules

A flexible methodology for expressing adaptation strategies, which has been exploited in
Pervasive and Mobile scenarios due to its intrinsic simplicity and programmability, consists
in defining adaptation processes as reactions to specific system situations. As an example
if the available energy level of a mobile device is lower than a specified threshold (e.g.
25 %), the execution of a mobile application can switch to a low-energy version which
preserves the battery duration employing a limited utilization of the device display. Therefore
a straightforward solution for expressing adaptation strategies consists in providing a
mapping between events and execution situations and corresponding reconfigurations (i.e.
situation-action pairs) as a finite set of imperative logic rules. System administrators and

22 Emergency Management

www.intechopen.com

Developing Real-time Emergency Management Applications: Methodology for a Novel Programming Model Approach 13

designers encode management guidelines as a set of rules that represent the adaptation policy
of the system.

Policy rules are a form of guidance used to determine decisions and corresponding
actions on the system execution. They have been introduced especially in the field of
intelligent agents Russell & Norvig (2003), where abstract entities are able to perceive their
environmental conditions and act on the basis of this information in order to maximize their
objectives. In this vision an adaptive system is in a specific internal state at every given
moment of time, and a set of logic rules may cause an action to be taken an therefore a
transition to a different internal state of the system.

Logic rules can be expressed according to several paradigms. Although many techniques
exist, with specific modifications and features depending on the particular application context,
a general approach is based on Event-Condition-Action (ECA) policy rules for programming
reactive behaviors. ECA rules have the following basic syntax: when event if condition then
action;. Informally the abstract semantics is: the occurrence of the event triggers the rule
evaluation, the condition is checked in order to ensure that the system is in a specific internal
state. If this condition holds, the corresponding action is enforced. Notice that though the state
that will be reached by applying the rule is not explicitly expressed, the policy programmer
knows the desired effect of the selected action.

If multiple rules are fired simultaneously, the entire set of corresponding actions will be
performed at the same time. This may lead to potential conflicting actions (e.g. resulting
in conflicting post-adaptation situations). The design of proper techniques for efficiently
identifying and resolve such conflicts has been an intensively studied research issue.
Although the large research effort, the general problem of avoiding conflicting rules is hard
to be solved, especially for complex systems in which the consequence and the side-effects of
a dynamic reconfiguration involve the long-term steady-state behavior of the system (i.e. in
this case a rule can conflict with rules that may be triggered on different events in future). This
suggests that, although highly programmable and user-oriented, adaptation strategies based on
logic rules are difficult to be applied to complex applications as emergency management systems. In fact
in this case it is extremely important to have a reasonable expectation about the consequences
of reconfiguration actions on the long-term behavior of the systems (e.g. future performance
level after the completion of a reconfiguration process), that can be difficult to be evaluated
and represented through situation-action pairs.

4.3.2 Adaptation strategies based on control-theoretic techniques

Besides Artificial Intelligence and Reactive Systems, the concept of automated operations
is an important research field in disciplines as mechanical and electrical engineering for
developing autonomous systems able to respond to changing workloads and expected
run-time conditions. The methodology based on Control Theory (Hellerstein et al., 2004)
foundations has been intensively exploited for design controllers and feedback systems in
many industrial plants and mechanical infrastructures. These solutions provide powerful
mechanisms for dealing with unpredictable changes, uncertainties, and system disturbances.

In many research works several control-theoretic modelings of computing and networking
systems have been proposed. Control-based approaches are often a solid solution to

23Developing Real-Time Emergency Management
Applications: Methodology for a Novel Programming Model Approach

www.intechopen.com

14 Will-be-set-by-IN-TECH

solve network problems like congestion and flow control, and rate adaptation of queueing
networks. This leads to an increasingly important research area in which the adaptive system
is the computing network itself, i.e. Autonomic Networking (Mortier & Kiciman, 2006), whose
interconnection facilities are able to automatically detect, diagnose and repair failures, as well
as to adapt the underlying network configuration and optimize its performance and quality
of service.

Nevertheless the exploitation of control theory methodologies to computing systems is
rarely used in practise. The formal design of controllers needs the ability to precisely
quantify the reconfiguration effects on the system evolution. Hence, system modeling is
a prerequisite for applying such techniques. This model needs to be expressed in an
input-output form concerning how control inputs and disturbances affect the behavior of
observed measurements. Such relationships between model variables can be determined
through first-principle models, based on the actual physics laws which govern the evolution
of the system, or exploiting empirical models in which the relationships are extracted through
static techniques (e.g. least-square techniques) on properly defined experimental data and
observations.

We claim that a relevant example in which first-principle models can be used consists in the performance
modeling of structured parallel computations. For these structured parallelization schemes and
their composition in computation graphs, performance models provide a quite acceptable
performance predictions of system steady-state behavior, which is often a sufficient guideline
to define powerful control-theoretic strategies for controlling parallel applications. When
it is possible, these approaches are amenable to provide properties like the accuracy of an
adaptation strategy (how precisely control objectives are satisfied), settling time (how long a
reconfiguration lasts until the steady-state behavior of the system is reached) and the stability
degree of a reconfiguration (how long a system configuration represent a "good choice" for
achieving the desired system objectives).

For these reasons control theory techniques, though their applicability is not always
straightforward, represent a valuable research direction for controlling time-critical
applications as emergency management systems. Based on the main guidelines described
in this section, in the rest of this chapter we will introduce in more detail our approach.

5. Design principles of a novel programming model approach

As stated in Section 4.1 our approach is based on a structured methodology in which
distributed and parallel applications can be represented as directed graphs of modules
interconnected through streams of data 1. Whereas the structure of the graph can be arbitrary
(e.g. cyclic client-server interactions or acyclic graphs of multiple computation phases), the
internal parallelism inside each module is expressed by means of structured parallelism
schemes.

The adaptive behavior is expressed in the possibility of each parallel module to perform
dynamic reconfiguration activities triggered by their own control logic. This means that
adaptivity is exploited through a set of independent entities that cooperate for implementing
the distributed functional logic of the application and also for negotiating reconfigurations

1 A stream of data is a sequence, possibly of unlimited length, of typed data structures.

24 Emergency Management

www.intechopen.com

Developing Real-time Emergency Management Applications: Methodology for a Novel Programming Model Approach 15

taken by their control logics. In this section we will introduce the basic structure and the
formalization of the concept of adaptive parallel module.

5.1 Structure and modeling of an adaptive parallel module

The core element of our approach is the concept of adaptive parallel module (shortly ParMod),
an independent and active unit featuring a parallel elaboration and an adaptation strategy for
responding to different sources of dynamicity. From an abstract point of view a ParMod can
be structured in two interconnected parts:

• an Operating Part is responsible for performing a parallel computation expressed
according to a certain parallelism scheme of the SPP framework (e.g. task-farm and
data-parallel are relevant examples). Without loss of generality we assume a stream-based
computation in which a set of input data streams from other parallel modules are received
by the operating part. The parallel elaboration is activated according to a non-deterministic
selection of input elements or, based on a data-flow semantics, waiting for the reception
of an element from each input interfaces of the module. Result externalization (if it
is necessary) is exploited onto output data streams (output interfaces) to other parallel
modules;

• a Control Part is an autonomous entity able to observe the operating part execution and
modify its behavior exploiting reconfiguration activities.

For each ParMod we suppose the presence of multiple alternative configurations of its
operating part that differ in the parallelism degree, the structured parallelism scheme or in
the execution platform on which they can be deployed. The only constraint that we impose
is that every configuration must respect the same input and output interfaces of the ParMod
(i.e. admissible reconfigurations are geometrical, structural or implementation changes, see
Section 2), in such a way that a local reconfiguration involving a single parallel module does
not modify the interfaces provided to other application modules. Therefore each ParMod
features a multi-modal behavior defined as follows:

Definition 5.1. (Multi-modal behavior of ParMod Operating Part). At each point of time the
operating part can behave according to a certain active configuration belonging to a specific
set C of alternatives:

C = {C0, C1, . . . , Cν−1} (1)

This set represents a finite and discrete set of statically known alternative configurations of
the parallel module.

The adaptive behavior of a parallel module is exploited through a periodical information
exchange between operating and control part. Observed outputs are QoS measurements (e.g.
memory occupation, energy consumption, number of completed tasks) that are periodically
monitored by the control part. Control inputs are proper commands that modify the current
operating part configuration exploiting non-functional or functional reconfiguration activities.
Observed outputs and control inputs exchange can be exploited periodically, at fixed points
equally spaced (in this case we speak about a time-driven controller) or whenever specified
events are satisfied (as in the case of event-driven controllers).

Our ParMod control model is based on a time-driven control part that takes reconfiguration
decisions every control step of duration τ. In other words at the beginning of each control step

25Developing Real-Time Emergency Management
Applications: Methodology for a Novel Programming Model Approach

www.intechopen.com

16 Will-be-set-by-IN-TECH

the control part acquires observed outputs from operating part, executes a specific control
algorithm to decide a corresponding set of control inputs that will be communicated to the
operating part.

5.1.1 A Hybrid modeling of the operating part behavior

In order to apply a formal methodology for developing ParMod adaptation strategies, we
need to model the QoS temporal evolution of a parallel computation by using a mathematical
and formal approach. This means that we need proper mathematical equations that express
the relationship among observed output measurements and current control inputs. As we
have seen in Section 4.3.2, the structured parallel programming paradigm is a basic point in
order to establish such modeling. Relevant examples are:

• structured parallelism schemes feature a sort of predictability of their steady-state
performance level. Fixed the parallelism degree and the execution platform, several
performance measurements as the mean service time, the mean queue length and the
computation latency can be predicted and formally analyzed according to analytical
models based on queueing theory and queueing network results (Vanneschi, 2002);

• memory utilization models can also be derived for well-known parallelism schemes by
exploiting the specific behavior of different parallelization patterns in terms of function
and data replication or partitioning (Bertolli et al., 2010);

• structured parallelism schemes have a precise semantics in terms of computations
performed by each parallel unit, the size of exchanged messages and the frequency of
certain activities as calculation and message transmission. Such knowledge can be a
starting point in order to define models for measuring the power consumption of a parallel
module, especially when its execution is mapped onto energy-limited resources as mobile
devices.

A formal model that describes the predictability of QoS parameters involves the following set
of variables:

• state variables represent system measurements that are useful to maintain during
successive control steps. These variables can describe the global energy consumption
caused by the parallel execution of a ParMod, the number of queued tasks, the global
number of completed input stream elements. We refer with the term x(k) as the current
value of the internal state of the operating part model at the beginning of the control step
k. State variables are directly monitored at each control step by the control part;

• disturbance variables are uncontrolled exogenous signals that can affect the relationship
between control inputs and the observed state variables modeling the actual QoS of the
computation. Uncontrolled means that the control part is not able to decide and fix their
values, but they are determined by environmental or external decisions outside of ParMod
control. Relevant examples are the mean calculation time of a sequential function on a
certain target architecture, the communication latency and the mean inter-arrival time of
requests to the system. We refer with the term d(k) as the value assumed by disturbances
throughout the k-th control step;

• control inputs, u(k), indicate the ParMod configuration that will be exploited throughout
the k-th control step.

26 Emergency Management

www.intechopen.com

Developing Real-time Emergency Management Applications: Methodology for a Novel Programming Model Approach 17

According to the multi-modal behavior of the operating part and the QoS predictability of
different ParMod configurations, we can identify two classes of transitions that characterize
the ParMod execution:

• continuous transitions: when a configuration has been fixed, the evolution of
continuous-valued QoS state parameters can be predicted by applying a specific
mathematical model corresponding to the currently used configuration;

• discrete transitions: by executing reconfiguration activities, the current configuration can be
changed passing from a configuration Ci to a different alternative configuration Cj, shortly
Ci → Cj with i �= j.

The presence of continuous transitions (of continuous variables) and discrete transitions (of
alternative configurations) suggests to model the operating part of a ParMod as an hybrid
system (der & Schumacher, 1999) in which these two dynamics are formally modeled in a
unique and refined mathematical structure.

For each configuration Ci ∈ C the temporal evolution of observed outputs and of the next
state variables can be expressed by a model in a state-space form as shown in (2).

x(k + 1) = φi

(

x(k), d(k)
)

(2)

The semantics of the next state expression provides that, if the values of expected measured
disturbances and the current model state for control step k are known, by applying a function
φi we can predict the values assumed by state variables at the beginning of the next control
step k + 1.

Switched Hybrid System

Operating

Mode

ϕ
0
(...)

Operating

Mode

ϕ
v-1

(...)Operating

Mode

ϕ
1
(...)

Discrete

Transition

switching

signal

Operating

Mode

ϕ
2
(...)

. . .

. . .

Controller

Fig. 2. The operating part evolves according to continuous transitions (i.e. concerning QoS
variables predicted through the model of the current configuration), and discrete transitions
(reconfigurations).

Two considerations are important at this point. First of all the function φi can be obtained
by applying statistical methods or, as we have seen, by using a higher level knowledge of
the structure of the computation behavior in order to extract first-principle relations. The
second point is that each model φi is strictly coupled with a configuration of the ParMod.
In some cases a unique mathematical model can be parametrically provided for multiple
configurations (e.g. as for different parallelism degrees), but there are also situations in which
configurations can require a completely different modeling of the state variables dynamics

27Developing Real-Time Emergency Management
Applications: Methodology for a Novel Programming Model Approach

www.intechopen.com

18 Will-be-set-by-IN-TECH

(e.g. as for the case of parallel versions expressed by means of different parallelism schemes
as task-farm and data-parallel ones).

This variable-structure behavior of the operating part is typical of a large class of hybrid
systems featuring a limited set of alternative operating modes (i.e. configurations in our case).
Such class consists in the so-called Switched Hybrid Systems Liberzon (2003) (see Figure 2) in
which control inputs from the controller modify the actual configuration of the operating part,
and future QoS measurements can be predicted following the evolution rule strictly coupled
with the new configuration. In conclusion the entire operating part model is given by:

x(k + 1) = Φ
(

x(k), d(k), u(k)
)

= if
(

π
(

u(k)
)

= Ci

)

then φi

(

x(k), d(k)
)

(3)

in which function Φ is a piecewise-defined function that provides a different definition for
each alternative configuration of the parallel module, whereas π is a bijective function that
maps each possible value of control inputs onto corresponding configuration indices.

5.2 A Control-theoretic adaptation strategy for ParMods

In this section we will propose the exploitation of a control-theoretic technique for controlling
the QoS behavior of an adaptive parallel module. We point out that in the context of
time-critical applications, like emergency management systems, a classic reactive approach
in which the system reacts to well-identified circumstances in pre-programmed way (as in
classic environments for adaptive HPC applications) is not an effective adaptation strategy.
The criticity of QoS requirements for these applications imposes that reconfiguration decisions
must be selected taking into account the history of the system, trying to respond in a pro-active
fashion to the user requirements and to the future behavior of the surrounding execution
environments. In this case we need adaptation strategies that are more similar to the ones
studied in pervasive systems (see Section 2), in which taking actions in advance to potentially
critical future events is a central point of this approach.

The predictive control approach that we propose for adaptive parallel applications is based on
the following points:

• the presence of (empirical or first-principle) mathematical models that can be used to
estimate future QoS behavior of the computation in function of a planned sequence of
control inputs (i.e. a reconfiguration plane) and future predictions of disturbances;

• the presence of an objective function describing the control aims which drive the selection
of the optimal control input sequence;

• the specification of boundary conditions on state and control input variables.

This formulation of the predictive control problem is known to control theorists as Optimal

Control (Bertsekas, 1995). Optimal control is the process of determining control and state
trajectories for a system over a certain period of time in order to optimize a properly defined
objective function. A typical representation of an objective function is given below:

max U(k) =
k+h−1

∑
i=k

L
(

x(i + 1), u(i)
)

(4)

28 Emergency Management

www.intechopen.com

Developing Real-time Emergency Management Applications: Methodology for a Novel Programming Model Approach 19

The function represents an aggregate utility (or cost) which depends on the desirability
of future system internal states and control inputs taken for a horizon of N successive
control steps (e.g. ideally the whole execution duration). Expressing control preferences
among different future states and control input trajectories is an expressive way to define
powerful control strategies for structured parallel computations featuring a predictable
behavior. Objective functions can be tuned to satisfy the specifications of the system, the
control objectives as well as to find feasible trade-offs between conflicting requirements (e.g.
optimization problems can exploit an intrinsic multi-variable nature including performance,
power and memory measurements and specific constraints on state and control variables).

If we suppose to know the exact trajectory assumed by disturbance inputs for the whole
execution duration, and if the system model is sufficiently accurate and precise, we can
statically define an optimal reconfiguration plane that optimizes the ParMod execution. Of
course this assumption is not always feasible for the following reasons:

• disturbance inputs are variables whose behavior (e.g. average values) can not be statically
known a priori but they may depend on uncontrollable factors (as the actual conditions of
the underlying execution platform);

• the system model can be effected by perturbations and unmodeled dynamics (e.g. due to
unmeasured disturbances) that limit the quality of the future QoS estimations.

For the previous reasons applying the optimal reconfiguration plane step-by-step in an
open-loop fashion is not a viable approach. Nevertheless several sub-optimal approaches are
available in order to iteratively apply optimization problem solutions in a closed-loop fashion.
In the next section one of this technique, namely the Model-based Predictive Control, will be
introduced.

5.2.1 Model-based predictive control of structured parallel computations

Model-based predictive control (Garcia et al., 1989) (shortly MPC) is a repetitive procedure
that combines the advantages of long-term planning (feedforward control based on system
predictions over a future horizon) with the advantages of a feedback control using actual
system and disturbance measurements. At the beginning of each control step k the values of
the model state variables and of past disturbances are measured by the control part. At this
point a limited future time horizon (i.e. a prediction horizon) of h consecutive control steps is
considered, and a prediction of disturbances for this short time interval is exploited through
proper statistical techniques. The predicted disturbance trajectory is composed by:

Dk+h−1
k = {d̂(k|k), d̂(k + 1|k), . . . , d̂(k + h − 1|k)} (5)

where the syntax d̂(k + i|k) means that the estimated value of disturbance inputs for the step
k + i is predicted using the current knowledge at control step k.

These predictions are used to plan a sequence of optimal reconfiguration decisions for each
control step of the prediction horizon. The optimization problem (4) is solved for the limited
time horizon finding an optimal control input trajectory:

Uk+h−1
k = {u(k|k), u(k + 1|k), . . . , u(k + h − 1|k)} (6)

29Developing Real-Time Emergency Management
Applications: Methodology for a Novel Programming Model Approach

www.intechopen.com

20 Will-be-set-by-IN-TECH

Instead of applying the optimal reconfiguration plane step-by-step, the uncertainty of
disturbance estimation (which increases going deeper in the prediction horizon) and the
potential inaccuracy of the future QoS predictions, suggest a more effective approach based on
an iterative procedure. Only the first control decision of the optimal trajectory is transmitted
from the control part to the operating part at the beginning of the current step k while the rest
are discarded. This process is repeated at the beginning of the next control step when: (i) the
new system state is available; (ii) values of past disturbances for the previous step have been
measured. The effect of this control algorithm is to move the prediction horizon towards the
future following the so-called receding or rolling horizon technique.

Based on the QoS predictability of structured parallelism schemes, the benefits of the
predictive approach are evident. Suppose to have a ParMod control objective formulated
as a threshold specification problem: e.g. we need to maintain the observed mean throughput
(completed tasks per time unit) of a parallel computation within an acceptable region of values
(e.g. between a maximum and a minimum threshold established by the user). Although an
initial configuration (e.g. parallelism degree) can be identified during the design phase such
that this QoS requirement is met, future modifications of the initial conditions modeled as
disturbances (e.g. time-varying task grain) can prevent this configuration to be no longer
acceptable. Especially for time-critical applications the utilization of a predictive strategy can
be a valuable solution for two main reasons:

• selecting in advance reconfiguration actions can be crucial in order to anticipate undesired
behaviors and promptly mitigate the future variability of disturbances;

• typically reconfigurations involve a cost on the execution. After a reconfiguration
a ParMod can incur some dead-time, e.g. for completing reconfiguration protocols
(see (Bertolli et al., 2011)) or rather the cost for changing the number of currently used
computational resources (e.g. as in Cloud Computing environments).

Despite MPC is a largely used approach in many real-world scenarios (e.g. for controlling
chemical, mechanical and industrial plants), it is considered a compute-intensive technique
especially for hybrid systems (as a ParMod) where the set of control inputs is discrete. In this
case the on-line optimization problem requires to explore a search space whose size grows
exponentially with the length of the prediction horizon. The search space can be represented
as a complete tree (i.e. the ParMod evolution tree) with a depth equal to the prediction horizon
length h and an arity that coincides with the number of ParMod configurations ν. The number
of explored nodes is given by ∑

h
i=0 νi thus exponential in the prediction horizon length. If not

properly addressed with specific techniques (e.g. branch&bound approaches) or heuristics,
the combinatorial optimization problem that needs to be solved at each control step implies
an exhaustive search by testing among all the feasible combinations of reconfigurations, thus
potentially limiting its viability to systems with long sampling intervals. Nevertheless in
practical scenarios, since the number of ParMod configurations is often sufficiently limited
and prediction horizons are normally short due to disturbance prediction errors, this approach
can be exploited in practise without complex search space reduction techniques.

6. Experiments discussion

In this section we will report a summary of experimental results that we have presented
in a more comprehensive way in our past publications. Our test-bed application describes

30 Emergency Management

www.intechopen.com

Developing Real-time Emergency Management Applications: Methodology for a Novel Programming Model Approach 21

a limited but interesting part of a complex emergency management system for flood
predictions, that we have already introduced in Section 3. The application graph is depicted
in Figure 3. The system is responsible for providing short-term forecasting results of a flood

W

W
. . .

E C

TE

point data

Generator

Solver

Client

Control Part

Operating Part

results

TC

TW

TW

Fig. 3. Flood Emergency Management Application: this test-bed scenario considers a limited
set of application modules.

scenario in a real-time fashion to a set of interested users (e.g. emergency stakeholders or
rescuers). The graph is composed of a Generator module that periodically produces sensor
data (e.g. water surface elevation and water speed) for each point of a 2D discretization of the
emergency scenario (e.g. a river basin). Each point is considered as an independent task by an
adaptive Solver ParMod, that numerically solves a system of differential equations describing
the flow behavior at the surface. Results evaluation is exploited by a Client component that
performs post-processing and visualization activities on the mobile devices of the users.

An example of flood forecasting model is the TUFLOW hydrodynamic model Charteris et al.
(2001), which is based on mass and momentum partial differential equations to describe
the flow variation at the surface. Their discrete resolution requires, for each time slice, the
resolution of a very large number of sparse tri-diagonal linear systems. For their resolution
several highly scalable techniques have been developed over the last decades. In (Bertolli,
Buono, Mencagli & Vanneschi, 2009) we have described two sequential variants of the cyclic
reduction algorithm (Hockney & Jesshope, 1988).

We have provided two distinct parallel versions of the Solver ParMod: the first variant of
the cyclic reduction, which requires a smaller number of operations than the second one,
is executed inside a task-farm scheme, in which an emitter entity schedules input tasks
(points) among a set of workers that execute in parallel the computation on different stream
elements. The second version consists in a data-parallel version of the second variant.
Although this algorithm requires a greater number of operations, data dependencies and
also a higher memory utilization, it is amenable to be implemented in parallel through
data-parallel techniques, in which a set of workers cooperatively compute the calculation
on a partition of the same input data-structure. Moreover, in order to implement the
data dependencies imposed by algorithm semantics, workers communicate with each other
following a statically known communication stencil whose form varies between different
iterations of the computation.

Such parallelizations respond to different QoS requirements: task-farm is able to increase
the throughput of the computation in terms of number of completed points per time unit,

31Developing Real-Time Emergency Management
Applications: Methodology for a Novel Programming Model Approach

www.intechopen.com

22 Will-be-set-by-IN-TECH

whereas, the data-parallel scheme, can also improve the computation latency for completing
a single task elaboration.

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10

s
c
a
la

b
ili

ty

parallelism degree

8MB
16MB
32MB

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6

s
c
a

la
b

ili
ty

parallelism degree

1MB
2MB
4MB

Fig. 4. Scalability of different versions of the flood forecasting model: task-farm on a cluster
(left), data-parallel on a multicore architecture (right).

The two versions of the Solver ParMod are suitable for the execution on different computing
architectures. The task-farm structure does not require intensive data exchanges between
processes, therefore it can be efficiently implemented on a distributed-memory architecture
(e.g. a cluster of production workstations). The data-parallel approach is instead amenable
of being executed on a shared-memory architecture as a multicore platform. Scalability of the
two versions is depicted in Figure 4, showing how different parallel versions achieve near
optimal scalability results on highly different computing architectures.

Since the task-farm is based on replication of input data of different stream elements whereas
the data-parallel applies a partitioning of the input data of the same task, we expect a different
memory utilization of the two parallelization approaches. As described in (Bertolli et al.,
2010), models describing the actual memory utilization of a structured parallel computation in
function of its configuration parameters, as the parallelism degree and the parallelism scheme,
provide accurate results as we can observe in the experiments depicted in Figure 5.

Fig. 5. Memory utilization per worker with tasks of size 16 MB (left) and 32 MB (right):
comparison between task-farm and data-parallel schemes.

The experienced memory behavior follows the predicted values: i.e. for the task-farm scheme,
based on a pure replication, the worker memory usage is independent on the parallelism
degree; for the data-parallel scheme, based on a partitioning of input data, increasing the
parallelism degree results on smaller partitions and thus on a lower memory usage per
worker. This demonstrates how a proper versioning of a parallel module is useful not only for
exploiting in the best way as possible different architectures on which the computation can be

32 Emergency Management

www.intechopen.com

Developing Real-time Emergency Management Applications: Methodology for a Novel Programming Model Approach 23

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 4 8 16 32

L
re

c
o
n
f

(s
e
c
s
.)

system size (MB)

par = 5
par = 15
par = 28

Fig. 6. Lrecon f for the rollforward (left) and the rollback (right) switching form a source
version (a task-farm) to a target version (a data-parallel) of the Solver ParMod. For the
rollforward protocol Lrecon f is dominated by the time spent for completing all the pending
tasks in the source version, before starting the target one. For the rollback protocol Lrecon f

indicates the time necessary for re-executing all the rolled-back tasks.

executed, but also the memory utilization of a parallel program can be adapted in response to
the current memory availability of the underlying execution platform.

In (Bertolli, Mencagli & Vanneschi, 2009) we have discussed adaptation strategies that modify
the Solver behavior in response to the actual availability of network and computing resources.
Especially for functional reconfigurations, in which the ParMod computation is migrated
from a source to a target environment changing the parallelism version, we need to precisely
estimate the overhead induced by these activities over the execution, in order to establish if
a reconfiguration action is useful for the execution or not. In (Bertolli et al., 2011) we have
presented different reconfiguration protocols for exploiting functional reconfigurations. A
rollforward protocol consists in switching from the source to the target version only when
all the pending tasks in execution in the source version of the ParMod have been completely
processed. On the other hand a rollback technique minimizes the intervention of the source
version on the protocol: i.e. when a reconfiguration is started, the target version starts its
execution immediately, re-executing possible tasks that have been completed (or they are in
execution) in the source version of the ParMod. Also in this case, based on the structured
parallel programming paradigm, we are able to quantify the overhead induced by different
protocols and choosing the best one for each specific case. Figure 6 depicts the time spent for
applying a reconfiguration (i.e. reconfiguration latency Lrecon f) in function of the task size.

Finally the exploitation of advanced control-theoretic techniques for controlling the Solver
computation has been described in (Mencagli & Vanneschi, 2011) for a Cloud Computing
scenario. We have analyzed the problem of executing the task-farm version of the Solver
ParMod on a remote cloud architecture on which the cost of execution of a parallel
computation is proportional to the number of virtualized resources (e.g. CPU) effectively
used. Moreover, in order to discourage too many resource re-organizations, we have
supposed the existence of a business model in which a fixed cost should be paid each time
a new resource request is submitted to the cloud system.

In this scenario the design of effective adaptation strategies for optimizing the Solver
execution are of great importance. For this application we have supposed a QoS objective with
a twofold nature. First of all we need to complete the forecasting computation in the minimum

33Developing Real-Time Emergency Management
Applications: Methodology for a Novel Programming Model Approach

www.intechopen.com

24 Will-be-set-by-IN-TECH

0

5

10

15

20

0 1000 2000 3000 4000 5000 6000 7000 8000

S
p
o
t
v
a
lu

e
s
 (

s
e
c
.)

Time (sec.)

Inter-arrival time to the Solver ParMod: trace-file.

Inter-arrival time spot values.

0

5

10

15

20

0 10 20 30 40 50 60

A
v
e

ra
g

e
 i
n

te
r-

a
rr

iv
a

l
ti
m

e
 (

s
e

c
.)

Time (control steps)

Holt-Winters Filter: average inter-arrival time prediction.

Average inter-arrival time.
Holt-Winters filter prediction.

Fig. 7. Trace-file of the inter-arrival time experienced during the execution (left) and the
statistical predictions obtained with an Holt-Winters filtering (right).

completion time as possible, such that emergency stakeholders can effectively plan proper
response actions in advance to potentially dangerous events. Second we need to minimize the
operational cost of the Solver execution on the cloud environment.

For this reason we have adopted the model-based predictive control strategy for the
Solver ParMod, starting from a hybrid modeling of interesting QoS measurements of this
computation (e.g. number of completed tasks and current operational cost). Due to a
time-varying network availability, we have assumed a dynamic workload consisting in a
variable mean inter-arrival time2 of tasks from the Generator module. In Figure 7(left)
is depicted the inter-arrival time of tasks experienced during an execution scenario in
which the network that interconnects the Generator and the Solver ParMods alternates
congestion phases and high-reliability phases (through the exploitation of an advanced
network simulation tool, see (Mencagli & Vanneschi, 2011) for further details). In our
modeling we have supposed the mean inter-arrival time as a disturbance input that needs
to be predicted over a limited horizon. To do this we have exploited a Holt-Winters filter which
is able to capture non-stationarity processes (e.g. trends and level shifts) of the underlying
time-series of past inter-arrival time observations, achieving good prediction results as shown
in Figure 7(right).

The task-farm scheme is a parallelization pattern featuring a clear and well-defined
performance model: i.e. fixing the task-farm configuration in terms of mean inter-arrival
time, service times of the emitter, the collector functionalities, and the number of parallel
workers, we are able to analyze the task-farm performance behavior as a queueing network
and evaluating the mean inter-departure time of results from this parallel computation.

This performance modeling can be exploited in order to predict how the number of computed
tasks evolves during the execution. In (Mencagli & Vanneschi, 2011) the MPC approach
has been applied providing an utility function that describes a proper trade-off between
completed tasks and operational cost. Limited prediction horizons (e.g. 1, 2 and 3 control
steps) have been applied for this experiment.

Figure 8(left) compares different adaptation strategies: (i) a reactive approach as the one
described in (Bertolli, Buono, Mencagli & Vanneschi, 2009), in which the parallelism degree
is modified according to the actual performance measurements of the computation; (ii) a

2 For mean inter-arrival time we intend the average time between the reception of two subsequent input
tasks from the Generator.

34 Emergency Management

www.intechopen.com

Developing Real-time Emergency Management Applications: Methodology for a Novel Programming Model Approach 25

0

10

20

30

40

50

60

70

80

Reactive 1-step ahead 2-step ahead 3-step ahead 4-step ahead

N
u
m

b
e
r

o
f
re

c
o
n
fi
g
u
ra

ti
o
n
s

Adaptation strategies

Number of reconfigurations with different Adaptation Strategies.

Reconfigurations.

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70

T
o
ta

l
c
o
s
t

Time (control steps)

Operating Cost of Solver ParMod

Reactive strategy.
1-step ahead.
2-step ahead.
3-step ahead.

Fig. 8. Number of parallelism degree variations (left) and long-term operational cost of the
Solver ParMod execution (right).

model-based predictive control technique that exploits the QoS predictability of the task-farm
scheme. As we can observe the predictive approach has a positive impact on the stability degree
of a ParMod configuration: i.e. for every prediction horizon length, the MPC strategy always
features a lower number of reconfigurations than the reactive approach.

Figure 8(right) depicts the long-term operating cost throughout the execution. The importance
of having a predictive run-time parallelism degree adaptation is clearly highlighted. W.r.t
a purely reactive adaptation, the MPC strategy is able to reduce the operating cost of even
the 20% if we exploit a prediction horizon of three steps, thus demonstrating how taking
reconfigurations in advance to future workload predictions can be an effective adaptation
technique.

7. Conclusion

In this chapter we have provided the design principles of a novel programming model
approach for time-critical distributed applications (and notably emergency management
systems). Such applications strongly require properties like the predictability of QoS
parameters in function of the actual application configuration expressed in terms of identified
software components, their interconnections, where they are currently deployed and how
their computations are actually exploited. In order to meet these requirements our approach
is based on a central point: the employment of the Structured Parallel Programming
methodology.

Structured parallelism schemes are based on well-defined parallelization paradigms in terms
of data replication or partitioning and function replication. We are able to define multiple
alternative versions of the same software component performing critical tasks as forecasting
models and simulations, as well as decision support systems. Such versions, besides being
characterized by a predictable QoS behavior expressed through an analytical analysis (e.g.
Queueing Network models), are also an effective way to deal with heterogeneous set of
computing resources where the computation can be alternatively deployed. Moreover, this
structured approach is amenable to provide predictable reconfiguration costs (e.g. from
migrating the computation between different architectures) and also for being controlled
through control-theoretic techniques (as the model-based predictive control procedure), in
which the QoS predictability is exploited to plan reconfiguration actions in advance to critical
events and optimizing the system execution and its operating cost.

35Developing Real-Time Emergency Management
Applications: Methodology for a Novel Programming Model Approach

www.intechopen.com

26 Will-be-set-by-IN-TECH

8. References

Ahumada, S., Apvrille, L., Barros, T., Cansado, A., Madelaine, E. & Salageanu, E. (2007).
Specifying fractal and gcm components with uml, SCCC ’07: Proceedings of the XXVI
International Conference of the Chilean Society of Computer Science, IEEE Computer
Society, Washington, DC, USA, pp. 53–62.

Aldinucci, M., Campa, S., Danelutto, M. & Vanneschi, M. (2008). Behavioural skeletons in gcm:
Autonomic management of grid components, Parallel, Distributed and Network-Based
Processing, 2008. PDP 2008. 16th Euromicro Conference on, pp. 54–63.

Aldinucci, M., Coppola, M., Danelutto, M., Vanneschi, M. & Zoccolo, C. (2005). Assist as
a research framework for high-performance grid programming environments, Grid
Computing: Software environments and Tools, Springer, pp. 230–256.

Aldinucci, M., Danelutto, M. & Kilpatrick, P. (2009). Autonomic management of
non-functional concerns in distributed & parallel application programming, IPDPS
’09: Proceedings of the 2009 IEEE International Symposium on Parallel&Distributed
Processing, IEEE Computer Society, Washington, DC, USA, pp. 1–12.

Aldinucci, M., Danelutto, M. & Vanneschi, M. (2006). Autonomic qos in assist grid-aware
components, PDP ’06: Proceedings of the 14th Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing, IEEE Computer Society,
Washington, DC, USA, pp. 221–230.

Arshad, N., Heimbigner, D. & Wolf, A. L. (2007). Deployment and dynamic reconfiguration
planning for distributed software systems, Software Quality Control 15(3): 265–281.

Berman, F., Fox, G. & Hey, A. J. G. (2003). Grid Computing: Making the Global Infrastructure a
Reality, John Wiley & Sons, Inc., New York, NY, USA.

Bertolli, C. (2009). Fault tolerance for High-Performance applications using structured parallelism
models, VDM Verlag, SaarbrÃijcken, Germany.

Bertolli, C., Buono, D., Mencagli, G. & Vanneschi, M. (2009). Expressing adaptivity and
context-awareness in the assistant programming model, Proceedings of the Third
International ICST Conference on Autonomic Computing and Communication Systems,
pp. 38–54.

Bertolli, C., Mencagli, G. & Vanneschi, M. (2009). Adaptivity in risk and emergency
management applications on pervasive grids, Proceeding of the 10th International
Symposium on Pervasive Systems, Algorithms, and Networks, p. to appear.

Bertolli, C., Mencagli, G. & Vanneschi, M. (2010). Analyzing memory requirements
for pervasive grid applications, Parallel, Distributed, and Network-Based Processing,
Euromicro Conference on 0: 297–301.

Bertolli, C., Mencagli, G. & Vanneschi, M. (2011). Consistent reconfiguration protocols
for adaptive high-performance applications, Wireless Communications and Mobile
Computing Conference (IWCMC), 2011 7th International, pp. 2121 –2126.

Bertsekas, D. P. (1995). Dynamic Programming and Optimal Control, Two Volume Set, 2nd edn,
Athena Scientific.

Charteris, A., Syme, W. & Walden, W. (2001). Urban flood modelling and mapping 2d or
not 2d, Proceedings of the 6th Conference on Hydraulics in Civil Engineering: The State of
Hydraulics, Barton A.C.T: Institution of Engineers, Barton, Australia, pp. 355–363.

Cole, M. (2004). Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel
programming, Parallel Comput. 30(3): 389–406.

36 Emergency Management

www.intechopen.com

Developing Real-time Emergency Management Applications: Methodology for a Novel Programming Model Approach 27

Coppola, M., Danelutto, M., Tonellotto, N., Vanneschi, M. & Zoccolo, C. (2007a). Execution
support of high performance heterogeneous component-based applications on
the grid, Euro-Par’06: Proceedings of the CoreGRID 2006, UNICORE Summit 2006,
Petascale Computational Biology and Bioinformatics conference on Parallel processing,
Springer-Verlag, Berlin, Heidelberg, pp. 171–185.

Coppola, M., Danelutto, M., Tonellotto, N., Vanneschi, M. & Zoccolo, C. (2007b). Execution
support of high performance heterogeneous component-based applications on
the grid, Euro-Par’06: Proceedings of the CoreGRID 2006, UNICORE Summit 2006,
Petascale Computational Biology and Bioinformatics conference on Parallel processing,
Springer-Verlag, Berlin, Heidelberg, pp. 171–185.

Danelutto, M., Vanneschi, M. & Zoccolo, C. (2007). A performance model for stream-based
computations, PDP ’07: Proceedings of the 15th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing, IEEE Computer Society,
Washington, DC, USA, pp. 91–96.

der, S. A. J. v. & Schumacher, J. M. (1999). Introduction to Hybrid Dynamical Systems,
Springer-Verlag, London, UK.

Garcia, C. E., Prett, D. M. & Morari, M. (1989). Model predictive control: theory and practice
a survey, Automatica 25: 335–348.
URL: http://portal.acm.org/citation.cfm?id=72068.72069

Garlan, D., Siewiorek, D., Smailagic, A. & Steenkiste, P. (2002). Project aura: Toward
distraction-free pervasive computing, IEEE Pervasive Computing 1(2): 22–31.

Gomes, A. T. A., Batista, T. V., Joolia, A. & Coulson, G. (2007). Architecting dynamic
reconfiguration in dependable systems, pp. 237–261.

Hansmann, U., Merk, L., Nicklous, M. S. & Stober, T. (2003). Pervasive Computing : The Mobile
World (Springer Professional Computing), Springer.

Hellerstein, J. L., Diao, Y., Parekh, S. & Tilbury, D. M. (2004). Feedback Control of Computing
Systems, John Wiley & Sons.

Hillman, J. & Warren, I. (2004). An open framework for dynamic reconfiguration, ICSE ’04:
Proceedings of the 26th International Conference on Software Engineering, IEEE Computer
Society, Washington, DC, USA, pp. 594–603.

Hockney, R. W. & Jesshope, C. R. (1988). Parallel Computers Two: Architecture, Programming and
Algorithms, IOP Publishing Ltd., Bristol, UK, UK.

Huebscher, M. C. & McCann, J. A. (2008). A survey of autonomic computing—degrees,
models, and applications, ACM Comput. Surv. 40(3): 1–28.

Liberzon, D. (2003). Switching in Systems and Control, BirkhÃd’user Boston Production, Boston,
USA.

Lillethun, D. J., Hilley, D., Horrigan, S. & Ramachandran, U. (2007). Mb++: An integrated
architecture for pervasive computing and high-performance computing, RTCSA
’07: Proceedings of the 13th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, IEEE Computer Society, Washington, DC, USA,
pp. 241–248.

Lusk, E. (2002). Mpi in 2002: has it been ten years already?, p. 435.
Mathias, E., Baude, F. & Cave, V. (2008). A gcm-based runtime support for parallel grid

applications, CBHPC ’08: Proceedings of the 2008 compFrame/HPC-GECO workshop on
Component based high performance, ACM, New York, NY, USA, pp. 1–10.

37Developing Real-Time Emergency Management
Applications: Methodology for a Novel Programming Model Approach

www.intechopen.com

28 Will-be-set-by-IN-TECH

Mencagli, G. & Vanneschi, M. (2011). Qos-control of structured parallel computations:
a predictive control approach, Technical Report TR-11-14, Department of Computer
Science, University of Pisa, Largo B. Pontecorvo, 3, I-56127, Pisa, Italy.

Mortier, R. & Kiciman, E. (2006). Autonomic network management: some pragmatic
considerations, Proceedings of the 2006 SIGCOMM workshop on Internet network
management, INM ’06, ACM, New York, NY, USA, pp. 89–93.
URL: http://doi.acm.org/10.1145/1162638.1162653

Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J. E., Flinn, J. & Walker, K. R.
(1997). Agile application-aware adaptation for mobility, SIGOPS Oper. Syst. Rev.
31(5): 276–287.

Russell, S. J. & Norvig, P. (2003). Artificial Intelligence: A Modern Approach, Pearson Education.
Snir, M., Otto, S. W., Walker, D. W., Dongarra, J. & Huss-Lederman, S. (1995). MPI: The

Complete Reference, MIT Press, Cambridge, MA, USA.
Tsai, W. T., Song, W., Chen, Y. & Paul, R. (2007). Dynamic system reconfiguration via service

composition for dependable computing, Proceedings of the 12th Monterey conference on
Reliable systems on unreliable networked platforms, Springer-Verlag, Berlin, Heidelberg,
pp. 203–224.

Vanneschi, M. (2002). The programming model of assist, an environment for parallel and
distributed portable applications, Parallel Comput. 28(12): 1709–1732.

Vanneschi, M. & Veraldi, L. (2007). Dynamicity in distributed applications: issues, problems
and the assist approach, Parallel Comput. 33(12): 822–845.

38 Emergency Management

www.intechopen.com

Emergency Management

Edited by Dr. Burak Eksioglu

ISBN 978-953-307-989-9

Hard cover, 90 pages

Publisher InTech

Published online 27, January, 2012

Published in print edition January, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

After the large-scale disasters that we have witnessed in the recent past, it has become apparent that complex

and coordinated emergency management systems are required for efficient and effective relief efforts. Such

management systems can only be developed by involving many scientists and practitioners from multiple

fields. Thus, this book on emergency management discusses various issues, such as the impact of human

behavior, development of hardware and software architectures, cyber security concerns, dynamic process of

guiding evacuees and routing vehicles, supply allocation, and vehicle routing problems in preparing for, and

responding to large scale emergencies. The book is designed to be useful to students, researchers and

engineers in all academic areas, but particularly for those in the fields of computer science, operations

research, and human factor. We also hope that this book will become a useful reference for practitioners.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Gabriele Mencagli and Marco Vanneschi (2012). Developing Real-Time Emergency Management Applications:

Methodology for a Novel Programming Model Approach, Emergency Management, Dr. Burak Eksioglu (Ed.),

ISBN: 978-953-307-989-9, InTech, Available from: http://www.intechopen.com/books/emergency-

management/developing-real-time-emergency-management-applications-methodology-for-a-novel-

programming-model-app

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

